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Background: Spontaneous intracerebral hemorrhage (SICH) is the second most 
common cause of cerebrovascular disease after ischemic stroke, with high 
mortality and disability rates, imposing a significant economic burden on families 
and society. This retrospective study aimed to develop and evaluate an interpretable 
machine learning model to predict functional outcomes 3 months after SICH.

Methods: A retrospective analysis was conducted on clinical data from 380 
patients with SICH who were hospitalized at three different centers between 
June 2020 and June 2023. Seventy percent of the samples were randomly 
selected as the training set, while the remaining 30% were used as the validation 
set. Univariate analysis, Least Absolute Shrinkage and Selection Operator 
(LASSO) regression, and Pearson correlation analysis were used to screen 
clinical variables. The selected variables were then incorporated into five 
machine learning models: complementary naive bayes (CNB), support vector 
machine (SVM), gaussian naive bayes (GNB), multilayer perceptron (MLP), and 
extreme gradient boosting (XGB), to assess their performance. Additionally, the 
area under the curve (AUC) values were evaluated to compare the performance 
of each algorithmic model, and global and individual interpretive analyses were 
conducted using importance ranking and Shapley additive explanations (SHAP).

Results: Among the 380 patients, 95 ultimately had poor prognostic outcomes. 
In the validation set, the AUC values for CNB, SVM, GNB, MLP, and XGB models 
were 0.899 (0.816–0.979), 0.916 (0.847–0.982), 0.730 (0.602–0.857), 0.913 
(0.834–0.986), and 0.969 (0.937–0.998), respectively. Therefore, the XGB 
model performed the best among the five algorithms. SHAP analysis revealed 
that the GCS score, hematoma volume, blood pressure changes, platelets, age, 
bleeding location, and blood glucose levels were the most important variables 
for poor prognosis.

Conclusion: The XGB model developed in this study can effectively predict the 
risk of poor prognosis in patients with SICH, helping clinicians make personalized 
and rational clinical decisions. Prognostic risk in patients with SICH is closely 
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associated with GCS score, hematoma volume, blood pressure changes, 
platelets, age, bleeding location, and blood glucose levels.
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1 Introduction

Spontaneous intracerebral hemorrhage (SICH) refers to the 
non-traumatic rupture of blood vessels within the brain, leading to the 
accumulation of blood within the brain parenchyma (1). ICH is the 
second most common cause of cerebrovascular disease after ischemic 
stroke, with the incidence of hemorrhagic stroke rising in recent years, 
especially in developing countries, at approximately 15–30 cases per 
100,000 people (2, 3). Due to its high mortality and morbidity rates, 
only about 20% of patients are regain functional independence 
6 months post-stroke, imposing a significant burden on individuals, 
families, and society (4). Despite advancements in diagnostic and 
therapeutic technologies in recent years, predicting the prognosis of 
patients with SICH remains a clinical challenge.

Previous studies have attempted to identify factors affecting the 
prognosis of ICH. Hemphill and colleagues proposed the ICH Score, 
a predictive tool that predicts mortality (5). However, the ICH Score 
only includes factors such as the Glasgow Coma Scale (GCS), ICH 
volume, age, location, and ventricular extension of the hematoma. 
Recent studies have found that other factors, such as laboratory 
indicators and medication usage, are also related to the outcome of 
ICH (6, 7). Furthermore, the predictive value of different factors has 
been inconsistent across studies, partly because these studies often rely 
on traditional statistical methods, which have limitations in dealing 
with complex clinical data.

With the increasing application of Artificial Intelligence (AI) in the 
field of medicine, especially the development of Machine Learning (ML) 
technologies, new possibilities for predicting the prognosis of ICH have 
emerged. The advantage of ML models is their ability to process large 
amounts of data and identify complex patterns, which is crucial for 
understanding the multifactorial nature of ICH and improving 
prediction accuracy (8). In recent years, ML has been increasingly 
applied in predicting outcomes and prognoses in cerebrovascular 
diseases such as subarachnoid hemorrhage (9) and acute ischemic 
stroke (10). However, many ML models often lack interpretability in 
their predictions, limiting their application in clinical practice (11). This 
study aims to assess the effectiveness of ML models in predicting the 
functional prognosis of ICH patients. We utilize explainable ML models 
to improve the precision and transparency of patient prognosis 
predictions. We  focus on how the model interprets individualized 
patient risks in terms of clinical significance and explore its potential 
value in guiding treatment decisions and improving patient management.

2 Materials and methods

2.1 Study population and data collection

This retrospective study recruited patients with SICH who were 
hospitalized between January 2021 and January 2023 at three 

hospitals: Soochow University Affiliated Changshu Hospital, Nantong 
University Affiliated Changshu Hospital, and Changshu City 
Traditional Chinese Medicine Hospital. Each patient was monitored 
for at least 3 months after the onset of the disease. All follow-ups and 
prognostic evaluations for patients included in the study from the 
three hospitals in the region were conducted according to the same 
standards by the regional Health Commission. Based on the follow-up 
results after 3 months, patients were divided into groups with good 
functional prognosis and poor functional prognosis. A modified 
Rankin Scale (mRS) score of 3–6 was defined as a poor prognostic 
outcome, while an mRS score of 0–2 was defined as a good prognostic 
outcome (12). Because this study had a retrospective design, there was 
no security-related risk. The present study was approved by the Ethics 
Committee of the Soochow University Affiliated Changshu Hospital 
and confirmed to the declaration of Helsinki.

The inclusion criteria for the study were as follows: The inclusion 
criteria for this study were as follows: (1) Intracerebral hemorrhage 
confirmed by head CT scan. (2) Patient age ≥ 18 years. (3) Complete 
medical records (including baseline data, laboratory tests, imaging 
data, treatment records, and outcome data). The exclusion criteria 
were: (1) Intracerebral hemorrhage caused by secondary factors, such 
as traumatic brain injury, brain tumors leading to stroke, coexisting 
cerebrovascular diseases (e.g., intracranial aneurysms or arteriovenous 
malformations), or hemorrhagic transformation of cerebral infarction. 
(2) Death within 7 days of hospitalization or discharge directly to 
home from the hospital. (3) Severe coagulation disorders or 
coagulopathy caused by malignancies or liver dysfunction. (4) Patients 
lacking sufficient follow-up data. The flowchart of patient inclusion in 
this study is shown in Figure 1.

2.2 Inclusion of observed variables

Clinical data were collected from patients based on the clinical 
experience of the three centers, literature reports, and the electronic 
medical record system. The following data were primarily collected: (1) 
Demographic data (gender, age); (2) Past medical history (history of 
hypertension, use of antithrombotic drugs, diabetes, heart disease, 
history of cerebral infarction, previous cerebral hemorrhage, trauma 
history, history of uremia, chronic liver disease history, smoking 
history, alcohol consumption history, etc.); (3) Baseline vital signs at 
admission: systolic blood pressure (SBP), diastolic blood pressure 
(DBP), Glasgow Coma Scale (GCS) score; (4) Baseline disease 
characteristics (time from onset to emergency room, blood pressure 
reduction treatment in the emergency room, location of hemorrhage, 
hematoma volume); (5) Baseline laboratory test data (international 
normalized ratio (INR), prothrombin time (PT), activated partial 
thromboplastin time (APTT), thrombin time (TT), fibrinogen (Fbg), 
D-dimer, hemoglobin (HGB), platelets (PLT), blood glucose). (5) 
Treatment-related indicators: SBP change from emergency room to 
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hospital admission, DBP change from emergency room to hospital 
admission, treatment methods (medication and different surgical 
methods). Location of the hematoma, intraventricular hemorrhage, 
and the initial hematoma volume were evaluated by CT scan 
independently by two experienced doctors. The hematoma volume was 
measured using the ABC/2 method, in which A is the greatest diameter 
on the largest hemorrhage slice, B is the diameter perpendicular to A, 
and C is the approximate number of axial slices with hemorrhage 
multiplied by the slice thickness. Inpatient treatment includes 
conservative treatment or surgical intervention. Generally, surgical 
treatment is recommended for patients with supratentorial hematomas 
≥30 mL or infratentorial hematomas ≥10 mL. Neurosurgeons choose 
different surgical methods based on the patient’s condition, including 
microscopic hematoma removal surgery, neuroendoscopic hematoma 
removal surgery, and neuroguided puncture and drainage of hematoma.

2.3 Selection of machine learning models

Before constructing ML models, the original clinical data were 
normalized. Normalization can improve the speed of gradient descent 
to find the optimal solution, and the algorithm for Euclidean distance 
can effectively improve the accuracy. In this study, the min–max 
normalization method was used to normalize the characteristic values 
of clinical data to the range of (0, 1). Categorical variables were 
one-hot encoded, converting each category into a binary variable that 
is mutually exclusive. These one-hot encoded variables were then 
added to the model’s feature matrix as input features. This encoding 
method not only retains the original classification information but 
also allows for effective input into the ML model.

The study population was divided into a training set and a test set at 
a 7:3 ratio using a simple random sampling method. The training set was 
used to build models to predict the functional outcomes of ICH patients 
at 3 months, and the test set was used for internal validation. All variables 
were included in the Least Absolute Shrinkage and Selection Operator 
(LASSO) regression for variable selection (13). Then, the selected 
variables were incorporated into different machine-learning algorithms 
to construct predictive models. LASSO regression is a type of linear 
regression model that uses a mathematical approach (adding L1 
regularization) to shrink the coefficients of some less important features 
to zero, thereby automatically selecting the features that contribute the 
most to the predictive outcome. This method not only simplifies the 
model and makes it easier to interpret but also prevents the model from 
becoming overly complex, reducing the risk of overfitting.

Five ML algorithms were applied for data modeling: 
Complementary Naive Bayes (CNB), Support Vector Machine (SVM), 
Gaussian Naive Bayes (GNB), Multilayer Perceptron (MLP), and 
Extreme Gradient Boosting (XGB). The CNB model is suitable for 
high-dimensional data and performs well when handling sparse data. 
However, CNB is not suitable for strongly correlated features, which 
limits its predictive performance on complex problems. The SVM 
model can handle high-dimensional features and is suitable for small 
sample sizes. However, it is less efficient for large datasets and multi-
class problems, and it is sensitive to missing data. The GNB model is 
computationally efficient and suitable for simple problems. However, it 
has limited ability to model complex relationships. The MLP model can 
handle complex nonlinear relationships and high-dimensional data, 
making it suitable for large datasets and multi-task learning. However, 
it requires long training times, large amounts of data, and significant 
computational resources, and is prone to overfitting when sample sizes 

FIGURE 1

Flowchart of the data filtering process.
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are small. The XGB model is an ensemble learning algorithm capable 
of handling complex nonlinear relationships and multiple feature 
interactions. It requires numerous experiments and sufficient training 
time. To ensure that the training samples selected for multiple model 
training are consistent, we  used a resampling training/validation 
mechanism to extend each model’s performance across multiple 
training processes. The criteria for hyperparameters were primarily 
based on model performance evaluation metrics, including accuracy, 
precision, recall, F1 score, and the area under the ROC curve (AUC-
ROC). For the CNB algorithm, the “alpha” smoothing parameter was 
set to 1; in the XGB algorithm, the maximum tree depth was set to 4 
nodes, the learning rate to 3, and the minimum split weight to 6; for the 
SVM algorithm, the kernel type was chosen as “RBF” and the 
regularization parameter was set to 1.0. For the MLP algorithm, there 
were 10 iterations, with 30 neurons per layer in the hidden layers and 
the activation function type was logistic. In the GNB algorithm, “var_
smoothing” was set to 1e-7. We aimed to improve model predictive 
performance by finding the optimal combination of hyperparameters.

After selecting and evaluating the ML models, this study further 
utilizes SHAP analysis to interpret the model’s prediction results. SHAP 
values, based on the Shapley value from cooperative game theory, 
provide a method for explaining the output of ML models by 
quantifying the contribution of each feature to the prediction result. All 
the included features collectively predict the outcome, and SHAP values 
assess each feature’s “marginal contribution,” i.e., the effect of adding 
the feature alone or in combination with others to the prediction. SHAP 
values indicate which features have a positive or negative impact on a 
specific prediction and the magnitude of their influence. This helps 
understand the model’s decision-making process and enhances trust in 
ML models in clinical tasks. Additionally, SHAP values can be used to 
explain the prediction results for individual patients and identify the 
key factors influencing prognosis. By providing a detailed analysis of 
the key factors influencing patients’ functional prognosis, SHAP offers 
valuable insights for clinical decision-making, thereby enhancing the 
clinical applicability of the model.

2.4 Statistical analysis

In this study, statistical analysis was conducted on all variables 
across the two groups. R software (version 4.02) was used for data 
processing and statistical analysis. Categorical variables were 
presented as counts and percentages and compared using Fisher’s 
exact test or chi-square test. For continuous variables, the Shapiro–
Wilk test was first used to determine if the variables followed a normal 
distribution, followed by the independent samples t-test (for normally 
distributed data) for data comparison, represented as mean ± standard 
deviation. The Mann–Whitney U test was used for comparing 
non-normally distributed data, represented by median (first and third 
quartiles). A p-value of <0.05 was considered statistically significant.

3 Results

3.1 Baseline patient characteristics

This study included a total of 380 patients, with baseline 
characteristics of the good prognosis group and the poor prognosis 

group after cerebral hemorrhage shown in Table 1. The median age of 
the patients in this study was 65 (52.00, 75.00) years. In terms of 
gender distribution, there were 264 males (69.47%) and 116 females 
(30.53%). Detailed baseline characteristics of the patient’s medical 
history, vital signs, relevant laboratory indicators, and treatment-
related indicators are available in Table 1. Comparison of baseline 
characteristics between the two groups showed statistical differences 
in age, history of diabetes, history of uremia, time from onset to arrival 
at the emergency room, SBP measured in the emergency room, DBP 
measured in the emergency room, treatment with intravenous blood 
pressure reduction in the emergency room, location of hemorrhage, 
volume of hematoma, change in SBP, change in DBP, GCS, D-dimer, 
blood glucose, treatment methods, and perioperative blood pressure 
control (p < 0.05).

3.2 Variable filtering

After performing LASSO regression analysis on the training set, 
the features were reduced to 20 potential predictive variables 
(Figure 2). We further constructed a heatmap to display Spearman 
correlation coefficients, visualizing the correlations with the 
differential variables (Figure 3). A Spearman correlation heatmap is a 
visualization tool that helps quickly identify and display monotonic 
relationships between different features through correlation 
coefficients, not just linear relationships. The deeper the color, the 
stronger the correlation. By identifying highly correlated feature pairs, 
it can help filter out and remove redundant features. These features 
specifically include GCS, age, hematoma volume, use of antithrombotic 
and anticoagulant drugs, SBP at the emergency room, DBP at the 
emergency room, SBP at admission, DBP at admission, change in SBP, 
change in DBP, treatment with intravenous blood pressure reduction 
in the emergency room, location of hemorrhage, time from onset to 
arrival at the emergency room, APTT, PT, TT, PLT, HGB, and 
D-dimer. In our study, the threshold for feature correlations was set 
below 0.7, indicating that there are no highly correlated features and 
the feature variables are not redundant. Based on these findings, 
we decided to incorporate the results of the LASSO regression analysis 
into our machine-learning algorithms for further analysis.

3.3 Comparison of the predictive 
performance of all models

To achieve the best predictive model, this study employed five 
different ML algorithms: CNB, XGB, SVM, MLP, and GNB. The 
training set was used to create and train the models. All ML models 
were tested in the test set, and their accuracy, precision, sensitivity, 
specificity, and F1 score were compared. The XGB model demonstrated 
the highest accuracy, precision, sensitivity, specificity, and F1 score 
(respectively, 0.9, 0.985, 0.902, 1.0, and 0.928; Table  2). From 
Figures 4A,B, it is evident that the XGB algorithm has a higher AUC 
value in both the training set (AUC = 0.992; 95% CI, 0.986–0.998) and 
the test set (AUC = 0.969; 95% CI, 0.937–0.998) compared to the other 
four algorithms. Additionally, the area under the PR curve for the 
XGB algorithm was also the highest in both the training set (0.998; 
95% CI, 0.996–0.999) and the test set (0.99; 95% CI, 0.984–0.996; 
Figures 5A,B).
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TABLE 1  Clinical characteristics of the patient cohort included in this study.

Variables Total(n = 380) Unfavorable 
outcome(n = 95)

Favorable 
outcome(n = 285)

p value

Age, median (Q1,Q3) (years) 65(52.00,75.00) 60.000(50.00,74.00) 66.000(53.00,75.00) 0.048

Sex, n (%) 0.797

Male 264(69.47) 65(68.42) 199(69.83)

Female 116(30.53) 30(31.58) 86(30.18)

Hypertension, n (%) 0.203

No 120(31.58) 35(36.84) 85(29.82)

Yes 260(68.42) 60(63.16) 200(70.18)

Taking antihypertensive drugs, n (%) 0.765

No 163(42.89) 42(44.21) 121(42.46)

Yes 217(57.11) 53(55.79) 164(57.54)

Taking antithromboticdrugs, n (%) 0.159

No 338(88.95) 85(89.47) 253(88.77)

Warfarin 4(1.05) 2(2.11) 2(0.71)

Aspirin 27(7.10) 3(3.16) 24(8.42)

Clopidogrel 9(2.37) 4(4.21) 5(1.75)

Others 2(0.53) 1(1.05) 1(0.35)

Diabetes, n (%) <0.001

No 332(87.37) 88(92.63) 244(85.61)

Yes 48(12.63) 7(7.37) 41(14.39)

Heart disease, n(%) 0.596

No 369(97.11) 93(97.89) 276(96.84)

Yes 11(2.89) 2(2.11) 9(3.16)

Cerebral infarction, n (%) 0.102

No 334(87.89) 88(92.63) 246(86.32)

Yes 46(12.11) 7(7.37) 39(13.68)

Cerebral hemorrhage, n (%) 0.299

No 353(92.89) 86(90.53) 267(93.68)

Yes 27(7.11) 9(9.47) 18(6.32)

Craniocerebral trauma, n (%) 0.795

No 375(98.68) 94(98.95) 281(98.60)

Yes 5(1.32) 1(1.05) 4(1.40)

Uremia, n (%) <0.001

No 362(95.26) 80(84.21) 282(98.95)

Yes 18(4.74) 15(15.79) 3(1.05)

History of malignant tumors, n (%) 0.753

No 366(96.32) 92(96.84) 274(96.14)

Yes 14(3.68) 3(3.16) 11(3.86)

History of epilepsy, n (%) 0.509

No 373(98.16) 94(98.95) 279(97.89)

Yes 7(1.84) 1(1.05) 6(2.11)

Chronic Liver Disease, n (%) 1.0

No 376(98.95) 94(98.95) 282(98.95)

Yes 4(1.05) 1(1.05) 3(1.05)

History of drinking, n (%) 0.21

No 301(79.21) 71(74.74) 230(80.70)

(Continued)
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TABLE 1  (Continued)

Variables Total(n = 380) Unfavorable 
outcome(n = 95)

Favorable 
outcome(n = 285)

p value

Yes 79(20.79) 24(25.26) 55(19.30)

History of smoking, n (%) 0.261

No 292(76.84) 69(72.63) 223(78.25)

Yes 88(23.16) 26(27.37) 62(21.75)

Time from onset to the emergency room, median (Q1,Q3; h) 2.00(1.12,5.17) 1.33(0.95,2.00) 2.33(1.23,8.28) <0.001

Emergency room SBP, Mean ± SD (mmHg) 176.74 ± 29.34 193.70 ± 30.10 171.09 ± 26.80 <0.001

Emergency room DBP, median (Q1,Q3; mmHg) 96.000(85.00,107.00) 104.00(90.00,120.00) 94.00(83.00,104.00) <0.001

Emergency Room Venous Hypotension Treatment, n (%) 0.031

No 177(46.58) 33(34.74) 144(50.53)

Urapidil 173(45.53) 51(53.68) 122(42.81)

Nicardipine 22(5.79) 7(7.37) 15(5.26)

Sodium Nitroprusside 8(2.11) 4(4.21) 4(1.40)

Cerebral hemorrhage site, n (%) 0.005

Basal ganglia 233(61.32) 62(65.26) 171(60.00)

Lobe 79(20.79) 11(11.58) 68(23.86)

Cerebellum 16(4.21) 2(2.11) 14(4.91)

Brainstem 14(3.68) 3(3.16) 11(3.86)

Others 38(10.00) 17(17.90) 21(7.37)

Intraventricular hemorrhage, n (%) 0.364

No 334(87.90) 81(85.26) 253(88.77)

Yes 46(12.11) 14(14.74) 32(11.23)

Hematoma volume, median (Q1,Q3; mL) 10.99(5.25,26.92) 35.00(18.60,75.02) 7.30(4.37,16.19) <0.001

Hospitalized SBP, median (Q1,Q3; mmHg) 154.00(141.00,172.00) 160.00(142.00,175.00) 154.00(141.00,170.00) 0.236

Hospitalized DBP, median (Q1,Q3; mmHg) 90.00(80.00,98.00) 92.00(81.00,100.00) 89.00(80.00,98.00) 0.208

SBP change, median (Q1,Q3; mmHg) 20.00(12.00,35.00) 40.00(27.00,54.00) 16.00(10.00,27.00) <0.001

DBP change, median (Q1,Q3; mmHg) 10.00(5.00,19.00) 19.00(11.00,28.00) 9.00(5.00,15.00) <0.001

GCS, median (Q1,Q3) 12.00(10.00,15.00) 7.00(5.00,8.00) 14.00(13.00,15.00) <0.001

INR, median (Q1,Q3) 1.01(0.95,1.06) 1.00(0.95,1.06) 1.01(0.96,1.06) 0.555

PT, median (Q1,Q3)(s) 12.80(11.70,13.40) 12.80(12.00,13.40) 12.70(11.60,13.40) 0.284

APTT, median (Q1,Q3)(s) 31.70(28.20,35.10) 31.20(28.60,35.20) 31.80(28.20,34.90) 0.998

TT, median (Q1,Q3)(s) 17.300(16.10,18.50) 17.600(16.50,19.00) 17.300(15.90,18.40) 0.053

Fbg, median (Q1,Q3; g/L) 3.04(2.59,3.69) 3.06(2.58,3.77) 3.04(2.61,3.68) 0.723

D-Dimer, median (Q1,Q3; mg/L) 0.35(0.17,0.78) 0.45(0.26,0.93) 0.30(0.15,0.70) 0.003

HGB, median (Q1,Q3; g/L) 138.00(125.00,151.00) 139.00(124.00,151.00) 137.00(125.00,150.00) 0.690

PLT, median (Q1,Q3; 109/L) 174.00(133.00,217.00) 172.000(117.00,218.00) 174.00(136.00,217.00) 0.424

Blood glucose, median (Q1,Q3; mmol/L) 7.69(6.19,9.57) 8.360(7.42,11.02) 7.23(6.01,9.09) <0.001

Treatment methods, n (%) <0.001

Conservative drug therapy 308(81.05) 53(55.79) 255(89.47)

Microscopic hematoma removal surgery 35(9.21) 22(23.16) 13(4.56)

Neuroendoscopic hematoma removal surgery 19(5.00) 11(11.58) 8(2.81)

Neuroguided puncture and drainage of hematoma 18(4.74) 9(9.47) 9(3.16)

Perioperative blood pressure control, n (%) <0.001

No 294(77.37) 55(57.90) 239(83.86)

Yes 86(22.63) 40(42.10) 46(16.14)

SBP, systolic blood pressure; DBP, diastolic blood pressure; GCS, Glasgow Coma Scale; INR, International Normalized Ratio; PT, Prothrombin Time; APTT, Activated Partial Thromboplastin 
Time; TT, Thrombin Time; Fbg, Fibrinogen; HGB, Hemoglobin; PLT, Platelets.
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As shown in Table 3, the performance of the ICH score, calculated 
using the previously described method (5), was compared to that of 
the developed ML-based model. Additionally, we  tested the 
performance of a traditional logistic regression model. The results 
showed that compared to the ICH score (AUC = 0.874; 95% CI, 
0.841–0.908) and the logistic regression model (AUC = 0.849; 95% CI, 
0.725–0.969), the XGB model had a higher AUC value (0.969), 
demonstrating superior predictive performance over both the 
traditional logistic regression model and the ICH score.

Meanwhile, considering that in real clinical settings, the prognosis 
of SICH patients is influenced by various factors, including medical 
history, treatment methods, and imaging data, XGB effectively models 
the complex nonlinear relationships among these factors. By 
integrating multiple decision trees, XGB enhances the predictive 
accuracy of the model and demonstrates greater robustness in 
addressing complex clinical tasks such as predicting the prognosis of 
SICH patients. Therefore, the XGB algorithm was chosen to select 
predictive factors for the prognosis of SICH patients. To understand 
the performance of the XGB algorithm model, 5-fold cross-validation 
was used as a resampling method for internal validation within the 
training set data. In each iteration, four folds were used as the training 
subset, with the remaining one used for parameter tuning. As shown 
in Figure 6, the validation results indicated that the XGB algorithm 
has good predictive power (AUC = 0.961, 95% CI, 0.918–0.999). 
Moreover, Figures 7A,B displays the confusion matrix of the optimal 
classifier in XGB.

3.4 Explainable analysis of overall features

To provide a more intuitive and clear explanation of the XGB 
model, we used SHAP to rank the importance of features. Figure 8A 
depicts the ranking of variables in the XGB model according to their 

importance. The feature importance plot (Figure 8B) shows how the 
main feature variables in the dataset influence the final output of the 
model. On the left y-axis, features are ranked according to their 
importance; on the right y-axis, red dots represent higher feature 
values, while blue dots represent lower feature values. The x-axis 
represents SHAP values, showing the contribution of features to the 
overall output. Results indicate that lower GCS scores, larger 
hematoma volumes, greater blood pressure changes, and older age 
have lower SHAP values, suggesting a higher likelihood of poor 
prognosis for the patient. Figures 9A,B demonstrate that SHAP can 
also be used to analyze model interpretations for individual patients. 
Arrows in the figure show the impact of each factor on the prediction. 
Features increasing the risk of poor prognosis are represented in red, 
while features decreasing the risk are represented in blue. The length 
of each feature’s bar reflects the extent of its contribution to the 
predictive outcome.

4 Discussion

SICH is a common and severe neurosurgical disease characterized 
by high morbidity and mortality rates. With the development of 
Chinese society and the increasing degree of population aging, 
cerebrovascular diseases are becoming a significant burden on society 
(14). In this study, we  included data from three regional medical 
institutions and successfully constructed a predictive model for the 
3-month prognosis of SICH patients using the XGB algorithm. 
Additionally, we applied five mainstream ML models, including CNB, 
XGB, SVM, MLP, and GNB, to compare the predictive performance 
differences between models, ultimately utilizing SHAP analysis to 
visualize and analyze model predictions.

In recent years, many studies have applied ML algorithms to 
predict the functional prognosis, related complications, and 
treatment responses in patients with cerebrovascular diseases. These 
studies not only help us understand the wide application of ML in the 
field of neurology but also provide insights into the clinical practice 
of predicting cerebrovascular diseases. XGB, an ensemble learning 
method based on decision tree algorithms, can reveal complex 
patterns and relationships in data. Given that medical data often 
contain a large number of nonlinear relationships and high-
dimensional features, XGB becomes an efficient and flexible solution 
for handling big medical data (15). Previous studies include one by 
Li et al., who developed an XGB-based ML model to predict the risk 
of hemorrhagic transformation and death during thrombolysis for 
acute cerebral infarction, achieving AUC values of 0.95 and 0.85, 
respectively (16). Our team previously constructed an ML model to 
predict the risk of cerebral hemorrhage in patients with long-term 
hemodialysis uremia, achieving an AUC value of 0.969  in the 
validation set, along with a visual interpretative analysis of risk 
factors (17). Gu’s team applied ML algorithms to identify efficient 
predictors of early mortality in non-traumatic subarachnoid 
hemorrhage patients in the ICU, with an external validation AUC 
value of 0.913 (9). The results of the current study show that the XGB 
model performs best in the test set, with the highest accuracy, 
sensitivity, specificity, and F1 score (0.9, 0.985, 0.902, 1.0, and 0.928, 
respectively), and an ROC-AUC value of 0.969 (Figure  4). This 
indicates that XGB can effectively help predict the prognosis of 
SICH patients.

FIGURE 2

LASSO feature selection for model construction.
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FIGURE 3

Spearman correlation analysis among variables.

TABLE 2  Comparison of the predictive performance of five machine learning algorithms in the validation set.

Different 
algorithms

accuracy 
(95%CI)

precision 
(95%CI)

Sensitivity 
(95%CI)

Specificity 
(95%CI)

F1-score 
(95%CI)

AUC (95%CI)

CNB 0.826(0.793–0.859) 0.927(0.907–0.946) 0.832(0.743–0.920) 0.895(0.849–0.941) 0.875(0.818–0.932) 0.899 (0.816–0.979)

XGB 0.9(0.883–0.917) 0.958(0.924–0.991) 0.902(0.866–0.937) 1.0(1.000–1.000) 0.928(0.913–0.943) 0.969 (0.937–0.998)

SVM 0.834(0.762–0.907) 0.943(0.921–0.965) 0.853(0.762–0.943) 0.884(0.846–0.923) 0.893(0.836–0.950) 0.916 (0.847–0.982)

MLP 0.724(0.664–0.783) 0.841(0.776–0.906) 0.73(0.579–0.880) 0.737(0.555–0.918) 0.775(0.672–0.878) 0.730 (0.602–0.857)

GNB 0.855(0.810–0.901) 0.952(0.908–0.995) 0.842(0.799–0.886) 0.937(0.886–0.987) 0.893(0.858–0.928) 0.913 (0.834–0.986)

CNB, Complement Naive Bayes; XGB, extreme gradient boost; SVM, support vector machine; MLP, Multilayer Perceptron; GNB, Gaussian Naive Bayes.

The “black box attribute” in ML refers to the challenge of 
understanding the internal decision-making process, even though 
accurate predictions can be generated based on given inputs. This lack 
of interpretability has limited the widespread application of ML 
methods in medical research (11, 15). SHAP, introduced by Lundberg 
et al. in 2017, is a method for explaining the predictions of ML models 
(18). Based on the concept of Shapley values from game theory, it 
decomposes the prediction result of a model into the contributions of 
each feature toward the prediction. SHAP helps medical researchers 
identify the most critical features for model predictions and explains 

the contribution of each feature to the outcome, thus aiding in 
understanding the basis of patient diagnostic results for subsequent 
analysis or therapeutic actions (19).

Similar to the ICH score proposed by Hemphill, our study 
found that the GCS score at admission, age, and hematoma volume 
are significant predictors of poor prognosis in patients with 
Intracerebral Hemorrhage (ICH). The GCS score, which evaluates 
a patient’s eye, verbal, and motor responses, has been extensively 
used since its introduction in 1974 to assess the severity of brain 
dysfunction (20). Our research indicates a significant correlation 
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between poor prognosis in ICH patients and lower GCS scores. 
According to a prognosis model for hypertensive cerebral 
hemorrhage established by Ding et  al., a hematoma volume of 
≥25 mL and a GCS score of ≤12 were considered independent risk 
factors affecting patient prognosis (21). The ICH score system 
(ICHOP3) developed by Gupta et al., where a GCS score of 3–8 and 
a hematoma volume greater than 30 mL is valuable in predicting 
the functional state 3 months later (22), aligns with our findings 
where the average hematoma volume for patients with poor 
prognosis was 35 mL, compared to 7.3 mL for the good prognosis 
group. Typically, the larger the hematoma volume, the more 
significant the compression and worsening of the 

pathophysiological processes, leading to higher intracranial 
pressure, a critical factor in poor prognosis (23).

Moreover, Law et al.’s study suggests that rapid expansion of the 
hematoma is a significant reason for the deterioration of neurological 
functions in ICH patients, with those experiencing neurological 
deterioration showing more significant increases in hematoma volume 
(24). However, our study did not include hematoma expansion due to 
the inconsistency in the timing of measuring hematoma volume 
changes based on imaging data, making it difficult to establish a 
temporal relationship between hematoma volume change and 
prognosis. Additionally, advanced age is closely related to poor 
prognosis and higher mortality rates in patients with SICH. The 

FIGURE 4

ROC curve analysis of five ML algorithms for training set (A) and test set (B).

FIGURE 5

Analysis of PR curves of five ML algorithms for training set (A) and test set (B).
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FIGURE 6

ROC plot of XGB ML model 5-fold cross-validation results.

increase in age implies changes in brain structure, such as cerebral 
amyloid angiopathy and brain atrophy, which may lead to increased 
local bleeding and more severe neurological damage (25, 26). 
Moreover, elderly patients often delay seeking emergency treatment 
due to physical limitations or lack of stroke awareness, further 
delaying disease management (27).

We found that patients with poor prognosis had higher baseline 
blood pressure and a significantly greater change in blood pressure 
from the emergency room to hospital admission. Elevated blood 
pressure changes are closely related to poor prognosis in patients 
with SICH. Li et al.’s study found that patients with rapid bleeding 
(intracerebral hemorrhage volume/onset to CT time > 5 mL/h) who 
received intensive blood pressure reduction treatment within 2 h 
after clinical symptoms appeared to significantly improve functional 
independence (28). Thus, clinical guidelines recommend early 
blood pressure reduction treatment upon emergency admission to 
prevent hematoma expansion and improve secondary outcomes 
(29). Coagulopathy is considered one of the most critical risk factors 
for SICH, often accompanied by the expansion of intracerebral 
hematomas. Early detection and intervention of acute coagulation 
dysfunction can significantly reduce mortality and improve 
prognosis (30, 31). Critically ill patients can develop stress-induced 
hyperglycemia early in the disease, and many studies have found 
high blood glucose levels closely related to poor prognosis after 
cerebral hemorrhage. Elevated blood glucose concentrations can 
increase vascular fragility and induce vascular rupture, leading to 
further expansion of the hematoma (32, 33). The mechanism might 
involve insulin resistance triggered by cerebral hemorrhage, where 
persistent high blood glucose promotes endothelial damage, 
combined with the compressive effects of the hematoma, adversely 
affecting local blood circulation and cerebral blood flow perfusion, 
causing the brain to remain in a state of ischemia and hypoxia for 
an extended period. This induces the accumulation of toxic 
metabolites, exacerbating cerebral edema and neuronal cell 
dysfunction (34, 35).

We found that platelet count did not show a significant 
difference in traditional statistical analysis, but it was important in 
the SHAP value analysis. This could be due to the interaction effect 

TABLE 3  Predictive performance of functional outcome after 
spontaneous intracerebral hemorrhage.

Algorithm Functional outcome

AUC(Mean) AUC (95%CI)

ICH score 0.874 (0.841–0.908)

LR 0.849 (0.725–0.969)

CNB 0.899 (0.816–0.979)

XGB 0.969 (0.937–0.998)

SVM 0.916 (0.847–0.982)

MLP 0.730 (0.602–0.857)

GNB 0.913 (0.834–0.986)

LR, Logistic Regression; CNB, Complement Naive Bayes; XGB, extreme gradient boost; 
SVM, support vector machine; MLP, Multilayer Perceptron; GNB, Gaussian Naive Bayes.

FIGURE 7

Confusion matrix of XGB model in training set (A) and test set (B).
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between platelets and other variables. ML models can capture 
these relationships, and their comprehensive consideration of 
multiple variables makes certain features important in the overall 
model, which is further reflected by SHAP values. Secondly, when 
the distribution of platelet counts overlaps significantly between 
the two groups, it may not show a significant difference statistically. 
However, platelet count may still contain valuable information 
across the entire dataset, which could be  identified by the ML 
model. SHAP values quantify each feature’s contribution to the 
prediction output, indicating that even if a feature appears 
non-significant in traditional statistical tests, it may still play an 
important role in the model’s complex decision-making path. In 
clinical practice, the ICH score is widely used to predict 30-day 
mortality after ICH. As our results show, the XGB-based model 
significantly outperformed the ICH score in predicting the 
functional outcomes of patients. We believe that using the ICH 
scoring system for rapid assessment in emergency settings is 

necessary. At the same time, incorporating ML methods for 
detailed prognostic prediction, where feasible, can provide dual 
protection for patients. More importantly, continuous validation 
and updating of ML models with clinical data are crucial to ensure 
their predictive performance and adaptability, while 
interpretability analysis can enhance their clinical acceptability.

Based on the model’s predictions, we can optimize personalized 
treatment plans. By establishing a fast-track green channel, we can 
optimize the allocation of emergency department resources, 
prioritizing patients predicted to have poor functional prognoses. This 
can enhance emergency response efficiency and treatment outcomes. 
Intensive care unit resources can be preferentially allocated to high-
risk patients. Additionally, rehabilitation resources can be proactively 
planned to meet the needs of specific patient groups. In the future, 
we plan to integrate the predictive results into the hospital admission 
process, conducting real-time risk assessments by combining imaging 
and laboratory data. During subsequent treatment, the model’s 

FIGURE 8

Importance ranking plot (A) and scatter plot of variables for SHAP analysis (B).

FIGURE 9

Interpretation of the SHAP model for the prediction of two cases. (A) Contribution of different features to the correct prediction of poor prognosis in 
ICH patients. (B) Contribution of different features to the correct prediction of good prognosis in ICH patients.
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predictions will be continuously updated to help doctors dynamically 
adjust treatment strategies. Furthermore, we aim to embed the model 
into the existing electronic health record system, allowing doctors to 
view the prediction results and their explanatory analysis directly 
within the patient’s medical record interface.

When applying SHAP-based ML models in hospital clinical 
practice, in addition to the model’s predictive performance and 
interpretability, it is essential to consider the potential challenges and 
costs involved in its real-world implementation. First, for the 
prognosis prediction of SICH patients, hospital differences in 
medical record data formats and the laboratory methods employed 
can create difficulties in data integration. Hospitals need to 
standardize data formats and ensure the quality of clinical and 
imaging data to enable effective training and validation. Secondly, 
the development, training, and ongoing updates of the model require 
dedicated data science teams and computational resources. 
Additionally, ML models need to be regularly updated and retrained 
to adapt to new clinical data and evolving healthcare environments, 
which necessitates continuous financial investment. Furthermore, to 
enhance doctors’ trust and acceptance, hospitals should provide 
training on ML and SHAP analysis, which will involve time costs and 
investment in training resources. Finally, to meet data privacy and 
ethical requirements, hospitals may need to allocate additional 
resources for data encryption, anonymization, and compliance with 
relevant regulations. The development and use of the model may also 
require approval from an ethics review board. These multifaceted 
challenges require hospitals and research institutions to balance 
technological innovation with practical feasibility to ensure the 
model can be smoothly implemented and remain effective in real-
world settings.

In the prognosis prediction of SICH patients, the interpretability 
based on SHAP analysis can significantly enhance doctors’ trust 
and acceptance of ML models. SHAP analysis helps clinicians 
identify the key factors influencing each patient’s prognosis, 
allowing for more attention to be given to treatment decisions. This 
individualized explanation enhances doctors’ trust in the model, as 
they can use these insights for more refined interventions and 
dynamically adjust treatment strategies based on the patient’s 
specific situation. Moreover, interpretability analysis provides a 
common understanding platform for doctors from different 
specialties (such as neurologists, radiologists, and emergency 
physicians), fostering interdisciplinary collaboration and 
improving overall treatment outcomes. Finally, when training 
doctors to use ML tools, the intuitive explanations provided by 
SHAP analysis can help doctors better understand the context and 
foundations of model predictions. This lowers the technical barrier 
and helps doctors quickly master how to use these tools in daily 
clinical decision-making, thereby improving model acceptance. 
Therefore, by enhancing the application of interpretability analysis, 
healthcare institutions can better integrate ML models into clinical 
practice, offering more precise and efficient medical services 
to patients.

However, our study does have certain limitations. First, 
although the patient data in this study were collected from multiple 
centers, it only included patients from three hospitals in China. 
There are significant differences in medical resources, technical 
expertise, and treatment processes across different regions in 
China. Regional preferences for conservative treatment or early 

surgical intervention can directly affect patients’ recovery speed 
and prognosis, potentially impacting the generalizability of our 
prediction model. Second, regional health disparities, such as 
differences in lifestyle, dietary habits, genetic background, and 
socioeconomic status, may lead to varying pathological 
mechanisms and clinical manifestations, which in turn influence 
treatment responses and short-term outcomes. Therefore, while 
our prediction model demonstrates good predictive performance 
for patients in specific regions of China, it may not yield the same 
results in other regions. Future studies should incorporate data 
from diverse regions and healthcare systems to validate the 
generalizability of the model and improve its global applicability. 
Third, due to the retrospective nature of this study, some relevant 
variables after admission, such as changes in neuroimaging and 
rehabilitation management, were not included in the research. 
Even though the model has achieved good predictive effects, it still 
cannot entirely replace judgment based on clinical experience. 
Therefore, in future studies, we still need to make comprehensive 
decisions based on individual patient situations and clinical 
contexts, continuously optimizing and improving ML models 
through the accumulation of clinical experience.

5 Conclusion

In this study, we developed an ML model based on XGB to predict 
the prognosis of patients with ICH and used SHAP to explain the 
model’s predictive results. The study found that the GCS, changes in 
SBP and DBP, hematoma volume, blood glucose levels, age, and 
coagulation function are key factors in identifying patients with poor 
prognosis. The ML model constructed in this study performed well in 
prediction. Combining the XGB algorithm with SHAP values provides 
a clear explanation for risk prediction and can offer valuable 
information for the clinical management of ICH patients, assisting 
doctors in making appropriate medical decisions.
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