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Resting-state functional MRI (fMRI) has revealed functional changes at the

cortical level in degenerative cervical myelopathy (DCM) patients. The aim

of this study was to systematically integrate static and dynamic functional

connectivity (FC) to unveil abnormalities of functional networks of DCM patients

and to analyze the prognostic value of these abnormalities for patients using

resting-state fMRI. In this study, we collected clinical data and fMRI data from 44

DCM patients and 39 healthy controls (HC). Independent component analysis

(ICA) was performed to investigate the group di�erences of intra-network FC.

Subsequently, both static and dynamic FC were calculated to investigate the

inter-network FC alterations in DCMpatients. k-means clusteringwas conducted

to assess temporal properties for comparison between groups. Finally, the

support vector machine (SVM) approach was performed to predict the prognosis

of DCM patients based on static FC, dynamic FC, and fusion of these twometrics.

Relative to HC, DCM patients exhibited lower intra-network FC and higher inter-

network FC. DCM patients spent more time than HC in the state in which both

patients and HC were characterized by strong inter-network FC. Both static

and dynamic FC could successfully classify DCM patients with di�erent surgical

outcomes. The classification accuracy further improved after fusing the dynamic

and static FC for model training. In conclusion, our findings provide valuable

insights into the brain mechanisms underlying DCM neuropathology on the

network level.
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Introduction

Degenerative cervical myelopathy (DCM) is a prevalent cause
of non-traumatic spinal cord injuries and chronic spinal cord
dysfunction among adults. This condition is characterized by
the compression of the spinal cord resulting from degenerative
changes in the cervical spine. DCM patients experience a range
of neurological symptoms, such as pain, sensory abnormalities,
gait disturbance, and limb dyscoordination (1, 2). Previous
neuroimaging studies have explored structural, functional and
metabolic adaptive changes at the cortical level in DCM patients
(3–5). Mounting evidence suggests that the gradual deterioration
of spinal cord dysfunction, which transmits signals to and from the
brain, has a significant impact on brain morphology and functional
activity (6–9). Predicting surgical outcomes is crucial for spine
surgeons. Traditional cervical MRI’s reliability in predicting patient
prognosis is debatable. Therefore, simple, accurate, and non-
invasive imaging biomarkers are needed to predict postoperative
neurological recovery in patients.

Recent studies have shifted focus from regional alterations
to brain network reorganization, aiming to elucidate the
neuropathology of DCM and develop potential prognostic
biomarkers. Functional connectivity (FC) analysis utilizing resting-
state functional MRI (fMRI) data revealed predictable alterations
across different stages of DCM progression (3). Previous studies
have constructed static (i.e., calculating the Pearson correlation
coefficients between time series), fine-grained brain functional
networks based on anatomical templates, overlooking coarse-
grained FC that provide the holistic interplay between various
functional systems. Independent component analysis (ICA) is
a data-driven method that can investigate coarse-grained inter-
network FC by blindly separating neural signals from multiple
brain systems (10, 11). Furthermore, the brain is a complex
dynamic system, and the strength and variability of FC can vary
rapidly at timescales of seconds to minutes (12). To investigate the
dynamic architecture of the brain networks, the dynamic FC (dFC)
analysis using the sliding window approach has provided valuable
insights into the temporal dynamic changes in FC (13). However,
this method has limitations, including the use of arbitrarily chosen
fixed-length windows and the disregard of transient FC modes
(14). To overcome these limitations, novel approaches such as
dynamical conditional correlation (DCC) and flexible least squares
(FLS) algorithms have been proposed and shown to outperform the
traditional sliding window approach (14–16). Prior investigations
exclusively conducted univariate analysis to merely compare the
amplitude of specific FC between patients and healthy controls
(HC). In contrast, the multivariate approach offers an unmatched
ability to detect distinctions in the spatial architecture of network
modifications and reorganization between patients and HC.
Multivariate approaches assess the intricate interactions among
numerous variables, thereby facilitating accurate predictions (17).

Therefore, we investigated the coarse-grained FC alterations
between DCM patients and HC utilizing ICA approach and
calculated dFC to investigate the temporal variability of coarse-
grained FC. Furthermore, we conducted a comparative assessment
of the predictive efficacy of static FC (sFC), dFC, and their fusion in
classifying DCM patients with favorable and poor prognoses.

Materials and methods

Subjects

Ethical approval for this retrospective study was granted
by the institutional local review board. The inclusion criteria
for DCM patients was as follows: (a) clear MRI evidence of
cord compression on the cervical spine; (b) explicit clinical
manifestations of myelopathy (sensorimotor extremity deficits,
bladder/bowel dysfunction, gait disturbance, etc.); (c) patients
agreed to undergo decompression surgery; (d) no history of cervical
spinal surgery; (e) ability to complete fMRI studies; (f) no stenosis
of extracranial vertebral artery and the carotid artery after Doppler
ultrasound examination; (g) no clinical evidence or history of
other neurological, psychiatric, ocular disease, or systemic disease,
including hypertension and diabetes after consulting specialists
in neurology, cardiology, and ophthalmology; (h) no history of
alcohol and substance abuse. HC of similar age, gender, and
education were also recruited through advertisements with the
following inclusion criteria:(a) no evidence of spinal compression;
(b) no other spinal or brain neurological disorders, or systemic
disease; (d) ability to complete rs-fMRI studies. All participants
gave written informed consent. Finally, 44 right-hand DCM
patients and 39 HC were recruited continuously in 2020–2022 at
Tianjin Medical University General Hospital.

Clinical evaluation

Before fMRI scanning, a senior orthopedic surgeon conducted
a thorough evaluation of DCM patients using the Japanese
Orthopedic Association (JOA) scale (normally 3 days before
decompression surgery). The postoperative JOA score was obtained
at one year postoperatively. JOA recovery rate was calculated using
the following formula.

JOA recovery rate =

Postoperative JOA score− Preoperative JOA score

17− Preoperative JOA score

The duration of the symptoms was also noted when the history
was taken.

MRI data acquisition and preprocessing

MRI scanning was performed onHC and preoperative patients.
Data were acquired using a MAGNETOM Prisma 3T MR scanner
(Siemens, Erlangen, Germany) with a 64-channel phase-array
head–neck coil. All participants used spongy pads to support their
heads to minimize head movement during the scan. Participants
were also asked to close their eyes and remain awake while
avoiding specific and strong thoughts. Functional images were
collected using a gradient echo-planar pulse imaging sequence
with the following parameters: echo time (TE) = 30ms; repetition
time (TR) = 800ms, field of view (FOV) = 222 × 222mm;
matrix = 74 × 74; in-plane resolution = 3 × 3mm; flip angle
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(FA) = 54◦; slice thickness = 3mm; gap = 0mm; number of
slices = 48; slice orientation = transversal; bandwidth = 1,690
Hz/pixel, parallel acquisition technique mode; slice acceleration
factor = 4; phase encoding acceleration factor = 2. Four hundred
fifty images were taken in 6min. A high-resolution 3D T1
structural image (2 inversion contrast magnetization prepared
rapid gradient echo sequence, MP2RAGE) was also acquired
using the following parameters: TR/TE = 4,000 ms/3.41ms,
inversion times (TI1/TI2) =700 ms/2,110ms, FA1/FA2 = 4
degree/5 degree, matrix = 256 × 240, FOV = 256mm ×

240mm, number of slices = 192, in-plane resolution = 1mm
× 1mm, slice thickness = 1mm, slice orientation = sagittal,
total duration is 6min, 42 s. fMRI data were preprocessed
using the Data Processing Assistant for rs-fMRI (http://www.
restfmri.net/forum/DPARSF) toolbox. The first 10 volumes of each
function scan were excluded for the adaption of participants
and magnetization stability. Motion correction was performed to
eliminate the effects of head movement. The functional images
were co-registered to structural images and spatially normalized
to the Montreal Neurological Institute template, each voxel was
resampled to 3 × 3 × 3 mm3. Finally, resampled images
were smoothed with an 8-mm full-width-half-maximum isotropic
Gaussian kernel. Figure 1 illustrates the analysis pipeline of our
current study.

Group independent component analysis

All preprocessed images were analyzed using the GIFT software
(mialab.mrn.org/software/gift/). The ICA analysis involved three
main steps: (1) data reduction, (2) group ICA, and (3) back-
reconstruction. In this study, 17 independent components (IC)
were estimated using the minimum description length criteria, and
principal component analysis was applied for data dimensionality
reduction. The infomax algorithm was employed for group ICA
analysis, and the ICASSO method was utilized with 100 repetitions
to ensure data repeatability (18). Finally, the spatial map and
time course specific to each subject were reverse reconstructed
using spatial-temporal regression. A binary mask was obtained
for each resting-state network (RSN) using one-sample t-tests for
DCM patients and HC respectively, with correction for familywise
error (FWE) at voxel-level P < 0.001 and cluster-level P < 0.05.
Subsequently, a binary mask was obtained by intersecting these two
masks from DCM patients and HC for further visualization. Next,
within the intersection of these two masks, spatial maps of each
RSN were gathered across all the participants by one-sample t-tests
corrected by FEW correction (voxel-level P < 0.001, cluster-level P
< 0.05).

To ensure result validity, we followed the criteria outlined
in a prior study (13). We confirmed that the peak activation
coordinates of spatial maps primarily resided in the gray matter,
showing low overlap with known vascular, ventricular, motion,
and susceptibility artifacts and the time course of the RSN was
dominated by low-frequency fluctuations. Furthermore, the dice
similarity coefficient (DSC) was calculated between the binary
masks of the spatial maps and the templates provided in the GIFT
software [the RSN template (19) and Neuromark template (20)].

The DSC was calculated using the following formula.

DSCA,B =
2× (A ∩ B)

A+ B

where A and B represent the compared masks, AnB represents
the number of common voxels between A and B, and A + B
represents the total number of voxels for A and B.

Finally, 11 IC were selected for further analyses: medial
visual network (MVN), lateral visual network (LVN), cerebellar
network (CBN), anterior default mode network (aDMN), posterior
default mode network (pDMN), attention network (AN), auditory
network (AUN), left frontoparietal network (LFPN), right
frontoparietal network (RFPN) and sensory network (SN) and
motor network (MN).

Intra-network connectivity analysis

To investigate the intra-network connectivity, the spatial
component for above-mentioned brain networks was compared
between DCM patients and HC. To ensure the analysis focused
on “intra-network FC”, we applied a network specific-mask (the
binary mask of selected RSN in the previous analysis) when
performing two-sample t-tests with age, gender, and education
years as covariates, the results were corrected using FWE correction
(voxel-level P < 0.001, cluster-level P < 0.05).

Internetwork connectivity analysis

To explore the inter-network connectivity, the time courses of
above mentioned 11 components were extracted and performed
post-processing steps, including triple detrending (linear, cubic,
quadratic), despiking detected outliers by 3dDespike algorithm,
low-pass filtering with a high cutoff frequency of 0.08Hz, and linear
regression of the Friston 24 head motion parameters. Continuing,
both sFC and dFC between these IC were calculated.

For sFC, pairwise correlations of the time series were
calculated and then Fisher-Z transformed to obtain the FC
matrix (11 × 11). For dFC, we simultaneously use DCC and FLS
approaches. DCC method (https://github.com/canlab/Lindquist_
Dynamic_Correlation) involves fitting a generalized autoregressive
conditional heteroskedasticity model to all time series and
estimating time-varying correlations from the standardized
residuals (21). For FLS method, we used DynamicBC toolbox
(16), which employs a distribution-free time-varying parameter
regression strategy. FLS algorithm assigns two types of residual
errors to each coefficient sequence estimate: squared residual
measurement errors and squared residual dynamic errors. Pairwise
dFC values were obtained for each participant, resulting in a dFC
matrix of 440 (time points) × 121 (connections). These matrices
were Fisher-Z transformed. Two metrics were computed for each
pairwise dFC: the temporal mean value (FC) and the temporal
variability (FCδ) (e.g., standard deviation) across time.

To identify reoccurring dFC patterns (states), we applied a k-
means clustering algorithm with the cityblock distance. Silhouette
index and Calinski-Harabasz index were used to determine the
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FIGURE 1

The analysis pipeline of our study. Rs-fMRI, resting state fMRI; FWE, familywise error; FDR, false discovery rate; AUC, area under the curve, DCC,

dynamical conditional correlation; FLS, flexible least squares.

optimal number of clusters. Temporal properties of dFC states
were analyzed using three variables: (1) fraction time, representing
the percentage of the total windows belonging to one state; (2)
mean dwell time, indicating the number of consecutive windows
belonging to one state; and (3) number of transitions, representing
the sum of time points in which the state changed.

Finally, two-sample t-tests were performed to reveal the
differences in sFC matrix, FC, FCδ , fraction time, mean dwell time,
and number of transitions with age, gender, and education years as
covariates between DCM patients and HC and corrected using false
discovery rate (FDR) correction (P < 0.05).

Correlation analysis

To investigate the potential association between brain network
abnormalities and clinical assessment, Pearson correlation
coefficients were calculated. For intra-network FC, correlations
were calculated between the mean values within abnormal
brain regions and clinical assessments. For inter-network FC,
correlations were calculated between sFC, FC, FCδ of dFC,
temporal properties of dFC (fraction time, mean dwell time, and
number of transitions) and clinical assessments.

Multivariate pattern analysis (MVPA)

To assess the predictive value of sFC and dFC for the prognostic
prediction in DCM patients, MVPA was performed via support
vector machine, using MVPANI toolbox (http://funi.tmu.edu.cn)
with sigmoid kernel and default parameters to classify DCM
patients with good recovery and poor recovery. We used a cut-
off value of 75% (the median of the data in this study) of the JOA
recovery rate for defining good and poor prognosis. This categorical
variable was used as the outcome for the development of machine
learning classifiers. The rationale for converting this continuous
variable into a binary variable is threefold: (1) considering our
limited sample size, binary variables often have a smaller range
of values, which can make the model simpler; (2) converting
continuous variables into binary variables can effectively deal with
outliers; (3) continuous variables can be affected by measurement
errors or noise. Discretizing continuous variables into binary
variables helps reduce the impact of noise in the data, improving
the stability and robustness of the model.

In the current study, five feature-sets were used for developing
model: sFC-based feature-sets, dFC (FLS)-based feature-sets, dFC
(DCC)-based feature-sets, fusion of sFC and dFC (FLS) feature-
sets, and fusion of sFC and dFC (DCC) feature-sets. As the FC
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matrix is symmetric, only the upper triangle elements were used.
For the sFC-based feature-sets, the vector with 55 features was
extracted from the sFC matrix of each participant. For the dFC-
based feature-sets, the vector with 110 features was constructed
based on FC and FCδ of dFC matrix for each subject along with
the five temporal properties of dFC (e.g., number of transitions,
fraction time, and dwell time of each state), resulting in 115 features
for the feature-sets. For the fusion of sFC and dFC feature-sets, 55
features of sFC-based predictive model and 115 features of dFC-
based predictive model were fused to generate a large vector with
170 features.

Classification accuracies were assessed by the leave-one-out
cross-validation procedure for each feature-set respectively to
overcome the loss of generalization due to the relatively small
sample size in this study. Briefly, one of the available data points is
retained and the model is trained using the rest of the data. Before
model training, to remove redundant features and avoid overfitting
of the model, we selected the least absolute shrinkage and selection
operator as the method for feature selection. Subsequently, the
model was trained based on the selected features and tested on
the held-out data point. This process was repeated until all data
points were retained once as a test sample. The corresponding P-
value for the classification of good prognosis and poor prognosis
was calculated from the null distribution obtained from 1,000
random permutation tests by randomly shuffling the labels of
samples. The P-values were calculated as a proportion of the
number of permutations generated that were greater than or
equal to actual classification accuracy and P < 0.05 with FDR
correction for multiple comparisons was considered statistically
significant. The receiver operating characteristic (ROC) curve and
the corresponding area under the curve (AUC) of each model were
also calculated.

Validation analysis

To further investigate the potential influence of headmotion on
our result, we conducted validation analysis and compared the head
motion between DCM patients and HC. Framewise displacement
values were calculated using 3 robust methods including Jenkinson
method, Power method, and VanDijk method. Moreover, to further
test the stability of our results, we set the number of IC in ICA
to 12 and 22 respectively and performed similar sFC analysis for
internal validation. Furthermore, in MVPANI, we also applied
other predictive models, multiple kernels of SVM and adjusted the
tunable parameters of the SVM with the sigmoid kernel to find the
optimal model for the study.

Results

Demographic data and clinical assessment

Forty four DCMpatients and 39HCwere enrolled in this study.
The demographic data and clinical assessments of all participants
are summarized in Table 1. No significant inter-group differences
in age, gender, or education years (P < 0.05) were observed.

TABLE 1 Demographic data and clinical assessments of the current study.

Characteristics DCM
(n = 44)

HC
(n = 39)

p value

Age (years) 54.0± 10.7 53.7± 8.3 0.88

Gender (F/M) 22/22 19/20 0.91

Education (years) 11.2± 2.7 11.1± 3.3 0.85

JOA 11.4± 2.1

JOA recovery rate 0.74± 0.16

Disease’s duration (years) 4.0± 2.1

DCM, degenerative cervical myelopathy; HC, healthy controls; JOA, Japanese

Orthopedic Association.

Intra-network connectivity analysis

Spatial maps of all 11 IC defined by group ICA and
detailed information can be found in Supplementary Figure S1,
Supplementary Table S1. The DSC between our spatial maps
and RSN template obtained in the previous study were all
above 0.52 (Supplementary Table S2), indicating that the obtained
spatial maps in the study were robust. Compared to HC, DCM
patients exhibited significantly lower intra-network FC between
the right lingual gyrus and MVN, between bilateral cerebellum
posterior lobe and CBN, between bilateral precuneus and pDMN,
between left middle temporal gyrus, right inferior temporal gyrus,
and AN, between bilateral precentral gyrus and MN (Table 2,
Figure 2).

Inter-network connectivity analysis

For sFC, the averaged sFC matrix for DCM patients, HC, and
all participants were illustrated in Figure 3A. Compared with HC,
DCM patients exhibited significantly higher sFC between AN and
LVN (P < 0.001), between aDMN and CBN (P = 0.002), between
AN and CBN (P < 0.001) (Figures 3B–E).

For dFC, two approaches obtained partial overlap results.
Firstly, the optimal number of clusters obtained by the Silhouette
method and Calinski-Harabasz method was all two (Figure 4A,
Figure 5A). Namely, a less frequent and relatively strongly
connected state 1, and a more frequent and relatively sparsely
connected state 2 (Figure 4B, Figure 5B). In addition, between-
group comparison showed that state 1 was more frequent in DCM
patients than HC (P = 0.01, Figure 4C; P = 0.02, Figure 5C); while
the opposite pattern was observed for state 2 that was less frequent
inDCMpatients (P= 0.01, Figure 4C; P= 0.02, Figure 5C). Finally,
compared with HC, DCM patients exhibited significantly higher
level of FC of dFC between MVN and AN (P = 0.001), between
LVN and AN (P = 0.001), between CBN and AN (P < 0.001),
between CBN and aDMN (P < 0.001), between RFPN and MN (P
= 0.002) (Figures 4E–J, 5F–K). Furthermore, in DCC method, the
dwell time of state 1 was also higher in DCM patients (P = 0.01)
(Figure 4D). In FLSmethod, DCMpatients exhibited a significantly
lower level of dFC variability between CBN and AN (P < 0.001)
(Figures 5D, E).
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TABLE 2 Abnormal functional connectivity in each RSN between DCM patients and HC.

RSN Regions BA Voxels T-value Peak MNI

x y z

DCM < HC

MVN R lingual gyrus 18.19 84 −5.70 21 −54 −3

CBN Bi cerebellum posterior lobe — 333 −5.59 12 −84 −42

pDMN Bi precuneus 23 58 −4.56 −3 −78 27

AN L middle temporal gyrus 20 56 −4.90 −51 −6 −30

L middle temporal gyrus 21 53 −5.90 −57 −9 −24

R inferior temporal gyrus 20.21 35 −4.39 57 −6 −24

MN L precentral gyrus 4.6 114 −5.88 −60 3 33

R precentral gyrus 4.6 65 −5.15 54 −3 27

DCM, degenerative cervical myelopathy; HC, healthy controls; IC, independent component; MNI,Montreal Neurologic Institute; BA, Brodmann area; RSN, resting-state network; MVN,medial

visual network; CBN, cerebellar network; pDMN, posterior default mode network; AN, attention network; MN, motor network; R, right; L, left; Bi, bilateral.

FIGURE 2

Abnormal intra-network static functional connectivity in degenerative cervical myelopathy patients compared to healthy participants.

Correlation analysis

Figure 6A illustrates the heat map for correlation coefficients
between all brain abnormalities observed in our study and clinical
assessments. For inter-network sFC, the abnormal sFC between

LVN and AN correlated with duration of the symptoms (P =

0.002, R = 0.465, Figure 6B), the abnormal sFC between CBN
and AN correlated with duration of the symptoms (P = 0.002,
R = 0.456, Figure 6C). For dFC analysis, the fraction time of
state 1 correlated with duration of the symptoms (P = 0.003, R
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FIGURE 3

Abnormal inter-network static functional connectivity (sFC) in degenerative cervical myelopathy (DCM) patients compared to healthy controls (HC).

(A) The heat map for averaged inter-network sFC pattern of all participants (upper panel), DCM patients (middle panel), and HC (lower panel). (B) The

abnormal inter-network sFC between DCM patients and HC. The red lines indicated higher sFC in DCM patients. Abnormal inter-network sFC

between lateral visual network (LVN) and attention network (AN) (C), between cerebellar network (CBN) and anterior default mode network (aDMN)

(D), between CBN and AN (E). MVN, medial visual network; pDMN, posterior default mode network; AUN, auditory network; LFPN, left frontoparietal

network; RFPN, right frontoparietal network; SN, sensory network; MN, motor network. **In scatter plots means p < 0.01 (uncorrected), ***p < 0.001

(uncorrected), ****p < 0.0001 (uncorrected).
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FIGURE 4

Abnormal dynamic functional connectivity (dFC) (dynamical conditional correlation approach) in degenerative cervical myelopathy (DCM) patients

compared to healthy controls (HC). (A) The results of Silhouette index and Calinski-Harabasz index analyses, the optimal number of clusters was 2.

(B) The median pattern of dFC for two types of states identified by k-means clustering analyses. The di�erences in fraction time (C) and mean dwell

time (D) between DCM patients and HC. (E) The abnormal strength of dFC in DCM patients compared to HC. The red lines indicated higher strength

of dFC in DCM patients. Inter-group di�erences in strength of dFC between medial visual network (MVN) and attention network (AN) (F), between

lateral visual network (LVN) and AN (G), between cerebellar network (CBN) and AN (H), between CBN and anterior default mode network (aDMN) (I),

between right frontoparietal network (RFPN) and motor network (MN) (J). pDMN, posterior default mode network; AUN, auditory network; LFPN, left

frontoparietal network; SN, sensory network. *p <In scatter plots means p < 0.05 (uncorrected), **p < 0.01 (uncorrected), ***p < 0.001 (uncorrected),
****p < 0.0001 (uncorrected).
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FIGURE 5

Abnormal dynamic functional connectivity (dFC) (flexible least squares approach) in degenerative cervical myelopathy (DCM) patients compared to

healthy controls (HC). (A) The results of Silhouette index and Calinski-Harabasz index analyses, the optimal number of clusters was 2. (B) The median

pattern of dFC for two types of states identified by k-means clustering analyses. (C) The di�erences in fraction time for each state between DCM

patients and HC. The abnormal variability of dFC between cerebellar network (CBN) and attention network (AN) in DCM patients compared to HC,

the blue lines indicated lower variability of dFC in DCM patients (D, E). (F) The abnormal strength of dFC in DCM patients compared to HC. The red

lines indicated higher strength of dFC in DCM patients. Inter-group di�erences in strength of dFC between medial visual network (MVN) and AN (G),

between lateral visual network (LVN) and AN (H), between CBN and AN (I), between CBN and anterior default mode network (aDMN) (J), between

right frontoparietal network (RFPN) and motor network (MN) (K). pDMN, posterior default mode network; AUN, auditory network; LFPN, left

frontoparietal network; SN, sensory network. **In scatter plots means p < 0.01 (uncorrected), ***p < 0.001 (uncorrected), ****p < 0.0001

(uncorrected).
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= 0.440, Figure 6D), the fraction time of state 2 correlated with
duration of the symptoms (P = 0.003, R = −0.440, Figure 6E),
and the abnormal FC of dFC between RFPN and MN correlated
with JOA score (P = 0.001, R = 0.473, Figure 6F). Moreover, the
abnormal intra-network connectivity within the AN was correlated
with the postoperative JOA recovery rate (P = 0.003, R = 0.433).
Unfortunately, this result could not pass the FDR correction.
The results of P-value before FDR correction can be found in
Supplementary Figure S2.

MVPA: good prognosis vs. poor prognosis
classification

The classification accuracies were 65.9% and the corresponding
AUCs of ROC curves were 0.66 for sFC-based predictive model,
79.6% and the corresponding AUCs of ROC curves were 0.88
for dFC-based predictive model (FLS approach), 65.9% and the
corresponding AUCs of ROC curves were 0.73 for dFC-based
predictive model (DCC approach), 81.8% and the corresponding
AUCs of ROC curves were 0.92 for sFC fused dFC-based predictive
model (FLS + sFC), 70.5% and the corresponding AUCs of ROC
curves were 0.75 for sFC fused dFC-based predictive model (DCC
+ sFC) (Figures 7A, B). Supplementary Figure S3 illustrates the
results of permutation tests.

Validation analysis

To further perform internal validation of our current results,
ICA was performed by adding 5 and subtracting 5 on the
estimated number of components. The results from these validation
analyses (e.g., 12-component level and 22-component level)
were consistent with our main result (Supplementary Figures S4–
S6, Supplementary Tables S3–S6). The SVM with the sigmoid
kernel, using default parameters (C-SVC, penalty coefficient =

1, gamma = 0.1), produced the optimal model for this study
(Supplementary Figures S7–S9). Furthermore, no difference in
head motion was obtained between DCM patients and HC
(Supplementary Figure S10).

Discussion

In our study, three main findings emerged: (1) relative to
HC, DCM patients exhibited significantly lower intra-network sFC
and higher inter-network sFC between brain networks; (2) DCM
patients exhibited a longer duration within a state characterized
by heightened interconnectivity among brain networks, correlating
with symptom duration; (3) Combining different FC metrics (such
as sFC and dFC) improved classification accuracy between patients
with good and poor recovery, indicating that integrating various FC
measures offers a better neuroimaging marker for predicting DCM
prognosis. These findings delineate abnormal coarse-grained intra-
and inter-network connectivity in DCM patients and shed light on
the underlying mechanisms of DCM.

Over the past decade, research has extensively examined fine-
grained brain network abnormalities in DCM patients. Wang

et al. examined holistic FC patterns across the entire brain
using sFC analyses and found decreased connectivity within
the sensorimotor network (SMN), correlating with spinal cord
compression (3). They also observed compensatory increases
in connectivity within and between primary and secondary
sensorimotor regions, subcortical regions, visuospatial regions
including the cuneus, as well as the brainstem and cerebellum
(3). Similarly, Wei et al reported reduced FC strength within
the primary motor cortex, indicating lower connections with
other brain regions (22). Another structural study revealed
significantly decreased fiber density (FD) and fiber cross-
section (FDC) between DCM patients and HC along the
corticospinal tract (23), encompassing regions spanning the
corona radiate and internal capsule. By correlating FD and
FDC with Neck Disability Index and modified JOA scores, they
identified an augmentation in the total volume of projections
to the thalamus, basal ganglia, and internal capsule. This was
accompanied by heightened FCwithin the visual network (VN) and
posterior parietal cortices. Cumulatively, these findings indicated
a lower connectivity within the sensorimotor cortex associated
with chronic spinal cord injury, with increased interactions
among other brain networks to compensate for neurological
impairments in DCM patients. Our results from intra-network
connectivity analysis aligned with these prior discoveries. We
identified significantly lower intra-network connectivity within
SMN, VN, CBN, and DMN. These findings suggest that
following the impairment of ascending and descending fiber tracts,
information processing within specific brain regions has been
altered, potentially reflecting the injured state of the compressed
spinal cord.

Similarly to previous research, our inter-network connectivity
analysis has identified compensatory changes in both static
and dynamic FC. These compensatory changes in response to
the gradual deterioration of spinal cord dysfunction serve to
maintain sensorimotor function within a relatively normal range
in DCM patients (24–27). This explanation for the higher FC
in DCM patients is grounded in the mounting neuroimaging
evidence suggesting that cortical reorganization through neuronal
plasticity (28) occurs at both regional-level and network-level
for compensating neurological deficits (3, 28, 29). fMRI studies
have demonstrated that while the intensity of activations in
motor cortices (such as the primary motor cortex and the
supplementary motor area) was lower in DCM patients, the
spatial extent of motor cortices activations expanded (i.e.,
Volume of activation), suggesting the recruitment of neighboring
cortical regions in response to spinal cord impairment (30,
31). Additionally, fine-grained network analyses have revealed
higher FC in certain circuits (e.g., thalamus-cortical circuit) (29),
and functional networks (e.g., SMN, VN, and DMN) (3, 6,
8), indicating the compensatory reorganization across various
brain levels. However, there is a noticeable absence of a holistic
exploration of the coarse-grained inter-network interactions from
a temporal perspective.

Our study revealed higher static and dynamic inter-network
FC in DCM patients including the connectivity between AN
and VN/CBN, and between CBN and aDMN which correlated
with disease duration. Previous research by Bressler et al. has
demonstrated that the nodes of the AN can influence activity in
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FIGURE 6

The results of correlation analysis. (A) The heat map for correlation coe�cients between brain functional alterations and clinical assessments. Panel

(B) The scatter plot for the association between static functional connectivity (sFC) [i.e., between lateral visual network (LVN) and attention network

(AN)] and duration of the symptoms. (C) The scatter plot for association between sFC (i.e., between cerebellar network (CBN) and AN) and duration

of the symptoms. (D) The fraction time of state 1 correlated with duration of the symptoms. (E) The fraction time of state 2 correlated with duration

of the symptoms. (F) The strength of dFC between right frontoparietal network (RFPN) and motor network (MN) correlated with Japanese

Orthopedic Association (JOA) score. DCC, dynamical conditional correlation; FLS, flexible least squares; S1, state1; S2, state2; FT, fraction time; MDT,

mean dwell time; JOA RR, JOA recovery rate; MVN, medial visual network; aDMN, anterior default mode network; pDMN, posterior default mode

network; AUN, auditory network; LFPN, left frontoparietal network; SN, sensory network.

visual areas in a top-downmanner (32, 33). The higher connectivity
between LVN and AN in our study may indicate the brain allocates
higher resources to refocus visual attention to environmental
stimuli in DCM patients. Extensive cerebellar dysfunction has been
reported in DCM patients (5, 34). Moreover, a previous study on
corticocerebellar intrinsic functional connectivity indicated that the
cerebellum is not a unitary structure (35). Specifically, Buckner
et al. identified that cerebellar lobules VIIb and VIIIa exhibited
connectivity with attention-related cortex, while cerebellar crus I

and II couples with the cortical DMN. Taken together, in response
to chronic spinal cord compression, coarse-grained inter-network
reorganization occurs to compensate for neurological deficits in
DCM patients.

Efforts to identify prognostic neuroimaging biomarkers for
DCM have been ongoing. A previous study successfully predicted
postoperative neurological recovery in DCM patients using static
fine-grained brain functional network data, providing preliminary
evidence for the use of fMRI data and machine learning techniques
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FIGURE 7

The results of multivariate pattern analysis. (A) The receiver operating characteristic (ROC) curve for classification models based on static functional

connectivity (sFC), dynamic functional connectivity (dFC), and fusion of both metrics (sFC+dFC). (B) The classification accuracies for classification

models based on sFC, dFC, and fusion of both metrics (sFC+dFC). DCC, dynamical conditional correlation; FLS, flexible least squares; AUC, area the

under curve.

in predicting patient outcomes (17). The amplitude of low-
frequency fluctuations in the primary motor cortex before surgery
can provide additional information for predicting outcomes after
decompression surgery, highlighting its potential utility as a
prognostic biomarker for DCM patients (7). Furthermore, some
studies have reported that preoperative ALFF in the left frontal pole
and preoperative functional connectivity between the visual cortex
and the right superior frontal gyrus could serve as biomarkers for
postoperative recovery in DCM patients (36, 37). Implementing
brain MRI analysis could benefit the prediction of outcomes after
decompression surgery, but further work is still needed (38).
Therefore, we conducted a machine learning analysis to assess
the prognostic value of brain functional network abnormalities
for patients.

In our study, using the same group of patients and classification
algorithms, we achieved classification accuracies of 65.9% for
sFC, 79.6% for dFC (FLS), and 65.9% for dFC (DCC). All these
results are significantly higher than chance, indicating that different
network measures contain valuable information for predicting the
prognosis of patients.

Previous studies often focused on a single measure when
distinguishing patients with different outcomes. Different measures
capture network information from different aspects and thus
provide complementary information. Combining information
contained in different measures might enhance the classification
performance. We found that combining dFC (FLS) and sFC
improved accuracy by 2% (from 79.6% to 81.8%), while combining
dFC (DCC) and sFC improved accuracy by 5% (from 65.9% to
70.5%). Fusion of measures yielded higher classification accuracy
than using a single measure alone, suggesting that different network
measures should be considered when developing a neuroimaging
prognostic tool.

This study has a few limitations. First, the DCM patients in
our study had received conservative treatment before surgery,
which may have influenced our results to some extent. Second,
the sample size may have restricted the accuracy of our study.
Third, we didn’t collect enough postoperative fMRI data due to the

possible artifacts (e.g., plates and screws) and possible heating of
these materials. Finally, more comprehensive demographic, clinical
and behavioral assessments should be conducted in the future to
thoroughly investigate brain reorganization in DCM patients by
combining functional and structural MRI data.

Conclusion

In conclusion, our findings provide valuable insights into
the brain mechanisms underlying DCM neuropathology on the
network level. DCM patients exhibit abnormal intra- and inter-
network connectivity compared to HC. Combining static and
dynamic FC can provide additional information for predicting the
prognosis of DCM patients.
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