
Frontiers in Neurology 01 frontiersin.org

Mitochondrial disease and 
epilepsy in children
Xuan Zhang 1,2,3, Bo Zhang 1,2,3, Zhiming Tao 1,2,3 and 
Jianmin Liang 1,2,3*
1 Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, 
Changchun, China, 2 Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, China, 
3 Neuromedical Center, First Hospital of Jilin University, Changchun, China

Mitochondria is the cell’s powerhouse. Mitochondrial disease refers to a group 
of clinically heterogeneous disorders caused by dysfunction in the mitochondrial 
respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear 
DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to 
a variety of clinical phenotypes, particularly affecting organs with high energy 
demands, such as the brain and muscles. Epilepsy is a prevalent neurological 
disorder in children and is also a frequent manifestation of mitochondrial disease. 
The exact mechanisms underlying epilepsy in mitochondrial disease remain unclear 
and are thought to involve multiple contributing factors. This review explores 
common mitochondrial diseases associated with epilepsy, focusing on their 
prevalence, seizure types, EEG features, therapeutic strategies, and outcomes. It 
also summarizes the relationship between the molecular genetics of mitochondrial 
respiratory chain components and the development of epilepsy.
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Highlights

 • The incidence of epilepsy in children with mitochondrial disease is higher than in adults.
 • The pathogenesis of mitochondrial-associated epilepsy in children is complex, involving 

various genetic mutations.
 • Understanding the molecular genetics of mitochondrial respiratory chain components 

can aid in diagnosing and treating epilepsy for diagnosis and treatment.
 • While no cure currently exists for mitochondrial diseases, gene therapy is a promising 

potential treatment option.

1 Mitochondrial physiology and mitochondrial 
diseases

Mitochondria, essential organelles in eukaryotic cells, produce energy by generating 
adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). This energy 
production occurs within the mitochondrial respiratory chain (MRC) situated in the inner 
mitochondrial membrane. The MRC consists of five enzyme complexes (complexes I to V) 
encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), along with two 
electron transport proteins, coenzyme Q10, and cytochrome C, which are both encoded by 
DNA. Therefore, mitochondrial diseases can result from both maternally inherited mtDNA 
mutations and classical genetic mutations in nDNA (1).

Dysfunction of the MRC in mitochondrial diseases is often caused by mutations in 
mtDNA or nDNA. mtDNA mutations include point mutations, deletions, duplications, and 
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depletion of copy number. nDNA mutations impact several processes, 
such as the formation of MRC subunits, assembly factors, 
intergenomic signaling, mitochondrial protein synthesis, lipid 
metabolism, mitochondrial dynamics (including fusion and fission), 
and coenzyme Q10 homeostasis (2). ATP is essential for all cells, but 
MRC dysfunction disproportionately affects those with high energy 
demands, such as neurons, skeletal muscles, and retinal ganglion cells. 
Beyond energy production, mitochondria play key roles in 
intracellular calcium regulation, reactive oxygen species (ROS) 
production, apoptosis, and neurotransmitter synthesis.

2 Mechanism of epilepsy caused by 
mitochondrial dysfunction

Epilepsy, a prevalent neurological disorder, partly arises due to the 
central nervous system’s substantial energy demands. When 
mitochondrial function is compromised, energy deficits can 
precipitate seizures. Zsurka et  al. suggest that the pathogenesis of 
mitochondrial-associated epilepsy involves processes such as neuronal 
energy depletion, oxidative stress, impaired calcium signaling, 
neurotransmitter imbalances, β-oxidation deficiency, and glial cell 
dysfunction (3). Additional factors, such as changes in cerebral blood 
flow, structural abnormalities in the brain, and immune-mediated 
damage, also contribute to the development of mitochondria-
related epilepsy.

Mutations in specific mtDNA or nDNA genes encoding the 
mitochondrial respiratory chain are closely related to epilepsy. These 
gene mutations prevent the oxidative phosphorylation process in the 
mitochondria from proceeding normally, resulting in a decrease in 
intracellular ATP levels. This disruption increases neuronal 
excitability by damaging the activity of sodium and potassium ATP 
enzymes and decreasing membrane potential (4). After the 
occurrence of mitochondrial-associated epilepsy, the energy demand 
of neurons that have been metabolically damaged increases. This 
energy exhaustion will further lead to the production of reactive 
oxygen species (ROS), apoptosis, and abnormal calcium homeostasis, 
which will promote epilepsy, thus forming a vicious circle (5). ROS is 
mainly produced in mitochondria. High concentrations of ROS can 
oxidize mitochondrial proteins, lipids, and nucleic acids, cause cell 
dysfunction, damage the ability of cells to maintain energy levels, 
cause energy exhaustion, damage and death of neurons, and change 
the excitability of neurons, thus reducing the threshold of seizures (6, 
7). The imbalance of calcium homeostasis caused by mitochondrial 
dysfunction can increase the excitability of neurons and induce 
seizures. Levetiracetam can play a partial antiepileptic effect by 
regulating the level of intracellular calcium (8). The relative imbalance 
of excitatory and inhibitory neurotransmitters may cause seizures. 
Disorders of receptor and ion channel gene mutation/protein 
function lead to abnormal stimulus transmission and epileptic 
discharges. Disorders of neurotransmitters such as glutamate, 
γ-aminobutyric acid (GABA), acetylcholine (Ach), dopamine, 
5-hydroxytryptamine, norepinephrine, histamine, melatonin, and 
nitric oxide are involved in the pathogenesis of epilepsy (9). Epilepsy 
is often accompanied by neuronal overexcitation. Repeated seizures 
can cause oxidative stress, inflammation, and excitotoxic damage and 
eventually lead to neuronal death, including apoptosis, autophagy, 
necrotizing apoptosis, scorch death, and iron death (10, 11). The 

changes in ion channels, transporters, and metabolism of astrocytes 
are also closely related to the occurrence of epilepsy (9). Astrocytes 
are rich in mitochondrial glutamate carrier SLC25A22, which 
controls glutamate uptake. Its functional loss will lead to extracellular 
glutamate imbalance and activation of extrasynaptic glutamate 
receptors, increase neuronal excitability, and cause epilepsy (12, 13). 
Congenital metabolic defects, such as fatty acid β oxidation disorder, 
make it impossible for the liver to use fatty acids as a source of energy, 
resulting in a decrease in blood glucose levels (14). Hypoglycemia 
results in seizures through excitatory neurotoxicity mediated by the 
N-methyl-D-aspartate receptor (NMDAR), increasing the production 
of mitochondrial free radicals, initiating apoptosis, and changing 
brain energy production (15).

Energy deficiency can stimulate the proliferation of mitochondria 
of smooth muscle and small vascular endothelial cells and cause 
angiopathy (such as MELAS syndrome), resulting in damage to 
microvascular hemoperfusion and insufficient energy supply to the 
brain (16). ATP deficiency can cause astrocyte dysfunction and 
excitotoxicity, leading to nerve cell death. In addition, hemodynamics 
and metabolic stress enhance the mobilization of nitric oxide (NO) 
and decrease the level of circulating NO. Both mechanisms are 
involved in epilepsy (17). Mitochondrial disease-related epilepsy may 
also be related to immune dysfunction (18). Recently, it has been 
reported that MELAS syndrome is complicated by autoimmune 
injury, but the mechanism between it and autoimmune disease is not 
clear and needs further study (19). The RARS2 gene is the pathogenic 
gene of cerebellopontine dysplasia type 6 (PCH6). MRI is 
characterized by cerebellopontine dysplasia or progressive 
cerebellopontine and cerebellar cortex atrophy (20). MT-TL1 gene 
mutations in mtDNA can involve the cortex, mostly located in the 
occipital lobe and parietal lobe, and may be accompanied by cerebellar 
and cerebellar atrophy (21). Brain structural abnormalities caused by 
RARS2 and MT-TL1 gene mutations are common seizures. It can 
be seen that the cause of brain structural venereal disease is also one 
of the pathogenesis of mitochondrial-related epilepsy. The pathways 
of cell death associated with epilepsy are shown in Figure  1. The 
mechanisms of epilepsy caused by various mitochondrial diseases are 
different, and understanding its underlying pathological mechanism 
is very important to develop reasonable strategies for the treatment of 
mitochondrial-related epilepsy.

Although the mechanisms of epilepsy vary across different 
mitochondrial diseases, Figure 1 outlines common pathways of cell 
death associated with epilepsy. Understanding these underlying 
pathological mechanisms is crucial for developing effective strategies 
to treat mitochondrial-related epilepsy.

3 Mitochondrial diseases and epilepsy 
in children

Mitochondrial diseases in children can present at any age and 
often affect multiple systems. In these conditions, seizures tend to 
originate in the occipital lobe or posterior brain regions, with seizure 
types ranging from epileptic spasms (as seen in infantile epileptic 
spasm syndrome), focal seizures (with or without secondary 
generalization), generalized seizures, myoclonic seizures, and 
refractory status epilepticus (22). In pediatric patients, myoclonic 
seizures are the most frequently observed seizure type associated with 
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mitochondrial diseases (23). The incidence of epilepsy in children 
with mitochondrial disease ranges from 25 to 100%, in contrast to 
approximately 14% in adults. Children with mitochondrial-related 
epilepsy exhibit a higher prevalence of focal seizures and nDNA 
mutations compared to adults. Their clinical presentation aligns more 
closely with electro-clinical syndromes and mitochondrial disease-
related syndromes (24).

Mitochondrial diseases can be genetically categorized based on 
mutations in mtDNA or nDNA, which encode mitochondrial 
proteins. mtDNA mutations are implicated in various disorders, 
including mitochondrial encephalomyopathy with lactic acidosis and 
stroke-like episodes (MELAS), maternally inherited Leigh syndrome 
(MILS), myoclonic epilepsy with ragged red fibers (MERRF), Leber’s 
hereditary optic neuropathy (LHON), Kearns-Sayre syndrome, 
Pearson syndrome, and chronic progressive external ophthalmoplegia 
(CPEO). In contrast, nuclear gene mutations encode mitochondrial 
proteins, resulting in a more complex pathogenic mechanism. 
Although the incidence of nDNA mutations in mitochondrial disease 

is lower, they are associated with conditions such as Leigh syndrome, 
Alpers-Huttenlocher syndrome (AHS), GRACILE syndrome, and 
Bjornstad syndrome. A wide variety of these mitochondrial disorders 
are associated with epilepsy, as outlined below.

4 MELAS and epilepsy

The pathogenesis of MELAS is associated with gene mutations, 
vascular disease, nitric oxide (NO) dysregulation, and energy 
deficiency. The most commonly implicated genetic mechanism is the 
mutation of the MT-TL1 gene, with the most frequent mutation being 
m.3243A > G (25). In MELAS, seizures occur with a frequency 
ranging from 71 to 96% (26), and typically present as generalized 
tonic–clonic seizures, focal seizures, or generalized status 
epilepticus (27).

Electroencephalograms (EEGs) in patients with MELAS typically 
show diffuse background slowing, often accompanied by slow waves 

FIGURE 1

Mechanism of epilepsy-related cell death. During epilepsy, excitability increases due to the loss of inhibitory neurons. The elevated glutamate levels or 
mutations in metabolic receptors (e.g., AMPA, NMDA) can prolong the activation time of glutamatergic receptors, increase excitatory postsynaptic 
potential, lead to excitotoxicity, and trigger downstream apoptotic cascades. Excessive activation of NMDA and AMPA receptors can cause a sharp 
influx of sodium and calcium ions. Excessive calcium influx leads to calcium overload in the mitochondrial matrix, resulting in mitochondrial 
dysfunction. This dysfunction opens the mitochondrial permeability transition pore (MPTP), leading to the release of cytochrome C into the cytoplasm. 
Cytochrome C binds with apoptosis-related factor 1 (APAF1), promoting caspase-9 binding to form apoptosomes, thereby activating other caspases 
and initiating the cascade of apoptosis, ultimately inducing neuronal cell death. Continuous brain discharges increase energy demand and decrease 
oxygen levels, leading to increased anaerobic glycolysis. Lactic acid, as a by-product of anaerobic glycolysis, appears to activate acid-sensitive ion 
channels (ASIC3), causing further calcium and sodium ion influx, which aggravates excitotoxicity. In addition, mitochondrial dysfunction reduces ATP 
production and increases reactive oxygen species (ROS) generation. Long-term seizures often activate the innate immune response, leading to glial 
cell activation and promoting the release of cytokines (e.g., IL-1, HMGB1, TNF-α, and IL-6). These cytokines activate several inflammatory pathways, 
such as NF-kB, p38, JNK, and JAK–STAT, regulating the expression of pro-inflammatory mediators and transcription factors, resulting in neuronal 
apoptosis.
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mixed with sharp waves, especially in the bilateral anterior regions 
(28). The most common EEG findings are non-specific diffuse or focal 
slow-wave activity in the bilateral occipital and anterior head regions. 
Epileptic discharges are typically focal but may become widespread 
and are frequently associated with seizures (27). Regardless of the 
genotype or presence of status epilepticus, about 30% of patients 
exhibit transient, non-specific, periodic unilateral epileptic discharges 
during the acute phase, though these are rarely observed in the 
chronic phase (29). Additionally, some MELAS patients experience 
loss of fixation sensitivity (FOS), an EEG phenomenon in which 
epileptic discharges are triggered by loss of central vision or gaze, 
characterized by idiopathic or generalized epileptic discharges 
following eye closure for more than 3 s (30).

Magnetic resonance imaging (MRI) in MELAS patients typically 
reveals cortical lesions, primarily in the occipital and parietal lobes, 
presenting as low signal intensity on T1-weighted imaging (WI) and 
high signal intensity on T2WI. These lesions do not follow the typical 
vascular distribution of cerebral arteries and may be accompanied by 
cerebellar or cerebral atrophy (21). Newer imaging modalities, such as 
oxygen uptake fraction measurements, transcranial Doppler 
ultrasound, and magnetoencephalography, can provide additional 
insight into the affected brain tissue and aid in prognosis prediction 
(31). MRI findings from a pediatric MELAS patient are shown in 
Figure 2.

5 LS and epilepsy

Leigh syndrome (LS), also known as subacute necrotizing 
encephalomyelopathy, is associated with approximately 100 different 

mtDNA or nDNA gene defects (32). LS can result from mitochondrial 
tRNA mutations in Cox I, II, III, IV, V, and PDH. Based on the age of 
onset, LS is classified into early-onset (before 2 years of age) and late-
onset (after 2 years). A meta-analysis of 385 LS cases revealed that 
nDNA mutations were more common than mtDNA mutations (38% 
vs. 32%), and earlier onset of symptoms was more frequently 
associated with nDNA mutations. Additionally, 80% of patients had 
defects in respiratory chain enzyme complexes, with 35% displaying 
isolated complex I defects (33).

The typical clinical presentation of LS includes motor retardation, 
seizures, reduced exercise tolerance, and lethargy (34). Seizures are the 
second most common symptom, with 13.3% of cases initially 
manifesting as epilepsy (35). A report of 110 LS cases from Korea 
found that focal seizures with impaired consciousness were the most 
prevalent seizure type, followed by generalized myoclonic, tonic, 
atonic, and tonic–clonic seizures. While seizure types did not 
significantly differ between early- and late-onset LS, focal and 
generalized tonic–clonic seizures were most common in late-onset 
cases (34, 36).

EEG findings in LS are variable. Most patients exhibit a decreased 
and disorganized background rhythm, along with focal or multifocal 
sharp waves during the interictal period (37). In one case of late-onset 
LS, diffuse spike–wave complexes at 3 ~ 4 Hz were observed (38). 
Another case of LS caused by an MT-ND1 mutation demonstrated 
decreased background activity, multifocal epileptic discharges, and 
significant irregularity (39).

MRI findings in LS often help elucidate the underlying etiology, 
with classic abnormalities involving the basal ganglia, particularly the 
bilateral putamen, periaqueductal gray, and brainstem (40). In 
patients with SURF-1 mutations, symmetrical involvement of the 

FIGURE 2

An 11-year-old female was diagnosed with MELAS syndrome due to intermittent convulsions for 3.5 years, which worsened over the last 7 days. Head 
MRI revealed: (A) Low signal intensity in the bilateral frontal, parietal lobes on axial T1WI. (B–D) On axial T2WI and T2/FLAIR, the brain tissue of the 
bilateral frontal parietal-occipital lobes was swollen, showing strip-like and gyrus-like high signal intensity. (E) DWI showed high signal intensity in the 
gyrus of the lesion area. (F) High signal intensity of the corresponding lesions was observed on the ADC.
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bilateral brainstem and subthalamic nuclei is common, and some 
patients exhibit basal ganglia abnormalities. In contrast, patients 
without SURF mutations show symmetrical bilateral basal ganglia 
involvement without significant white matter or brainstem 
abnormalities (41). The MRI findings of a pediatric patient with LS 
are shown in Figure 3.

6 AHS and epilepsy

AHS is an autosomal recessive genetic disorder caused by biallelic 
mutations in the POLG gene, which encodes a DNA polymerase 
responsible for the replication and repair of mtDNA. These mutations 
result in mitochondrial dysfunction, including mtDNA mutations, 
deletions, or depletion. The most common mutation associated with 
AHS is A467T (42, 43).

Approximately 50% of children with AHS present with focal, 
multifocal, or myoclonic seizures at the onset of epilepsy. As the 
disease progresses, most patients develop recurrent seizures, including 
status epilepticus and persistent focal epilepsy (epilepsia partialis 
continua, EPC) (44, 45). EPC is a hallmark feature of AHS, and in 
some cases, multi-site EPC is observed early, aiding in early diagnosis.

In AHS, EEGs typically show reduced background activity along 
with high-amplitude slow waves in the occipital region. This is often 
accompanied by occasional spike–wave or intermittent to continuous 
spike–wave or multi-spike–wave activity, known as rhythmic high-
amplitude delta with superimposed (poly)spikes (RHADS) (44). The 
presence of RHADS in patients with status epilepticus may indicate 
AHS (46). If RHADS is not detected on the initial EEG, extended 
monitoring may increase the likelihood of identification. RHADS 
generally appears in the early stages of AHS and is not affected by 
anti-seizure medications (ASMs). It is frequently associated with 

high-energy gamma (γ) oscillations, which may reflect active epileptic 
lesions (47).

Computed tomography (CT) in AHS typically reveals low-density 
areas in the gray and white matter of the posterior temporal and 
occipital lobes, which may progress to diffuse cerebral atrophy in later 
stages (48). MRI shows high signal intensity on T2WI or FLAIR 
sequences, particularly in the deep nuclei of the occipital lobes, 
thalamus, basal ganglia, and cerebellum (49). The EEG and MRI 
findings from a pediatric patient with AHS are illustrated in 
Figures 4, 5.

7 MERRF and epilepsy

MERRF is a rare mitochondrial disorder caused by pathogenic 
mutations in mtDNA. Approximately 80% of cases are attributed to 
the m.8344A > G point mutation in the MT-TK gene, leading to 
reduced complex I and IV activity, decreased respiratory rate and 
compromised mitochondrial membrane potential (50). This mutation 
can also result in an overlap syndrome involving MELAS, 
MERRF, and LS.

MERRF affects multiple systems and typically presents with 
myoclonus as the initial symptom, followed by generalized seizures, 
ataxia, fatigue, motor intolerance, and dementia. Seizure frequency in 
MERRF patients varies widely, ranging from 33 to100% (51). 
Generalized myoclonic seizures are the most common, followed by 
focal atonic seizures, focal clonic seizures, generalized tonic–clonic 
seizures, myoclonic absence seizures, typical absence seizures, and 
status epilepticus (52, 53). There is ongoing debate regarding whether 
the motor symptoms in MERRF represent myoclonic seizures or 
cerebellar or spinal cord symptoms, with some researchers proposing 
the term “myoclonic ataxia” rather than “myoclonic epilepsy” (51).

FIGURE 3

An 8-year-old male who experienced intermittent fever and limb weakness for over 6 years and drowsiness for 1 day was diagnosed with Leigh 
syndrome. Head MRI showed the following: (A–F) On axial T1WI, patchy low signal intensity was seen in the bilateral globus pallidus and midbrain, 
while patchy high signal intensity was observed in the bilateral globus pallidus and midbrain on axial T2WI and T2/FLAIR. (G) High signal intensity in the 
focal area was observed on DWI. (H) ADC showed high and low signal intensity in the corresponding lesions.
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FIGURE 4

In one patient with Alpers syndrome, EEG showed a 2-3 Hz slow-wave complex (multiple) spike sign in the right central region, that is, the 
characteristic rhythmic high-amplitude δ (RHADS) of superposition (multiple) spike waves, and simultaneous left-side limb jitter (EPC). One time of jitter 
is shown in the arrow and box in the figure. The top arrow indicates the EEG performance, and the bottom arrow indicates the same myoelectric 
performance. Each subsequent jitter is the same as this one.

FIGURE 5

An 11-month-old male was diagnosed with Alpers syndrome due to persistent left limb convulsions for 4 h. Initial head MRI showed: (A–C) No 
abnormal signals in T1WI, T2WI, and dark-fluid images, small ventricles, and no displacement of midline structures in the brain tissue. (D) Bilateral 
symmetrical low signal intensity was observed on the ADC map of the caudate nucleus. Reexamination after 3 months: (E–H) Patchy abnormal signals 
were observed around the bilateral ventricles. T1WI showed iso-signal, while T2WI and fluid-attenuated inversion recovery (FLAIR) images showed 
slightly high signal intensity. (I) Bilateral symmetrical low signal intensity was still visible on the ADC images of the caudate nucleus.
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EEGs in MERRF patients lack specificity but are generally 
characterized by background slowing, generalized epileptic discharges, 
and focal epileptic discharges. The EEG patterns may vary depending 
on the specific mutation. For example, patients with the m.8344A > G 
mutation in MT-TK may exhibit widespread sharp waves, sharp-slow 
wave complexes, or slow waves, while those with the m.3291 T > C 
mutation show widespread or focal multi-spike slow waves. Similarly, 
the m.4279A > G mutation can produce extensive spike–wave or 
multi-spike slow-wave complexes (51).

MRI findings in MERRF often reveal cerebellar and cerebral 
atrophy, focal white matter abnormalities, and bilateral symmetrical 
lesions in the brainstem, subthalamic nuclei, and basal ganglia (54). 
MRS frequently shows a decreased cerebellar N-acetyl aspartate/creatine 
ratio, with no significant increase in lactate levels (55). The EEG and 
MRI findings from a pediatric MERRF patient are shown in Figures 6, 7.

8 Epilepsy characteristics caused by 
different mitochondrial complex 
dysfunctions

The classification of mitochondrial diseases is based on several 
factors, including the affected tissues and organs, the dysfunction of 
respiratory chain enzyme complexes, and the types of gene mutations 
involved. The MRC consists of five enzyme complexes, along with two 
key electron transport proteins: coenzyme Q10 and cytochrome 
C. These components are essential for the proper functioning of the 
electron transport chain (ETC). Figure  8 illustrates the five MRC 
complexes and the composition of the electron transport proteins 
while listing common diseases caused by mutations in these 
complexes. Additionally, Table  1 presents the mitochondrial and 
nuclear genes that encode the proteins of the mitochondrial electron 
transport chain.

8.1 Mitochondrial complex I and epilepsy

Mitochondrial complex I, also known as NADH dehydrogenase 
or NADH-Q reductase, consists of 45 structural subunits. Deficiency 
in mitochondrial complex I is associated with mutations in various 
structural subunits and assembly factors, resulting in a wide range of 
clinical manifestations, including LHON, infantile LS, MELAS, and 
epilepsy (56).

Among the core subunits of complex I, mutations in MT-ND3 and 
MT-ND5 are more common. Point mutations in MT-ND3, such as 
m.10191 T > C, m.10158 T > C, and m.10197G > A, have been widely 
studied. More than 30 patients with the MT-ND3 m.10191 T > C 
mutation have been reported, with approximately 90% developing 
epilepsy, typically between the ages of 8 and 10. Seizure types include 
focal motor, persistent focal, and generalized tonic–clonic seizures 
(57, 58).

EEG findings in patients with the MT-ND3 m.10191 T > C 
mutation typically display interictal focal epileptic discharges, sharp 
waves, spikes in certain areas, and extensive slow-wave activity, with 
sharp waves present in some brain regions (57, 59). Imaging often 
reveals LS-like changes, such as involvement of the basal ganglia, 
thalamus, and brainstem, in about 50% of patients, with some 
exhibiting white matter-dominant polyencephalic lesions (57).

The MT-ND3 m.10158 T > C mutation is occasionally associated 
with isolated and recurrent stroke-like seizures. These seizures 
typically occur in middle age or later, manifesting as generalized 
clonic seizures, persistent focal seizures, and visual sensitivity seizures 
(60). EEG has periodic slow and sharp waves (61). MRI findings 
usually indicate lesions in the posterior cortex of the supratentorial 
area (62).

The common MT-ND5 m.13513G > A mutation is linked to 
multiple syndromes, including LS, MELAS, MERRF, LHON, and 
MELAS-LS overlap syndrome (63, 64). Some patients with this 

FIGURE 6

In one patient diagnosed with MERRF, an episode was detected during the awake period, showing limb tremors. The EEG showed widespread 3–4 Hz 
moderate to high-amplitude spike and slow waves for 1–2 s, with a transient EMG burst lasting 200 ms occurring simultaneously.
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FIGURE 7

An 8-year-old female was diagnosed with MERRF syndrome due to limb tremors for more than 10 months. (A–C) Cervical MRI showed a patchy 
abnormal signal in the medulla oblongata. T1WI showed a low signal, T2WI showed a high signal, and the fat-suppression image showed a slightly 
high signal.

FIGURE 8

(A) Electron Transfer Process of the Mitochondrial Respiratory Chain: Complex I receives electrons from NADH + H+ and transfers them to coenzyme 
Q. The released energy pumps H+ from the matrix side of the mitochondria to the intermembrane side. Complex II receives electrons from FADH₂ and 
transfers them to coenzyme Q, but the energy released during this electron transfer is insufficient to pump H+ out. Coenzyme Q collects electrons 
from Complex I and Complex II, and the resulting QH₂ shuttles to Complex III. Complex III transfers electrons from QH₂ to CytC through a “Q cycle.” 
The energy released during the electron transfer in Complex III can pump H+ from the matrix side of the mitochondria to the intermembrane side. 
Complex IV receives electrons from CytC and transfers them to O₂ to produce H₂O, and the energy released during this electron transfer can also 
pump H+ to the intermembrane side. The H+ pumped into the intermembrane space forms an electrochemical gradient of H+, which is transformed 
into a proton-motive force, driving H+ back into the matrix along the concentration gradient and releasing stored potential energy. This stored energy 
is fully utilized by Complex V to catalyze the formation of ATP from ADP and Pi. (B) The Composition of the Five Complexes of the Mitochondrial 
Respiratory Chain and Two Types of Electron Transport Proteins (Coenzyme Q10 and Cytochrome C): In addition, typical cases of diseases caused by 
their respective genetic mutations are presented. The sources of each subunit are classified according to whether they are encoded by mitochondrial 
or nuclear genes. Subunits encoded by nuclear DNA (nDNA) are marked in red, while subunits encoded by mitochondrial DNA (mtDNA) are marked 
accordingly.
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mutation also experience seizures. Dermaut et  al. reported that a 
patient with the MT-ND6 m.14487 T > C mutation presented with 
myoclonic seizures, generalized tonic–clonic seizures, decreased EEG 
background activity, spike waves, and multi-spike waves (65). Patients 
with NDUFV1 mutations may exhibit myoclonic seizures and absence 
seizures (66, 67). Seizures are also linked to mutations in nDNA genes, 
including NDUFS2, NDUFS4, NDUFS8, NDUFA1, and NDUFA8 
(68–70).

Currently, there is no effective treatment for mitochondrial 
complex I  deficiency. Clinical management primarily focuses on 
enhancing mitochondrial energy metabolism, increasing antioxidant 
capacity, providing nutritional support, and using ASMs to control 
seizures. Approximately 60% of patients with the MT-ND3 
m.10191 T > C mutation survive into puberty or later, which is a 
better prognosis than other complex I-related gene defects. A report 
from Japan indicated that homologous expression of codon-optimized 
MT-ND3 in patients with MT-ND3 mutations can increase ATP 
production and improve mitochondrial function, showing promise as 
a potential new treatment strategy (71).

8.2 Mitochondrial complex II and epilepsy

Mitochondrial complex II, also known as succinate dehydrogenase 
(SDH) or succinate-ubiquinone oxidoreductase (SQR), Comprises 
four structural subunits: SDHA, SDHB, SDHC, and SDHD, all 
encoded by nDNA. Additionally, four assembly factors, SDHAF1, 
SDHAF2, SDHAF3, and SDHAF4, are involved in its assembly and 
function (72). Clinical manifestations of complex II deficiency vary 
and include LS, leukoencephalopathy, optic nerve atrophy, and 
epilepsy. Among 61 patients with complex II deficiency reported by 
Fullerton et al., five had seizures (72).

Mutations in SDHA are the most common cause of complex II 
deficiency and are mainly associated with LS. Neurological symptoms 
include epileptic encephalomyopathy, external ophthalmoplegia, and 
myoclonic seizures (73). In one case of an SDHA mutation, the patient 
experienced focal and generalized seizures, with EEG findings 
showing nonspecific slow-wave activity and focal epileptic discharges 
(74). Another case presented with Lennox–Gastaut syndrome and 
highly irregular EEG patterns (75). Both cases demonstrated imaging 
features resembling LS.

Biallelic variations in SDHB frequently result in complex II 
deficiency. Approximately 10 patients with LS have been identified with 
pathogenic SDHB variations, most exhibiting neurodegenerative 
symptoms, seizures, and dystonia, with one patient showing heat 
sensitivity (72). The clinical manifestations of complex II deficiency 
related to SDHB mutations are similar to LS but typically do not involve 
the basal ganglia, which can help differentiate the two conditions (76).

A review by SiyingLin et al. identified six patients with SDHD 
mutations, four of whom experienced generalized tonic–clonic 
seizures, multifocal focal seizures, and myoclonic seizures (77). Of the 
four known SDH assembly factors, only mutations in SDHAF1 have 
been linked to complex II deficiency. Andreas et  al. reported five 
patients with homozygous SDHAF1 mutations, all of whom had 
motor degeneration and spastic paraplegia, with only one patient 
experiencing seizures (78).

Since complex II deficiency is rarer than other mitochondrial 
diseases, limited reports exist on its treatment and prognosis. 

Riboflavin has been shown to improve clinical manifestations in 
patients with complex II deficiency, potentially preventing disease 
progression and even reversing symptoms. In particular, patients with 
riboflavin transporter deficiency may benefit from high-dose 
riboflavin therapy (up to 70 mg/kg/day) (79).

8.3 Mitochondrial complex III and epilepsy

Mitochondrial complex III, also known as ubiquinone-
cytochrome c reductase or cytochrome bc1 complex, consists of 11 
structural subunits. Cytochrome b is encoded by mitochondrial DNA 
(mtDNA), while the remaining 10 subunits are encoded by nuclear 
DNA (nDNA). Additionally, BCS1L, TTC19, and UQCC2, encoded 
by nDNA, are involved in the assembly of complex III (80). The 
Leucine zipper EF-hand domain transmembrane protein 1 (LETM1) 
is located in the inner mitochondrial membrane and plays a critical 
role in regulating the synthesis of cytochrome b. Downregulation of 
LETM1 reduces MT-CYB expression and increases susceptibility to 
seizures (81).

Mutations in cytochrome b can manifest in skeletal muscle 
involvement, exercise intolerance, MELAS, LS, and seizures (82). 
Seizures in these cases may present as spastic seizures, status 
epilepticus, focal non-convulsive status epilepticus, or generalized 
tonic–clonic seizures (83, 84). Scott et al. described a patient with a 
cytochrome b mutation who exhibited both Parkinson’s syndrome and 
MELAS, along with status epilepticus and tonic–clonic seizures. EEG 
findings showed decreased background activity and occasional 
generalized epileptic discharges (85).

BCS1L mutations are the most common cause of complex III 
deficiency and are linked to GRACILE syndrome, Björstand 
syndrome, liver disease, encephalopathy, dyskinesia, and epilepsy. 
Neurological symptoms, such as dyskinesia and seizures, generally 
manifest after the age of 1 month, with an epilepsy incidence of 33%. 
Patients with the BCS1L c.232A > G mutation have typically 
developed GRACILE syndrome, although epilepsy is often absent 
(86). Erika et al. described a case of rapid progression in a patient with 
a BCS1L mutation, characterized by growth retardation, epileptic 
spasms, and frequent seizures in later stages. MRI findings showed 
involvement of the thalamus and supratentorial white matter (87). 
Helen et al. described a patient with a novel BCS1L mutation who had 
slower disease progression, presenting with myopathy, focal motor 
seizures, and optic nerve atrophy (88). Hikmat et al. reported that 6 
out of 33 patients with BCS1L mutations had seizures (86).

Mutations in TTC19, UQCC2, and UQCRC2 are also associated 
with seizures. Patients with missense TTC19 mutations (c.971 T > C 
and c.554 T > C) may present with tonic seizures and refractory 
epilepsy (89). Patients with UQCC2 mutations may experience 
generalized seizures and status epilepticus, with EEG findings showing 
low-voltage activity (90, 91). There have also been reports suggesting 
that mutations in the UQCRC2 gene can lead to generalized seizures 
(80). MRI findings in patients with complex III defects vary widely. 
Some resemble those seen in LS, with focal and bilateral symmetrical 
lesions in the basal ganglia, thalamus, and brain stem, while others 
show brain atrophy or underdeveloped myelin.

There is no specific therapy for respiratory chain complex III 
deficiency. Treatment focuses on managing symptoms and slowing 
disease progression. In one case, clinical symptoms improved 
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following treatment with vitamin K3 and vitamin C (92). Patients with 
TTC19 mutations often present with early psychomotor retardation, 
followed by progressive neurological decline and poor prognosis (89). 
The survival rate for patients with homozygous or compound 
heterozygous BCS1L c.232A > G mutations is significantly lower 
compared to patients with other BCS1L mutations, underscoring the 
importance of genotype–phenotype correlation, prognosis evaluation, 
and genetic counseling (86). Early disease onset is generally associated 
with faster progression and higher mortality.

8.4 Mitochondrial complex IV and epilepsy

Mitochondrial complex IV, also known as cytochrome c oxidase 
(COX), is the terminal enzyme in the electron transport chain. It 
comprises 14 subunits, with 3 encoded by mitochondrial DNA 
(mtDNA) and the remaining 11 by nuclear DNA (nDNA). Several 
nuclear-encoded assembly factors, including SURF1, SCO1, SCO2, 
COX10, COX15, and LRPPRC, are involved in the assembly of 
complex IV (93). Cytochrome c oxidase deficiency affects the brain, 
heart, and skeletal muscle, leading to disorders such as LS and 
cardiomyopathy (94).

SURF1 deficiency is a monogenic mitochondrial disorder and the 
most common cause of cytochrome c oxidase-deficient 
LS. Approximately 80% of SURF1 mutations are truncating, caused by 
abnormal splicing, frameshift deletions, or nonsense mutations. 
Clinical features include weight loss, dystonia, stunted growth, and 
epilepsy, with an epilepsy incidence of 33.3%, most commonly 
presenting as generalized tonic–clonic and myoclonic seizures (95). 
MRI findings often show LS-like features, with symmetrical necrotic 
lesions in the basal ganglia and brainstem (96). In comparison, 
patients with SCO2 mutations tend to have earlier-onset symptoms 
that progress more rapidly, including hypertrophic cardiomyopathy, 
dystonia, and seizures. EEG findings commonly show focal epileptic 
discharges in the central and temporal regions (97, 98). The COX15 
p.R217W mutation is associated with lactic acidosis, ataxia, and 
hypotonia, with epilepsy occurring in 71.4% of cases. Status epilepticus 
has also been reported, though specific seizure types have not been 
well-documented. EEG findings typically include multifocal slow-
wave discharge (99, 100).

In addition to mutations in assembly factor genes, mutations in the 
three COX subunits encoded by mtDNA are also linked to epilepsy. 
MT-CO1 mutations can lead to a wide range of seizure types, including 
myoclonic seizures associated with the m.6480G > A and m.6930G > A 
missense mutations (101, 102). The m.7402delC mutation can cause 
non-convulsive status epilepticus (102). The missense mutation 
m.7023G > A is associated with seizures such as mid-wind, generalized 
tonic–clonic, and focal seizures. Patients with the m.6489G > A 
mutation display persistent partial and myoclonic seizures, generalized 
tonic–clonic seizures, recurrent status epilepticus, and diffuse epileptic 
activity on EEG, often accompanied by significantly reduced 
background activity. MT-CO3 subunit mutations have been reported 
in patients with recurrent MELAS-like seizures (103).

In mammals, COX4 has two isoforms: COX4I1 and COX4I2. The 
COX4I1 c.454C > A missense mutation has been linked to infantile 
spasms, high EEG irregularity, and multifocal spikes (104).

Treatment options for mitochondrial complex IV deficiency are 
limited and vary depending on the specific mutation. Arginine may 

help alleviate stroke-like episodes in patients with COX-deficient 
MELAS, while coenzyme Q10 has shown promise in slowing disease 
progression in COX4I1 deficiency (16, 104). EPI-743, a coenzyme 
Q10 derivative, has been found to prevent disease progression and 
improve quality of life and motor function in some SURF1-related LS 
cases (105). Additional treatments, such as the Pan-PPAR agonist 
bezafibrate and the AMPK agonist AICAR, have shown the potential 
to partially restore COX function in human and animal models (106). 
Intrathecal delivery of an adeno-associated viral vector serotype 9 
(AAV9)-human SURF1 (hSURF1) has effectively corrected 
biochemical abnormalities in mouse models of SURF1 deficiency 
(107). Emerging therapies such as mitochondrial biogenesis and gene 
replacement also hold promise for future treatment strategies.

8.5 Mitochondrial complex V and epilepsy

Mitochondrial complex V, also known as ATP synthase, is 
essential for mitochondrial energy production and comprises two 
functional domains: F1 and F0. The F1 domain contains five subunits 
(α, β, γ, δ, and ε), while the F0 domain consists of subunits a, b, c, d, e, 
f, g, I, k, A6L, F6, and the oligomycin-sensitive protein (OSCP) (108). 
Subunit, an and A6L of the F0 domain, are encoded by the MT-ATP6 
and MT-ATP8 genes in mtDNA, while the remaining subunits, along 
with assembly factors (ATP assembly factors 1 and 2), coupling factors 
(inhibitor IF1 and coupling factor B), and ATP synthase-related 
proteins (MLQ and DAPIT), are encoded by nDNA (109). Mutations 
in MT-ATP6, MT-ATP8, ATPAF2, TMEM70, and ATP5E can lead to 
complex V deficiencies.

MT-ATP6 mutations are the most common and widely studied 
causes of complex V deficiency, characterized by a reduction in ATP 
synthesis and basal oxygen consumption. This can lead to clinical 
manifestations such as ataxia, cognitive impairment, neuropathy, and 
epilepsy, with an incidence of 37%. MILS and NARP syndrome are 
associated with seizure rates of 86 and 44%, respectively, with generalized 
seizures being the most frequent type (110). Common mutations in 
MT-ATP6-related epilepsy include m.8993 T > G, m.8993 T > C, 
m.9032 T > C, m.9058A > G, and m.8921G > A (111–114). The 
m.8993 T > G mutation is particularly associated with a high incidence 
of generalized tonic–clonic, myoclonic, and progressive myoclonic 
seizures. EEGs in patients with this mutation typically show slow 
background activity and widespread sharp-slow complexes, making EEG 
a key tool for assessing disease severity In contrast, the m. 8,993 T > C 
mutation generally leads to milder symptoms and later onset, though it 
is still associated with generalized tonic–clonic seizures. Patients with the 
m.9032 T > C mutation may experience focal seizures, and EEG findings 
often show sharp waves in the central parietal region (115).

Mutations in MT-ATP8, such as m.8502A > T and m.8411A > G, 
have been identified in patients with epilepsy (116, 117). The former 
is closely associated with medial temporal lobe epilepsy, while the 
latter is linked to generalized tonic–clonic seizures. Mutations in 
ATP5F1E, ATPAF2, ATP5PO, and TMEM70, all encoded by nDNA, 
are also implicated in seizure disorders (108, 118, 119). Homozygous 
mutations in ATP5F1E (c.35A > G), which affect the ε subunit of the 
F1 domain, commonly result in generalized tonic–clonic seizures. A 
patient with an ATP5PO mutation encoding OSCP recently died from 
refractory status epilepticus, and a separate case involving a TMEM70 
mutation also presented with status epilepticus (119).
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TABLE 1 Summary of the genes, seizure types, and EEG characteristics of mitochondrial disease-related epilepsy.

Pathogenesis Gene 
location

Genetic 
modality

Coding gene Seizure types Electroencephalogram 
(EEG) characteristics

Onset time Treatments Outcomes

OXPHOS 

subunit 

defects

Complex I

mt DNA Mat

MT-ND1 MT-ND3 

MT-ND4 MT-ND5 

MT-ND6

MT-ND3: focal motor, persistent focal, generalized clonic, 

persistent focal, visual sensitivity, and generalized tonic–

clonic seizures (57, 58, 60).

MT-ND6: myoclonic seizures, generalized tonic–clonic 

seizures (65)

MT-ND1: focal seizures (142)

MT-ND5: focal seizures (143)

MT-ND4: unclear
EEG shows sharp waves, spikes in 

certain areas, extensive slow-wave 

activity, and periodic slow and 

sharp waves, with sharp waves 

present in some brain regions.

Birth to school 

age

Antiepileptic 

drugs, cocktail 

therapy, etc.

Most patients die 

within 10 years, but a 

small number of 

patients can survive to 

adulthood.

n DNA AR， XL

NDUFA1 NDUFA2 

NDUFA9 NDUFA10 

NDUFA11 NDUFA12 

NDUFA13 NDUFB3 

NDUFB9 NDUFB11 

NDUFS1 NDUFS2 

NDUFS3 NDUFS4 

NDUFS6 NDUFS7 

NDUFS8NDUFV1 

NDUFV2

NDUFA1: tonic clonic seizures, generalized seizures (144)

NDUFA2: generalized tonic–clonic seizures (145)

NDUFA9: focal seizures (146)

NDUFV1: myoclonic seizures (147)

NDUFS4: generalized seizures (148)

NDUFA8 NDUFA10 NDUFA11 NDUFA12 NDUFA13 

NDUFB3 NDUFB9 NDUFB11 NDUFS1 NDUFS2 NDUFS3 

NDUFS6 NDUFS7 NDUFS8 NDUFV2: seizures may occur, 

but the type of seizure is unknown

Complex II n DNA AR
SDHA SDHB SDHC 

SDHD

SDHA: myoclonic seizure (73), Focal and generalized seizures 

(74), epileptic spasms (75)

SDHB: febrile seizures (72)

SDHD: generalized tonic–clonic seizures, multifocal focal 

seizures, myoclonic seizures (77).

SDHC: unclear

The EEG findings show nonspecific 

slow-wave activity and focal 

epileptic discharges (74).

It occurs from 

infancy to 

adulthood, but 

is more 

common in 

infants and 

young children.

High-dose 

riboflavin therapy

Most of the 

neurological 

symptoms persist.

Complex III

mt DNA Mat MT-CYB
spastic seizures, status epilepticus, focal non-convulsive status 

epilepticus, or generalized tonic–clonic seizures (83–85).

EEG findings showed decreased 

background activity and occasional 

generalized epileptic discharges

School-age Antiepileptic 

drugs, cocktail 

therapy, etc.

Unclear

n DNA AR UQCRC2 generalized seizures (80) Unclear
Infancy, 

Toddlerhood

Symptoms may 

be mild

(Continued)
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Pathogenesis Gene 
location

Genetic 
modality

Coding gene Seizure types Electroencephalogram 
(EEG) characteristics

Onset time Treatments Outcomes

Complex IV

mt DNA Mat
MT-CO1 MT-CO2 

MT-CO3

MT-CO1: myoclonic seizure, generalized tonic–clonic 

seizures, focal seizures, status epilepticus (101, 102, 149)

MT-CO2 MT-CO3: unclear

Electroencephalograph (EEG) 

recordings revealed focal or diffuse 

epileptiform activities and marked 

background slowing. The ictal EEG 

discharges associated with partial 

motor seizures had frontocentral 

location, but generalized sharp 

wave paroxysms were also observed 

(149).

School Age, 

Adolescence
Antiepileptic 

drugs, cocktail 

therapy, and 

others.

Residual neurological 

symptoms

n DNA AR
COX4l1 COX6B1 

COX8A NDUFA4

COX4l1: epileptic spasms (104)

COX6B1: generalized tonic–clonic seizures (150)

COX8A: focal and generalized tonic–clonic seizures, 

myoclonic seizures atonic seizures (151)

NDUFA4: generalized tonic–clonic seizure (152)

EEG varies by seizure type
Birth to school 

age

Complex V

mt DNA Mat MT-ATP6 MT-ATP8

MT-ATP6: focal seizures, generalized tonic–clonic seizures 

(GTCS), myoclonic seizures, atonic seizures, progressive 

myoclonus epilepsy (PME) (111, 113, 115)

MT-ATP8: generalized clonic seizures (117)

From slow background activity to 

variable combinations of 

paroxysmal/epileptiform activities 

(111).

From fetal 

period to 

75 years old.

Antiepileptic drugs

Most affected children 

present with an 

overall homogeneous 

Leigh or Leigh-like 

syndrome phenotypen DNA AR ATP5F1E ATP5PO
ATP5F1E: generalized tonic–clonic seizures (108)

ATP5PO: focal seizures (108)

OXPHOS 

assembly 

factor 

defects

Complex I n DNA AR

NDUFAF1 NDUFAF2 

NDUFAF3 NDUFAF4 

NDUFAF5 NDUFAF6 

FOXRED1 ACAD9 

NUBPL C17orf89

NDUFAF3: myoclonic seizures (153)

NDUFAF6: focal seizures (154)

NDUFAF1 NDUFAF2 NDUFAF4 NDUFAF5 FOXRED1 

ACAD9 NUBPL C17orf89: seizures may occur, but the type of 

seizure is unknown

EEG varies by seizure type
Birth to school 

age

Antiepileptic 

drugs, cocktail 

therapy, etc.

Most patients die 

within 10 years, but a 

small number of 

patients can survive to 

adulthood.

Complex II n DNA AR SDHAF1 SDHAF2 Unclear Unclear Birth to infancy
High-dose 

riboflavin therapy

Most of the 

neurological 

symptoms persist.

Complex III n DNA AR

BCS1L HCCS LYRM7/

MZM1L TTC19 

UQCC2

UQCC2: generalized seizures and status epilepticus (90, 91).
EEG findings showing low-voltage 

activity (90, 91).
Infancy

Mechanical 

ventilation and 

other life support 

treatments

Death in infancy

(Continued)

TABLE 1 (Continued)
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Pathogenesis Gene 
location

Genetic 
modality

Coding gene Seizure types Electroencephalogram 
(EEG) characteristics

Onset time Treatments Outcomes

Complex IV n DNA AR

SCO1 SCO2 

COX10COX15 SURF1 

PET100 FASTKD2 

LRPPRC

SCO1: generalized clonic seizures, generalized tonic–clonic, 

generalized motor seizures (155)

SCO2: focal seizure (98)

SURF1: generalized tonic clonic seizure, myoclonic seizure 

(96)

PET100: tonic seizures (156)

FASTKD2: focal status epilepticus, generalized tonic clonic 

seizure, focal to bilateral tonic clonic seizure (157, 158)

LRPPRC, COX10, COX15: unclear

EEG varies by seizure type
Birth to 

adulthood

Antiepileptic 

drugs, cocktail 

therapy, and 

others.

Residual neurological 

symptoms

Complex V n DNA AR
ATPAF2/ATP12 

TMEM70

TMEM70: generalized seizures, status epilepticus (119, 159)

ATPAF2/ATP12: unclear
Unclear

Birth to early 

childhood
Antiepileptic drugs Unclear

Coenzyme Q n DNA AR

COQ1-PDSS2 COQ2 

COQ4 COQ5 COQ6 

COQ8-ADCK3 COQ8-

ADCK4 COQ9

COQ2: focal seizures with altered consciousness, persistent 

partial seizures, myoclonic seizures, and status epilepticus 

(122, 134)

COQ4: status epilepticus, myoclonic seizures, and focal 

seizures (126)

COQ8: focal seizures, generalized tonic–clonic seizures, 

myoclonic seizures, absence seizures, persistent partial 

epilepsy, and status epilepticus (129–132).

EEG varies by seizure type
Birth to 

adulthood

CoQ10 or its 

derivatives

Some patients die 

early, while others 

progress slowly

Cytochrome c n DNA Unclear CYCS Unclear Unclear Unclear Unclear Unclear

AR, autosomal recessive; Mat, maternal inheritance; XL, X-linked; OXPHOS, oxidative phosphorylation.

TABLE 1 (Continued)
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Treatment for complex V deficiency is largely symptomatic, 
focusing on the use of coenzyme Q10, vitamin B1, and vitamin 
C. α-ketoglutarate and aspartic acid have shown potential in increasing 
mitochondrial substrate phosphorylation, thereby normalizing ATP 
levels in cells with the m.8993 T > G mutation and reducing cell death 
(120). N-acetylcysteine and dihydrolipoic acid also hold therapeutic 
potential for patients with the m.8993 T > G mutation (121).

8.6 Coenzyme Q10 and epilepsy

Coenzyme Q (CoQ or ubiquinone) plays a crucial role in 
mitochondrial electron transfer, shuttling electrons from complex I or 
II to complex III. Coenzyme Q deficiency can be  classified into 
primary and secondary forms based on etiology. Secondary CoQ 
deficiency is not directly related to the biosynthesis of CoQ, while 
primary CoQ deficiency results from mutations in genes responsible 
for CoQ biosynthesis. The Clinical manifestations are highly 
heterogeneous (122).

The CoQ biosynthesis pathway is complex and involves at least 15 
genes, including PDSS1, COQ1-PDSS2, COQ2, COQ3, COQ4, COQ5, 
COQ6, COQ7, COQ8-ADCK3, COQ8-ADCK4, COQ9, COQ10a, 
COQ10b, FDX1L, and FDXR. Additionally, three other genes, ADCK1, 
ADCK2, and ADCK5, are also believed to play roles in CoQ 
biosynthesis (123). The incidence of primary CoQ10 deficiency is 
estimated at approximately 1 in 50,000, and while it can occur at any 
age, it is more common in children. When the central nervous system 
(CNS) is involved, the clinical phenotype is diverse, ranging from 
growth retardation and encephalopathy to intellectual disability and 
epilepsy. Several CoQ biosynthesis genes have been implicated in 
epilepsy including COQ1-PDSS2, COQ2, COQ4, COQ5, COQ6, 
COQ8-ADCK3, COQ8-ADCK4, and COQ9, with COQ2, COQ4, and 
COQ8-ADCK3 mutations being more frequently associated with 
seizures (124).

COQ4 mutations have the highest incidence of epilepsy, reaching 
up to 69%, with a higher prevalence among females. The age of onset 
ranges from birth to 9 years, and clinical symptoms may appear as 
early as the first week of life. These symptoms include growth 
retardation, epilepsy, skeletal muscle involvement, and 
cardiomyopathy (125). Seizure types include status epilepticus, 
myoclonic seizures, and focal seizures, with or without altered 
consciousness (126). EEG findings typically show reduced background 
activity and focal seizures, with occasional sharp waves, particularly 
in the left parietal region during REM sleep (127, 128).

Mutations in the COQ8A gene (also known as CABC1 or ADCK3) 
represent the most common form of primary coenzyme Q10 
deficiency. Clinical manifestations include early-onset cerebellar 
ataxia, various motor disorders, cognitive impairment, motor 
intolerance, and epilepsy, which occurs in approximately 32% of cases. 
Epilepsy phenotypes associated with COQ8A mutations include focal 
seizures, generalized tonic–clonic seizures, myoclonic seizures, absence 
seizures, persistent partial epilepsy, and status epilepticus (129–132). 
EEG findings typically show frequent focal epileptic discharges and δ 
waves. During the interictal period, multi-spike wave or spike–wave 
rhythms are observed in the bioccipital region but may also be seen in 
the parietal, temporal, and frontal lobes. Some patients exhibit 
paroxysmal discharges in response to medium- and high-frequency 
(10-30 Hz) light stimulation (133). Cranial MRI frequently reveals 

cerebellar atrophy, though other regions may also be affected, including 
the brainstem and supratentorial areas such as the parietal and frontal 
insular lobes. Additionally, T2-weighted imaging often shows high 
signal intensity in the dentate nucleus and dorsal pons (129).

Primary CoQ deficiency was initially reported in association with 
COQ2 mutations, characterized by encephalopathy, cerebellar 
dysplasia, and epilepsy, with a seizure incidence of approximately 40%. 
Seizure types in COQ2 deficiency include focal seizures with altered 
consciousness, persistent partial seizures, myoclonic seizures, and 
status epilepticus (122, 134, 135).

Therapeutic response to coenzyme Q10 or its derivatives varies by 
genetic mutation. Patients with COQ4 mutations may benefit from 
coenzyme Q10 supplementation, while those with PDSS2, COQ8A, 
and COQ9 mutations tend to respond less effectively. For patients with 
COQ2 or COQ6 mutations, supplementation with 4-hydroxybenzoic 
acid (4-HBA) may enhance endogenous CoQ10 synthesis (136, 137). 
In preclinical studies, the antioxidant probucol has shown greater 
efficacy in treating renal and metabolic complications in PDSS2 
mutant mice but compared to coenzyme Q10 supplementation (138), 
this treatment remains under investigation.

8.7 Cytochrome C and epilepsy

Cytochrome c (CytC) is a water-soluble protein encoded by Ndna 
and composed of 104 amino acid residues. Its primary function is to 
facilitate electron transport between complex III and complex IV in the 
mitochondrial electron transport chain. Additionally, CytC plays a 
crucial role in apoptosis induction (139). During seizures, the production 
of harmful substances in neurons can increase the permeability of the 
mitochondrial inner membrane. CytC is subsequently released into the 
cytoplasm, where it binds to apoptosis-related factor 1(Apaf-1), 
promoting the formation of apoptotic bodies by binding with caspase-9. 
This process activates other caspases, leading to neuronal apoptosis. 
Mitochondrial damage exacerbates the susceptibility to seizures, creating 
a vicious circle that promotes further neuronal damage (140). Luan et al. 
found that a ketogenic diet can reduce the release of cytochrome c, thus 
playing a neuroprotective role (141).

9 Summary and prospects

When we encounter children with mitochondrial disease, it is 
necessary to conduct a series of relevant medical examinations. These 
auxiliary examinations that help diagnose mitochondrial diseases 
mainly include serum lactate levels, neuroelectrophysiological 
analysis, imaging diagnosis, and pathological examinations of 
muscles and brain, as well as diagnosis of gene mutations. Given that 
there is currently no definite treatment for mitochondrial disease, 
symptomatic treatment is particularly critical for patients. Some 
drugs may cause abnormalities in mitochondria or energy 
metabolism, so special care should be taken when using them. For 
example, sodium valproate may have significant side effects on the 
liver, so patients with mitochondrial disease should use it with 
caution. Although most of the drugs are still in development and 
trials, we outline in Table 2 the various modification therapies for 
mitochondrial diseases, such as small molecule therapy, gene therapy, 
and reproductive therapy.
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TABLE 2 Disease-modifying treatments for mitochondrial diseases.

Methods Drugs Indications Mechanisms References

Symptomatic treatment
Control of epilepsy, control of blood sugar, treatment of acidosis, management of heart damage, management of gastrointestinal symptoms, control of lung infections, etc. may 

all be life-saving treatments for patients.

Cocktail therapy Combination of enzyme cofactors, antioxidants, amino acids and other nutritional supplements

Small molecular drugs

Enhancing 

mitochondrial 

biogenesis

Bezafebrate Mitochondrial myopathy Activate PPAR which activates PCG-1α pathway (160)

5-Aminoimidazole-4-carboxamide ribonucleotide 

(AICAR)
Mitochondrial disease

Increase the activity of AMPK which activates PCG-1α by 

phosphorylation.
(161)

Resveratrol Mitochondrial myopathy disorder An activator of AMPK and SIRT1 (162)

RTA 408 Mitochondrial disease Activate Nrf 2, which is PGC-1α downstream effectors (163)

Omaveloxolon (SKYCLARYS) Friedreich’s ataxia Nrf2 degradation inhibitor (163)

Restoration of the 

cellular NAD+ to 

NADH ratio

Nicotinamide Riboside (NR) Mitochondrial myopathy disorder Precursor of Nicotinamide adenine dinucleotide (NAD+) (164)

Nicotinamide mononucleotide (NMN) _
Increase the cellular load of NAD through supplementation with 

precursors for de novo biosynthesis
(165)

Acipimox (5-carboxyl-2-methyl pyrazine 1-oxide) Mitochondrial myopathy

Lower plasma free fatty acids by inhibiting lipolysis through 

indirectly inhibiting hormone-sensitive lipase. This in turn promotes 

an increase in NAD+, sirtuin 1 (SIRT1) activation and enhanced 

mitochondrial gene expression

(166)

Niacin Mitochondrial myopathy; NAD+ deficiency _ (167)

ACMSD inhibitors _ NAD booster concept (168)

Bacterial lactate oxidase fusion protein _

Reoxidize extracellular lactate back to pyruvate, which is then 

transported back into the cell by the monocarboxylate carrier, 

allowing re-reduction of the pyruvate by lactate dehydrogenase to 

re-establish the NAD poise.

(169)

Inducing 

Mitochondrial 

Turnover

Rapamycin _

Target a component of the mammalian target of rapamycin 

(mTOR) complex, mTORC1, which is a key regulator of cellular 

homeostasis and has been linked to activation of the 

mitochondrial stress response in mitochondrial myopathy

(170)

Increasing Mitophagy urolithin A _ A mitophagy activator (171)

Mitigating oxidative 

stress

Raxone (Idebenone) LHON; Direct treatment of complex 1 defect

Idebenone is an analog of CoQ10 but has a higher, which can 

complex 1 deficiency in patients with LHON by directly 

transferring electrons to the complex 3, bypassing complex 1.

(172)

Vatiquinone (EPI-743)
Friedreich ataxia; Mitochondrial disease with refractory 

epilepsy; Mitochondrial respiratory chain diseases

Inhibiting 15-lipoxygenase (15-LO) leads to increased GSH levels 

and decreased oxidized GSH
(161)

RP103 (cysteamine bitartrate delayed-release 

capsules)
Mitochondrial disease

Cysteamine can increase intracellular glutathione levels by 

increasing the cysteine available for reduced glutathione synthesis
(165)

Elamipretide (SBT-272) Barth syndrome; primary mitochondrial myopathy Cardiolipin protector; Inhibit cytochrome c peroxidase (173)

Restoring mtDNA 

Homeostasis

Nucleoside therapies [oral deoxypyrimidine (MT1621)] Myopathic MDDS caused by TK2 deficiency _ (174)

Deoxynucleoside therapy _ _ (175)

(Continued)
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Methods Drugs Indications Mechanisms References

Gene therapy 

(Manipulating the 

Mitochondrial 

Genome)

Adeno-associated virus (AAV)

Barth syndrome, Friedreich ataxia, NDUFS4, 

NDUFS3, and SURF1-related Leigh syndrome, 

ethylmalonic encephalomyopathy, three 

mitochondrial DNA depletion disorders 

(mitochondrial neurogastrointestinal 

encephalomyopathy (MNGIE), MPV17 deficiency, 

and TK2 deficiency), Leber hereditary optic 

neuropathy and SLC25A46-related neuropathy.

Delivers therapeutic DNA to the cell nucleus, providing long-

term gene expression with low immunogenicity, low risk of 

insertional mutagenesis, and the ability to deliver terminally 

differentiated cells

(170, 176)

Antisense oligonucleotides (ASO)

ASO might be a viable therapeutic option for some 

PMDs, including a subset of POLG-related 

diseases

Selective degradation of target RNA and enhancement of 

translation
(177)

Genome Editing

Mitochondrial-targeted restriction endonucleases 

(mitoREs)

These techniques have been tested exclusively in in vitro and in vivo preclinical models (178)

Zinc finger endonucleases (mitoZFNs)

Transcription activator-like effectors nucleases 

(mitoTALENs)

Meganucleases (mitoARCUS)

DdCBEs and TALEDs

Reproductive therapy 

(prevent transmission 

of mtDNA mutations)

Mitochondrial 

Replacement 

techniques (MRT)

Pronuclear transfer (PNT)

For the treatment of unborn children whose 

parents have mitochondrial disease

The woman’s abnormal mitochondrial DNA is replaced with 

DNA from a healthy donor, or genetic material is transferred 

from a damaged oocyte into an enucleated donor cell.

(179)

Maternal spindle transfer (MST)

Polar body transfer (PBT)

first polar body (PB1) and second polar body 

(PB2) transfer techniques

Targeted Genome 

Editing

RNA-free programmable nucleases

Mammalian mitochondria cannot repair double-strand breaks 

(DSBs) and degrade double-stranded linear DNA. Therefore, 

nucleases can be used to eliminate mtDNA. (180)

RNA-free DddA-derived cytosine base editors

DddA-derived c ytosine base fusion editor

DddA-derived cytosine base editors (DdCBEs) allows C-to-T (or 

G-to-A) base editing

MRT and mtDNA 

editing combination 

therapy

_

MRT-Reconstituted oocytes or zygotes could be subjected to 

mtDNA editing to reduce or eliminate carried-over mutant 

maternal mtDNA.

(181)

Others

Exercise and 

endurance training
Mitochondrial disease _ Enhance mitochondrial biogenesis (182)

Hypoxia Mitochondrial disease
Vivo murine models of Leigh syndrome (Ndufs4 

KO)

Hypoxia not only can trigger innate adaptive processes, but also 

limits the accumulation of toxic oxygen substrates.
(183)

TABLE 2 (Continued)
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The pathogenesis of childhood mitochondrial-associated epilepsy is 
highly complex, involving a range of genetic mutations that lead to 
various seizure types, often resulting in drug-refractory epilepsy. As 
research in mitochondrial-associated epilepsy advances, new gene 
mutations continue to be discovered. While significant progress has been 
made in understanding some aspects of the condition, many questions 
remain unanswered. The advent of next-generation sequencing (NGS) 
and the growing focus on precision medicine has facilitated the 
identification of mitochondrial genes linked to epilepsy. These 
discoveries have become integral to diagnosing hereditary epilepsy and 
have advanced the fields of personalized medicine and genetic counseling.

Currently, there are no effective treatments to completely cure 
mitochondrial diseases, and gene therapy remains in the experimental 
stages. However, both gene therapy and cell therapy are promising 
areas of research, offering potential for new and effective treatments. 
There is hope that future advancements in these therapies may 
ultimately lead to a cure for mitochondrial diseases.
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