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The increased risk of neurodevelopmental impairment in children with congenital 
heart disease (CHD) has been established, but the search for targeted neurological 
predictors of adverse outcome is ongoing. This systematic review reports on the 
utility of three functional neuromonitoring modalities, Near-infrared Spectroscopy 
(NIRS), electroencephalography (EEG) and biochemical biomarkers, in predicting 
either clinical neurodevelopmental outcome or structural brain abnormalities after 
pediatric CHD surgery. Medline, Embase, CENTRAL, Web of Science, clinicaltrials.gov 
and ICTRP were systematically searched for eligible articles. Original research articles, 
written in English, published before November 2023 and reporting on perioperative 
NIRS, EEG or biomarkers and their association with clinical neurodevelopmental 
outcome or neuroimaging in children <17 years undergoing surgery for CHD were 
included. The search yielded 11,367 citations, of which 40 papers were included in 
the final review: sixteen articles (n = 908 cases) reported on NIRS, twelve (n = 1,163) 
on EEG and fifteen (n = 903) on biochemical biomarkers. Three papers reported on 
a combination of modalities. Median age at time of surgery was 9 (IQR 7–57) days. 
Postoperative MRI was performed before discharge at varying timepoints. Median 
age at clinical outcome assessment was 15 (IQR 12–24) months. Limited evidence 
supports an association of cerebral oxygen extraction, cerebral desaturation and 
cerebral autoregulation with outcome, but there was significant heterogeneity 
in results. Perioperative electroencephalographic ictal discharges and abnormal 
background were associated with impaired neurological outcome and abnormal 
neuroimaging. Numerous biochemical biomarkers have been reported but showed 
no consistent relationship with outcome, except for lactate, which could serve as 
a predictor of poor outcome. There is a need for larger homogeneous cohorts 
of children with CHD to determine which perioperative modalities might serve 
as predictors of neurodevelopmental outcome or neuroimaging abnormalities.

Systematic review registration: http://www.crd.york.ac.uk/PROSPERO, 
CRD42023479344
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1 Introduction

Congenital heart disease (CHD) is the most common birth defect 
with a prevalence of about 8 (1–8) per 1,000 live births (9). Around 
25–50% of patients with CHD require neonatal cardiac intervention. 
Medical and surgical advancements have significantly decreased 
mortality and morbidity, although, survivors of critical CHD remain 
at risk of neurodevelopmental impairments in several domains, 
including overall intellectual functioning, speech, language, executive 
and memory function, gross, fine motor and visual spatial skills (10). 
Additionally, around a third of children with congenital heart disease 
have brain abnormalities on preoperative Magnetic Resonance 
Imaging (MRI), with an additional third acquiring new or increased 
injury postoperatively (11). The predominant lesions visualized in 
postoperative patients with CHD are stroke and white matter injury 
(1, 12, 13). In addition, children without overt lesions have structural 
abnormalities such as altered brain volumes and cortical folding on 
fetal and neonatal brain MRI (2–4). Reviews have shown that 
perioperative cerebral findings can be  associated with 
neurodevelopmental outcome (NDO) although abnormal 
neuroimaging is not always proportionally associated with clinical 
outcome and should be interpreted with caution (5–7). The cause of 
this neurological risk is considered multi-factorial. Inherent disease- 
(type of cardiopathy, cyanosis) and patient-specific factors such as 
genetic syndromes or extracardiac anomalies contribute to the 
neurological risk profile of these infants (8, 14), in addition to the 
inherent risk of surgical techniques such as atrial septostomy, 
cardiopulmonary bypass (CPB) or deep hypothermic circulatory 
arrest (DHCA) (15, 16), postoperative critical illness and low cardiac 
output syndrome (17).

Because of this inherent risk, the American Heart Association 
issued recommendations for the follow-up of neurodevelopment in 
children with CHD (18). As neurodevelopmental follow-up is a 
resource-intensive practice, it is most important to identify CHD 
patients at highest risk for impaired neurodevelopment. Current 
practices focus largely on clinical development, which is only a late 
predictor, or on brain MRI which can be  performed early but is 
resource-intensive and not easily accessible in an intensive-care 
setting. In order to allocate these resources to the patients in greatest 

need, it is necessary to explore different predictive strategies 
differentiating subsequent neurodevelopmental risk in CHD patients.

Neuromonitoring practices in a pediatric cardiac intensive-care 
setting vary widely (19). A recent European survey (20) showed 
similar variety in perioperative neuromonitoring/neuroimaging 
after pediatric congenital heart disease surgery: near-infrared 
spectroscopy (NIRS) was most commonly used, with 64% of centers 
indicating preoperative, 80% intraoperative and 72% postoperative 
use. Amplitude-integrated electroencephalography (aEEG) was 
used in 32% of participating centers, and 20% performed 
postoperative aEEG. Twelve percent of centers performed 
preoperative continuous EEG (cEEG), none used it in the 
postoperative period. Twenty percent of centers measured 
biochemical biomarkers in the postoperative period. Half of the 
participating centers indicated having a follow-up program in place 
for children with CHD.

This systematic review provides a comprehensive overview of the 
available evidence on three perioperative neuromonitoring modalities, 
NIRS, EEG and biochemical biomarkers, and their association with 
subsequent clinical neurological outcome or neuroimaging.

2 Methods

2.1 Design

This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 guidelines (21). The search strategy was created with 
help of the biomedical reference librarians of the KU Leuven 
Libraries – 2Bergen. The protocol was prospectively registered in the 
international prospective register of systematic reviews (PROSPERO) 
database (Registration number: CRD42023479344, http://www.crd.
york.ac.uk/PROSPERO).

2.2 Eligibility criteria

Studies eligible for inclusion reported on the use of neuromonitoring 
modalities (EEG, NIRS and/or non-invasive biochemical biomarkers) 
in pediatric patients with CHD necessitating surgical intervention 
(excluding catheter interventions), and their association with either 
clinical neurodevelopmental outcome (NDO) evaluated with a validated 
scale, instrument or test, or postoperative brain MRI evaluating either 
brain damage or brain maturation. Studies were excluded if the full text 
was not available in English. Case reports, case series, conference 
abstracts and review papers were excluded from the analysis.

2.3 Search strategy and data sources

We comprehensively searched Medline, Embase, CENTRAL, Web 
of Science, clinicaltrials.gov and the International Clinical Trials 
Registry Platform (ICTRP) for eligible studies on November 28th, 
2023. The full search strategy can be  found in the 
Supplementary materials. Additionally, we hand-searched references 
of included studies for relevant publications. References for the 
selected studies were managed in the Rayyan© software.

Abbreviations: aEEG, Amplitude-integrated electroencephalography; BSID-II or 

III, Bayley scales of infant development; BDNF, Brain-derived neurotropic factor; 

COPI, Cerebral oximetry/pressure index; ScO2, Cerebral oxygen saturation; cTOI, 

Cerebral tissue oxygenation index; CHD, Congenital heart disease; cEEG, 

Continuous electroencephalography; CPB, Cardiopulmonary bypass; DHCA, 

Deep hypothermic circulatory arrest; DDST, Denver developmental screening 

test; FTOE, Fractional tissue oxygen extraction; GRADE, Grading of 

recommendations assessment, development and evaluation; GFAP, Glial fibrillary 

acidic protein; hdEEG, High-density EEG; HLHS, Hypoplastic left heart syndrome; 

MRI, Magnetic resonance imaging; MDI, Mental developmental index; NIRS, Near-

infrared spectroscopy; NDO, Neurodevelopmental outcome; NfL, Neurofilament 

light polypeptide; NSE, Neuron-specific enolase; PCPC, Pediatric cerebral 

performance category; PSOM, Pediatric stroke outcome measure; PDI, 

Psychomotor developmental index; ROBINS-E, Risk of bias in non-randomized 

studies – of exposure; S100B, S100 calcium-binding protein B; VABS, Vineland 

adaptive behavior scale.
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2.4 Data extraction

After removal of duplicates, all studies were screened based on 
title and abstract by 2 reviewers (LVL, KJ). Subsequently, the full text 
of the remaining articles was examined in parallel by 2 reviewers 
(LVL, KJ) to determine if all inclusion criteria were met. Additionally, 
the reference list of included articles was manually checked for 
additional studies. Disagreement was resolved through discussion 
until consensus was achieved.

One reviewer (LVL) performed data extraction from the 
manuscripts. The extracted data was summarized in a data extraction 
sheet. If insufficient data was available from the manuscript, an 
attempt was made to contact corresponding authors to obtain 
additional information.

2.5 Data analysis

We summarized data on study design, patient characteristics and 
type of interventions. Primary outcome was either neurodevelopment 
assessed with standardized neurodevelopmental testing using a 
validated test, or postoperative neuroimaging using MRI. Papers who 
did not report standardized assessments (e.g., chart review for 
neurodevelopmental impairment) were excluded.

For synthesis of the results, studies were grouped by the different 
neuromonitoring modalities utilized: EEG, NIRS and biochemical 
biomarkers. It was not possible to perform a meta-analysis due to the 
large heterogeneity in interventions, reported outcomes and 
statistical analyses.

2.6 Assessment of risk of bias and grading 
of evidence

Individual studies were assessed for risk of bias using the validated 
Risk Of Bias In Non-randomized Studies – of Exposure (ROBINS-E) 
tool for observational data (22). The quality of evidence was assessed 
for each outcome using the Grading of Recommendations Assessment, 
Development and Evaluation (GRADE) approach (23), rating the 
quality of evidence as high, moderate, low or very low in five areas: 
risk of bias, inconsistency, indirectness, imprecision and publication 
bias. We aimed to minimize reporting bias by searching clinical trial 
registries to incorporate unpublished reports.

3 Results

3.1 Study selection

The study selection process is presented in the PRISMA flow 
diagram (Figure 1). Of the 7,389 records screened, 129 were assessed 
for eligibility based on full text. We excluded 91 further records: 59 
reported on outcomes other than specified in the inclusion criteria 
(e.g., nonstandardized neurodevelopmental outcome, neuroimaging 
other than brain MRI), eight articles included different populations 
(e.g., cardiopathy other than congenital, adults), eight compared 
interventions than NIRS, EEG or biochemical biomarkers, and 19 
articles used non-suitable publication formats (e.g., case reports, case 

series, review articles). Ultimately, 40 studies met all inclusion criteria 
and were included in this systematic review (24–63).

Williams et al. (64) performed neonatal high-density, 128-lead, 
EEG (hdEEG) measurements in children undergoing neonatal cardiac 
surgery for CHD and measured power (measure of local neural 
synchrony) and coherence (measure of functional connectivity) as 
measures of cortical function. While seemingly meeting the inclusion 
criteria, we excluded this article as the hdEEG is predominantly used 
in research settings and not deemed feasible in daily clinical practice.

3.2 Characteristics of included studies

All studies were observational. Twenty five studies reported 
prospectively collected data (24–26, 29, 32–35, 37, 41–43, 45–48, 50, 
51, 53–56, 58–60, 63). In 14 studies, data was collected retrospectively 
(27, 28, 30, 31, 36, 38–40, 44, 49, 52, 57, 61, 62).

Most studies had an upper limit for age at inclusion, varying 
from 30 days to 17 years, median age at surgery was 9 (IQR 7–57) 
days. 36/40 studies only included patients with critical CHD whereas 
4/40 studies included patients with varying disease severity. 25/40 
studies specified the necessity for CPB as an inclusion criterium (24, 
26–29, 32, 34, 36–39, 41, 43, 45–47, 50, 54, 56, 57, 59–63). In five 
studies, measurements were performed surrounding a specific 
procedure (e.g., stage 1 palliation) and five other studies included 
only specific cardiac diagnoses [mostly hypoplastic left heart 
syndrome (HLHS) or dextrotransposition of the great arteries 
(D-TGA)]. All but one study (28) excluded patients with pre-existing 
neurologic or genetic comorbidities in order to minimize the 
influence of other causes of neurodevelopmental impairment.

Sixteen studies reported on NIRS as a predictor, with eight 
studies reporting clinical neurodevelopmental testing (24–31), four 
studies using MRI as an outcome marker (32–35), and four studies 
using a combination of both (36–39). aEEG was utilized in five 
studies (40–44) and seven studies used cEEG (45–51). Of these, 
outcome variables were clinical neurodevelopment in nine studies 
(40–43, 45–49), MRI in two (44, 51) and a combination of both in 
one study (50). Biochemical biomarkers were compared to clinical 
NDO in 13 studies (24, 29, 47, 52–61), to brain MRI in one study (63) 
and to both in one study (62). In total, 2,846 individual cases were 
assessed, of which 908 with NIRS, 1163 with EEG and 903 with 
biochemical biomarkers.

As a clinical outcome measure, the Bayley Scales of Infant 
Development (BSID-II or III) was reported most frequently (n = 25). 
Other studies reported Pediatric Cerebral Performance Category 
(PCPC) (n = 2), Pediatric Stroke Outcome Measure (PSOM) (n = 1), 
age-appropriate IQ testing (Wechsler IQ scales or similar) (n = 5), 
Denver Developmental Screening test (DDST) (n = 1) or Vineland 
Adaptive Behavior Scale (VABS) (n = 3). Median age at clinical 
developmental testing was 15 (IQR 12–24) months.

For MRI-based outcomes, 10 studies used brain injury (stroke, 
hemorrhage and white matter injury) as outcome measures (32, 34–
36, 38, 44, 50, 51, 62, 63), whereas others performed brain volumetry 
(33, 37, 39). Postoperative MRI was performed before discharge at 
varying timepoints.

All studies were executed in tertiary or quaternary hospital 
settings. Sixteen studies took place in the United States (24, 27, 28, 30, 
31, 34, 36, 38, 45, 46, 48–50, 57, 59, 62) and 15 in European countries 
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(25, 26, 29, 32, 33, 37, 39, 43, 44, 53, 55, 56, 60, 61, 63). The remaining 
9 studies were conducted in Australia, New Zealand, China, Canada 
and Israel (35, 40–42, 47, 51, 52, 54, 58). No studies were conducted 
in Low- or Middle-Income Countries.

3.3 Results of included studies

An overview of the study characteristics, inclusion criteria, 
inclusion period and main results, can be found in Tables 1–3.

FIGURE 1

PRISMA flow diagram.
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TABLE 1  Overview of studies reporting on perioperative NIRSa.

Author, 
Year

Type Inclusion 
criteria

Intervention N Outcome 
and timing

Main results

Aly et al. (24) Cohort CPBb, < 1mo cTOIc 54 BSID-IId 6, 15 and 

21 mo

Average cTOI at 60 min off CPB and 24 h postoperative was 

lower in patients with poor vs. good NDOe

1% decrease in cTOI 24 h postoperative resulted in 7% 

increased risk in odds of a poor NDO

Carra et al. (25) Cohort <12y

2012–2015

cTOI 87 Wechslerf 2y post-

operative

Increased dose of cerebral desaturation in the 1st 12 h 

postoperative resulted in lower IQ

Hansen et al. 

(26)

Cohort Stage 1 palliation

2006–2010

ScO2
g 43 HAWIVA and 

KET-KIDh 5y

Preoperative ScO2 was correlated with NDO

No association of NDO with duration of desaturation <40% 

or any ScO2 postoperative.

Hoffman et al. 

(27)

Cross-

sectional

Stage 1 palliation

2002–2009

ScO2 21 VMIi, varied Average ScO2 in the first 48 postoperative hours was lower 

in patients who demonstrated VMI scores <85

Patients with lower VMI had significantly more hours 

ScO2 < 45 and < 55%

Patients without stroke and with any hourly ScO2 < 45% 

had lower VMI

Hoffman et al. 

(28)

Cross-

sectional

CPB, <1y

2007–2014

ScO2 178 BSID-IIIj, varied Difference between SaO2
k and ScO2 was strongly associated 

with motor performance but not with cognitive or language 

performance

Sanchez-De-

Toledo et al. (29)

Cohort CPB, <17y

2009–2010

ScO2 39 PCPCl 2mo 

postoperative

ScO2 values were lower in patients with adverse NDO

Patients with adverse NDO had significantly longer periods 

of ScO2 desaturations and AUC values below 20% of 

baseline

Simons et al. 

(30)

Cross-

sectional

<12mo

2007

ScO2 26 BSID-III 24mo None of the NIRS variables studied was associated with 

cognitive or fine motor scores in a multivariable model

Patients with delayed expressive communication were more 

likely to have lowest ScO2 < 20% as compared with those 

without delay

Sood et al. (31) Cross-

sectional

<12mo

2007–2010

ScO2 31 BSID-III 24mo Postoperative lowest ScO2 was predictive of cognitive and 

gross motor delay with thresholds <56 and < 49% 

respectively

Spaeder et al. 

(36)

Cross-

sectional

CPB, <6w

2006–2012

cTOI 44 BSID-II 6, 15 and 

21 mo

Postoperative 

MRIm

Postoperative cTOI variability was lower in patients with 

poor NDO

The ability of postoperative cTOI variability to discriminate 

PDI was fair. Its ability to discriminate MDI was good.

A postoperative cTOI variability of less than 1.05 best 

predicted poor MDI

There was no relationship between postoperative cTOI 

variability and MRI findings

De Silvestro 

et al. (37)

Cohort CPB, <6w

2009–2020

ScO2 31 BSID-III 12mo

Postoperative MRI

NDO did not differ in patients with or without cerebral 

desaturation

Patients with cerebral desaturation <45% had larger relative 

lateral ventricle volume change per week

Patients with >20% decrease in ScO2 had larger relative 

lateral ventricle volume change per week than patients 

without this decrease

Kussman et al. 

(38)

Cross-

sectional

D-TGA, TOF, 

TA, VSD or 

AVSDn, <9mo

2001–2004

ScO2 89

40

BSID-II 1y

Postoperative MRI

PDI significantly correlated with average and minimum 

ScO2 during the 60 min period following cessation of CPB

No correlation was found between any intraoperative NIRS 

variable and MDI score

Average ScO2 from post-induction to 60 min post-CPB was 

lower in subjects with hemosiderin depositions

(Continued)
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3.3.1 Association of NIRS with neurological 
outcome

Cerebral oximetry using NIRS is a non-invasive monitoring 
technique based on detection of hemoglobin oxygenation using near-
infrared light, from which parameters such as Cerebral Oxygen 
Saturation (ScO2), Cerebral Tissue Oxygenation Index (cTOI) and 
Fractional Tissue Oxygen Extraction (FTOE) can be  derived. 
Combining NIRS parameters with heart rate or blood pressure 
measurements allows for the measurement of cerebral autoregulation, 
for example by calculating Cerebral Oximetry/Pressure Index (COPI), 
as COPI >0.3 indicates disturbed autoregulation.

3.3.1.1 Association with clinical NDO
Twelve articles examined the association of NIRS variables with 

clinical NDO (Table 1).
Pre-operative ScO2 before stage 1 palliation was associated with 

cognitive scores in the report by Hansen et al. (26). Intraoperatively, a 
retrospective study of children with biventricular CHD without aortic 
arch obstruction, found a correlation of intraoperative ScO2 
immediately post-CPB surgery with Psychomotor Developmental 
Index (PDI) but not with Mental Developmental Index (MDI) 
subscores of the BSID-II (38). In contrast, Mueller et al. did not report 
any associations between NIRS values during stage 2 palliation and 
BSID scores (39).

Postoperatively, cTOI after neonatal CPB surgery significantly 
predicted mortality and poor BSID scores (24), and postoperative 

cTOI variability was able to discriminate between poor and good 
BSID (36). Hoffman et  al. reported associations of average 
postoperative ScO2 with NDO after stage 1 palliation (27). 
Postoperative cerebral desaturation predicted poorer NDO in three 
mixed CHD populations (25, 28, 31). Conversely, Hansen et al. did not 
report any association of NDO with NIRS after stage 1 palliation (26).

Some studies reported on findings in the entire perioperative period 
rather than specific timepoints. Both perioperative ScO2 and cerebral 
desaturation were associated with NDO in children undergoing CPB 
surgery in childhood (29). Comparable results on cerebral desaturation 
were reported in children below 1 year of age, although they only 
reached significance in the expressive communication BSID subscore 
(30). Hoffman et al. described an association of cerebral desaturation 
and the difference between arterial and cerebral oxygenation with NDO 
in two retrospective cohorts (27, 28). Contrarily, De Silvestro et al. did 
not find an association between cerebral desaturation around neonatal 
CPB surgery and BSID scores at 1 year (37).

3.3.1.2 Association with brain MRI
The eight studies reporting on the association of NIRS and MRI 

are summarized in Table 1.
Pre-operative ScO2 values were associated with brain injury after 

stage 1 palliation in one study (34). Two studies researched 
intraoperative ScO2: one found an association with both lower brain 
volumetry in hypoplastic left heart syndrome (HLHS) and the other 
with brain injury in a mixed cohort (38, 39). Spaeder et al. found no 

TABLE 1  (Continued)

Author, 
Year

Type Inclusion 
criteria

Intervention N Outcome 
and timing

Main results

Mueller et al. 

(39)

Cross-

sectional

Stage 2 palliation

2012–2016

ScO2 19 BSID-III 25mo

Postoperative MRI

No correlation between intraoperative cerebral NIRS 

parameters and NDO

Positive correlation between the lowest measured 

intraoperative ScO2 and the lowest measured intracranial, 

total brain and white matter volume

Intracranial volume was inversely correlated with the AUC 

of ScO2 < 45%

Claessens et al. 

(32)

Cohort TGA, LVOTO, 

SVPo, <30d

2009–2012, 

2016–2017

ScO2, FTOEp 74 Postoperative MRI No relationship between ScO2 or FTOE with brain injury

Kelly et al. (33) Case–

control

<1y ScO2 30 Preoperative MRI ScO2 showed a modest correlation with whole brain 

gyrification index and grey matter volume

Lynch et al. (34) Cohort Stage 1 palliation

2008–2013

ScO2 37 Pre- and 

postoperative MRI

Patients with new or worsened postoperative 

periventricular leukomalacia tended to have lower 

preoperative ScO2

Zou et al. (35) Cohort <5y

2020–2021

ScO2, COPIq 65 Postoperative MRI Magnitude of COPI and duration of abnormal COPI 

correlated with degree of brain injury

Inclusion period is mentioned whenever known. aNear-Infrared Spectroscopy. bCardiopulmonary bypass. cCerebral Tissue Oxygenation Index, formula: TOI (%) = kO2Hb/(kO2Hb + kHHb) 
where k is the constant scattering contribution, O2Hb is oxygenated hemoglobin and HHb is reduced hemoglobin. dBayley Scales of Infant and Toddler Development, 2nd edition, consisting of 
Psychomotor Development Index (PDI) and Mental Development Index (MDI), domain scores have population mean 100(SD 15). eNeurodevelopmental outcome. fWechsler preschool and 
Primary Scale of Intelligence (WPPSI-III-NL) for children 2.5–6 years, Wechsler Intelligence Scale for Children (WISC-III-NL) for children 6–16 years, mean 100(SD 15). gRegional cerebral 
oxygen saturation. hHannover-Wechsler Intelligence Scale and Cognitive Development Test for Preschool-Age Children and Kognitiver Entwicklungstest für das Kindergartenalter. iBeery-
Buktenica Developmental Test of Visual Motor Integration, mean 100(SD 15). jBayley Scales of Infant and Toddler Development, 3rd edition, consisting of Cognitive, Language, Motor (gross 
and fine motor), Social–Emotional and Adaptive behavior domains, population mean 100(SD 15). kArterial oxygen saturation. lPediatric Cerebral Performance Category, 1 (normal function) – 
6 (brain death). mMagnetic Resonance Imaging. nDextrotransposition of the Great Arteries, Tetralogy of Fallot, Truncus Arteriosus and (Atrio)Ventricular Septal Defect. oTransposition of the 
Great Arteries, Left Ventricle Outflow Tract Obstruction or Single Ventricle Physiology. pFractional Tissue Oxygen Extraction, formula: FTOE = (SaO2 – cTOI)/SaO2. qCerebral oximetry/
pressure index, formula: COPI = (nΣxy − (Σx) (Σy))/((nΣx2 − (Σx)2)(nΣy2 − (Σy)2)) where n indicates the number of samples in each dataset, x indicates blood pressure, and y indicates ScO2. 
COPI > 0.3 indicates disturbed autoregulation.
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TABLE 2  Overview of studies reporting on perioperative EEGa.

Author, 
Year

Type Inclusion 
criteria

Intervention N Outcome 
and timing

Main results

Gui et al. (40) Cross-

sectional

<3mo

2015–2017

aEEGa 93 BSID-IIb 1y MDI was significantly lower in children with absent postoperative SWCc 

compared with immature postoperative SWC

PDI was significantly lower in children with mild abnormal pre- or 

postoperative background pattern

PDI was significantly lower in children with immature preoperative SWC

Gunn et al. 

(41)

Cohort <2mo

2005–2008

aEEG 125 BSID-IIId 2y No association between perioperative seizures or preoperative 

background to NDOe

Prolonged recovery to continuous background was associated with 

lower cognitive and motor scores

Delayed recovery of SWC was associated with lower cognitive scores

Gunn et al. 

(42)

Cohort Stage 1 

palliation

2005–2008

aEEG 25 BSID-III 2y No association between perioperative seizures and NDO

Recovery to a continuous background within 48 h was associated with a 

14-point increase in motor score

Latal et al. 

(43)

Cohort CPBf, <3mo

2006–2009

aEEG 50 BSID-II 1y

IQ testingg 4y

Postoperative seizures were associated with lower MDI

Postoperatively persistent discontinuous background was associated 

with lower MDI and lower IQ

Delayed recovery of SWC was associated with lower IQ

Claessens 

et al. (44)

Cross-

sectional

Neonatal 

surgeryh

2009–2019

aEEG 73 Postoperative MRI Abnormal postoperative background pattern was more common in 

neonates with new postoperative injury than without brain injury

Neonates with postoperative seizures were at higher risk for new brain injury

Gaynor et al. 

(45)

Cohort CPB, <6mo

2001–2003

cEEGa 114 BSID-II 1y Frontal onset seizures were predictive of lower MDI scores compared 

non–frontal-onset seizures

Gaynor et al. 

(46)

Cohort CPB, <6mo, 

2001–2003

cEEG 132 Multiplei, 4y No association of seizures with cognition, motor or language outcomes, 

but increased prevalence of executive dysfunction

Robertson 

et al. (47)

Cohort CPB, <4mo

1999–2001

cEEG 35 BSID-II 1y post-

operative

No difference in NDO between patients with abnormal and normal EEG

Seltzer et al. 

(48)

Cohort <30d cEEG 21 VABSj 5y Infants who developed an isoelectric state had significantly lower 

communication subscores

Isoelectric state time > 90 min was associated with lower NDO

Longer duration of the isoelectric state was associated with lower NDO

Vaughan 

et al. (49)

Cross-

sectional

<60d cEEG

2010–2021

76 BSID-III 9,18,24, 

30mo

Preoperative diffuse abnormalities were associated with lower cognitive 

scores

Cognitive scores were lower in patients with preoperative waveform 

discontinuity or postoperative absence of behavioral state change

Preoperative continuous waveforms were associated with higher 

cognitive scores, whereas postoperative continuous waveforms were 

associated with higher fine motor scores

Preoperative synchrony was associated with higher fine motor scores in 

the 1st year postoperative

Rappaport 

et al. (50)

Cohort D-TGAk cEEG

1988–1992

155 BSID-II 1y

Postoperative MRI

Children with seizures had lower PDI scores than children without seizures

Children with EEG seizures were more likely to have MRI abnormalities

Lin et al. (51) Cohort <3y cEEG

2019–2021

264 Postoperative MRI EEG abnormalities (except spikes/sharp waves and delta brushes) were 

associated with degree of brain injury

Patients not recovering to the normal background and SWC by 48 h 

postoperative had worse degree of injury

Longer duration of isoelectric EEG was associated with more severe 

postoperative degree of brain injury

Inclusion period is given whenever known. aAmplitude-integrated Electroencephalography (aEEG) and continuous EEG (cEEG). bBayley Scales of Infant and Toddler Development, 2nd edition, 
consisting of Psychomotor Development Index (PDI) and Mental Development Index (MDI), domain scores have population mean 100(SD 15). cSleep-wake cycling. dBayley Scales of Infant and 
Toddler Development, 3rd edition, consisting of Cognitive, Language, Motor (gross and fine motor), Social–Emotional and Adaptive behavior domains, population mean 100(SD 15). 
eNeurodevelopmental outcome. fCardiopulmonary Bypass. gIQ testing either by Wechsler Preschool and Primary Scale of Intelligence-3 (n = 29), Snijders Omen Test of Intelligence (n = 18) or 
Kaufman-ABC-II (n = 1). hCritical congenital heart disease requiring neonatal surgery, defined as biventricular with or without aortic arch obstruction, or single ventricle physiology.i Comprehensive 
evaluation with Wechsler Preschool and Primary Scale of Intelligence-3, Preschool Language Test-4, Wide Range assessment of Visual Motor abilities, Developmental test of Visual Motor Integration, 
NeuroPsychology Attention/Executive functions Domain Score, Child Behavior Checklist, jVineland Adaptive Behavior Scale, z-value mean 0 (SD 1.0). kDextrotransposition of the Great Arteries.
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relationship between postoperative cTOI variability and MRI 
findings (36).

Again, perioperative timepoints were not always specified. An 
association between perioperative ScO2 and lower brain volumes was 

found in a mixed cohort by Kelly et  al. (33), whereas cerebral 
desaturation significantly correlated with lower volumetry in the 
report on HLHS by Mueller et al. and the study on neonatal CPB 
surgery by De Silvestro et  al. (37, 39). Zou et  al. found that the 

TABLE 3  Overview of studies reporting on perioperative biochemical biomarkers.

Author, 
Year

Type Inclusion Intervention N Outcome 
and timing

Main results

Aly et al. (24) Cohort CPBa, < 1mo Lactate 54 BSID-IIb 6, 15, 

21mo

Patients with mortality or poor NDOc had a higher lactate 

concentration compared with survivors with good NDO at 60 min off 

CPB and at 24 h postoperative

Bar-Yosef 

et al. (52)

Case–

control

<4y

2015–2017

S100B 75 PSOMd before 

discharge

S100B z-scores >3SD 6 h post-surgery predicted new neurological 

deficit (at least 1 point increase in PSOM)

S100B z-scores before surgery were significantly associated with new 

neurological deficit

Cañizo 

Vázquez et al. 

(53)

Cohort <7 m

2017–2019

8-iso-PGF2, S100B 44 BSID-IIIe/ VABSf 

24mo

Patients with abnormal NDO had higher levels of 8-iso-PGF2 at 24 h 

postoperative, but without enough power to predict abnormal NDO

S100B levels at 72 h postoperative were a strong predictor of abnormal 

NDO

Cheung et al. 

(54)

Cohort CPB, <6w

1996–1999

Lactate 67 BSID-II 18-24mo Lactate >6 mmol/L on day 1 postoperative predicted adverse outcome 

(death or poor NDO)

Chiperi et al. 

(55)

Cohort <5y

2022–2023

GFAP, BDNF, 

S100B, NSE

42 DDST IIg 4–6mo 

postoperative

GFAP predicted abnormal NDO in cyanotic patients

Gessler et al. 

(56)

Cohort CPB, 3mo-7y IL-6, IL-8 31 BSID-II 6mo post-

operative

Plasma levels of IL-6 at 3 h post-CPB significantly predicted NDO

Graham et al. 

(57)

Cross-

sectional

CPB, <1mo

2012–2017

GFAP 97 BSID-III 12mo GFAP at cessation of CPB was independently associated with motor 

composite scores

Cognitive and language composite scores were not independently 

associated with GFAP levels

Gunn et al. 

(58)

Cohort <2mo

2005–2008

S100B, lactate 130 BSID-III 2y Higher lactate at 24 h was associated with impaired NDO

Elevated S100B at 48 h predicted motor outcome

Robertson 

et al. (47)

Cohort CPB, 

16d-4mo

1999–2001

S100B 35 BSID-II 1y post-

operative

Elevated levels of S100B immediately postoperative or 24 h after CPB 

did not predict NDO

Sanchez-De-

Toledo et al. 

(29)

Cohort CPB, < 17y

2009–2010

NSE, S100B, GFAP, 

BDNF

39 PCPCh 12mo 

post-operative

No significant differences in serum neuromarkers at baseline, at the 

end of CPB or 16 h postoperative between groups with different PCPC 

scores

Trakas et al. 

(59)

Cohort CPB, <30d NSE, S100B 18 PCPC before 

discharge

No significant association of postoperative neuronal biomarker levels 

and PCPC score at discharge

Vedovelli 

et al. (60)

Cohort CPB, <3y

2014–2016

GFAP 45 VABS 18mo Communication IQ was predicted significantly by the highest 

measured GFAP

Vergine et al. 

(61)

Cross-

sectional

CPB, <5y

2010–2017

GFAP 38 NDIi 1y Maximum GFAP level was significantly associated with NDI

No association of GFAP levels with IQ

De Ferranti 

et al. (62)

Cross-

sectional

D-TGAj

1988–1992

Glucose 155 BSID-II 1y

Postoperative MRI

NDO was not related to perioperative glucose levels

MRI findings were not related to perioperative glucose levels

Jungner et al. 

(63)

Cohort CPB, <30d GFAP, NfL, Tau 33 Postoperative MRI The relative increase in plasma Tau from preoperative concentrations 

until postoperative day 2 was significantly higher in infants with 

postoperative white matter injury

aCardiopulmonary Bypass. bBayley Scales of Infant and Toddler Development, 2nd edition, consisting of Psychomotor Development Index (PDI) and Mental Development Index (MDI), 
domain scores have population mean 100(SD 15). cNeurodevelopmental outcome. dPediatric Stroke Outcome Measure, scores 0 (no deficit) – 10 (maximum deficit). eBayley Scales of Infant 
and Toddler Development, 3rd edition, consisting of Cognitive, Language, Motor (gross and fine motor), Social–Emotional and Adaptive behavior domains, population mean 100(SD 15). 
fVineland Adaptive Behavior Scale, z-value mean 0 (SD 1.0). gDenver Developmental Screening test II, consisting of personal-social behavior, fine-motor adaptive function, gross motor 
function and language domains, adapted to age. hPediatric Cerebral Performance Category, 1 (normal function) – 6 (brain death). iNeurodevelopmental Index. Altered NDI if ≥2 severe 
impairments at neuropsychological tasks (<2SD) on the NEPSY-II attention, executive function, social skills, theory of mind or emotional recognition testing, an IQ <85 on the Wechsler 
Preschool and Primary Scale of Intelligence III test or the Wechsler Intelligence Scale for Children IV and/or a clinically relevant score on the Child Behavior Checklist/Conner’s Parent Rating 
Scales (>65 T scores). jDextrotransposition of the Great Arteries.
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magnitude and duration of abnormal COPI correlated with degree of 
brain injury (35). On the other hand, Claessens et al. did not find an 
association between ScO2 or FTOE surrounding CPB surgery and 
brain injury (32).

3.3.2 Association of EEG with neurological 
outcome

EEG electrodes are placed on the scalp for detection of the 
spontaneous electrical activity of the brain. The EEG can be utilized for 
different indications, such as the detection of subclinical, electrographic 
seizures and the review of background activity and sleep–wake cycling. 
cEEG uses the full array of scalp electrodes according to the 
international 10–20 system (modified for neonates) and provides 
detailed information on the temporospatial occurrence of electrical 
potentials. In contrast, aEEG is a simplified method using a more 
limited number of electrodes (up to 4) and provides a time-compressed 
signal based on the amplitude of the electrographic signal. It is useful 
in background detection and detection of sleep–wake cycling, and has 
its value in seizure detection although with less sensitivity compared to 
cEEG, and with loss of temporospatial information.

For this review, we included studies reporting on both cEEG and 
aEEG, as the outcomes of interest should be  detectable on 
both modalities.

3.3.2.1 Association with clinical NDO
Ten studies examined the association of EEG variables with 

clinical NDO (Table 2). Four studies used aEEG and six used cEEG.
Using aEEG, Latal et al. showed lower cognitive BSID subscores 

in patients with electrographic seizures after CPB surgery before 
3 months of age (43) whereas Gunn et  al. did not report any 
association between perioperative seizures and BSID scores (41, 42).

Using cEEG, The Boston Circulatory Arrest group showed that 
electrographic seizures during the arterial switch operation were 
associated with lower psychomotor BSID subscores at 1 year of age 
(50). Gaynor et al. found lower cognitive BSID scores with frontal-
onset seizures at 1 year of age in children undergoing CPB surgery 
before 6 months (45) and executive dysfunction at 4 years of age in 
patients experiencing perioperative electrographic seizures (46). 
Robertson et  al. did not find any association between seizures 
measured with cEEG and BSID scores (47).

Both Gui et al. and Vaughan et al. described an association of 
preoperative background pattern with BSID scores (40, 49), whereas 
two others did not confirm this association (41, 47). All four studies 
included mixed CHD types. Postoperatively, an abnormal background 
pattern was consistently associated with poor NDO in 5 studies: in 
particular, delayed recovery of sleep–wake cycling, duration of the 
isoelectric state and prolonged discontinuity were associated with 
poor NDO (40–43, 48).

3.3.2.2 Association with brain MRI
Three studies report on the association of postoperative EEG 

variables with brain injury on MRI (Table 2). Claessens et al. describe 
both postoperative abnormal background and ictal discharges on 
aEEG as risk factors for new-onset brain injury (44). The association 
with electrographic seizures on cEEG is also reported in the Boston 
Circulatory Arrest cohort (50). In addition, Lin et  al. found that 
electrographic abnormalities seen on cEEG were associated with brain 
injury, with patients with longer isoelectric traces or not recovering to 

normal background and sleep–wake cycling by 48 h having worse 
degree of injury (51).

3.3.3 Association of biochemical biomarkers with 
clinical NDO or brain MRI

A large variety of biochemical biomarkers of brain injury are 
being studied in relation to neurological outcome. The 15 included 
studies are summarized in Table 3. S100 calcium-binding protein B 
(S100B) was most studied in association with NDO. Of the seven 
studies reporting this outcome, four did not find anycorrelation (29, 
47, 55, 59). One study found that elevated S100B at 48 h after CHD 
surgery before 2 months of age predicted BSID motor outcome at 
2 years, and another found associations between S100B at 72 h 
postoperative and BSID at 2 years (53, 58). In addition, In children 
undergoing CHD surgery before 4 years of age, elevated S100B was 
associated with new neurological deficit upon discharge (52).

Six studies studied glial fibrillary acidic protein (GFAP) as a 
predictive biomarker. Chiperi et al. report its predictive ability for 
DDST scores in cyanotic patients undergoing surgery before 
5 years of age (55), while Graham et al. found an association with 
BSID motor but not with cognitive and language scores in infants 
undergoing CPB surgery in their first month (57). The highest 
measured GFAP was able to predict communication intelligence 
quotient using the VABS at 18 months in the study by Vedovelli 
et al. (60). In contrast, Vergine et al. did not find an association of 
GFAP levels during CPB surgery with cognitive abilities, although 
did relate to the composite neurodevelopmental scoring system 
used in their study (61). Sanchez-De-Toledo et al. did not did not 
report significant associations with PCPC scores 12 months after 
CPB surgery in childhood (29). In addition to GFAP, the report by 
Jungner et al. examined Neurofilament light polypeptide (NfL) and 
Tau and described that patients with postoperative white matter 
injury on brain MRI had a significantly higher increase in plasma 
Tau levels, but no associations with GFAP or NfL were found (63).

PCPC scores at discharge were not related to levels of neuron-
specific enolase (NSE) or brain-derived neurotropic factor (BDNF) 
in infants undergoing CPB surgery before 30 days, and neither were 
NSE and PCPC scores at 12 months postoperative in pediatric CPB 
surgery for CHD (29, 59). Another study reporting DDST scores 
4–6 months after surgery, did not find an association with NSE or 
BDNF levels during CHD surgery (55). Three studies reported that 
perioperative lactate elevations significantly predicted poor BSID 
scores (24, 58, 65). Cañizo Vàzquez et al. reported increased levels 
of 8-iso-prostaglandin F2α (8-iso-PGF2), a urinary biomarker for 
oxidative stress, in patients with abnormal BSID or VABS scores. In 
an article by Gessler et al., plasma IL-6 at 3 h post-CPB significantly 
predicted NDO (56). Lastly, one article explored perioperative 
glucose levels during the arterial switch operation, but found no 
association with clinical NDO or MRI (62).

3.4 Risk of bias

Risk of bias across studies was assessed using the ROBINS-E tool. 
Results are presented in Figure  2. Risk of bias was overall low to 
moderate, with concerns mostly due to the risk of confounding, 
inherent to the observational study design. The risk of selection of 
reported results seemed low overall, given that the reported outcomes 
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FIGURE 2

ROBINS-E tool for risk of bias assessment.
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were consistent with preregistered protocols and also non-significant 
data was reported.

Four studies were judged to have high risk of bias due to the large 
proportion of missing data (27, 28, 30, 49). Additionally, the studies 
by Hoffman et  al. (27, 28) selected patients based on referral for 
neurodevelopmental testing (possibly due to suspicion of 
developmental impairment). Two studies also included patients with 
genetic syndromes, likely influencing neurodevelopmental outcome 
scores (28, 46). Two studies (48, 60) posed some concern for bias 
because their outcomes were (in part) based on subjective parent-
based questionnaires, although this was accounted for by the use of a 
validated scoring system (VABS).

3.5 Quality of evidence

We rated the quality of evidence using the GRADE approach 
(23), results are presented in Figure  3. The included reports 
provided mostly low-quality evidence due to their observational 
nature. Studies were upgraded to moderate-level evidence if they 
had strong designs, were well conducted, and had few major flaws. 
Studies were downgraded if there was risk of bias or inconsistency 
in results.

4 Discussion

This review article summarizes existing data regarding 
neuromonitoring using perioperative NIRS, EEG, and serum brain 
biomarkers and their association with neurodevelopmental outcome, 
brain maturation and brain injury on MRI after surgery for congenital 
heart disease. This type of data is potentially valuable in risk 
stratification, in light of recent guidelines supporting 
neurodevelopmental follow-up for certain subgroups of CHD patients, 
which is resource-intensive and of variable availability.

First, the majority of studies evaluating NIRS suggest an 
association between cerebral oxygenation measurements (cTOI, ScO2, 
cerebral desaturation) and the pre-specified neurological outcomes 
(either clinical or neuroimaging). It is important to note however, that 
there was large variability in the thresholds to define cerebral 
desaturation,as well as the exposure measures (binary outcome versus 
time below a certain threshold). Interestingly, disturbed cerebral 
autoregulation seemed to correlate with neurological outcome.

Secondly, electrographic seizures, either measured with cEEG or 
aEEG, were independently associated with poorer neurological 
outcome in the majority of reports and patients with prolonged 
abnormal background patterns or delayed return of sleep–wake 
cycling, were at risk for adverse outcome.

Thirdly, the predictive ability of biomarkers such as S100B and 
GFAP is not sufficiently convincing. Postoperatively increased lactate 
however, was associated with neurodevelopment, in addition to its 
known associations with short-term adverse outcomes (66, 67). 
According to the included studies, significant elevation >4–6 mmol/L or 
persistent elevation beyond 24 h seemed predictive of outcome. This is 
an important finding as most cardiac centers already routinely measure 
lactate levels as an indicator of the hemodynamic and metabolic 
condition of the patient.For the other neuronal markers mentioned in 
this study, evidence is too sparse to draw a sound conclusion. The ability 

to draw stronger conclusions and perform meta-analyses was limited by 
the inconsistency and heterogeneity of the findings. This review provides 
an update to existing literature by comprehensively and systematically 
summarizing available data on perioperative neuromonitoring and its 
association with outcomes. These findings build on recent publications 
showing that patients with CHD show abnormal electroencephalographic 
activity even in the preoperative period (68, 69), and impaired 
perioperative autoregulation which cannot simply be  explained by 
differences in blood pressure (70). In addition, the perioperative period 
is characterized by significant hemodynamic disturbances and might 
require even more from the autoregulatory mechanisms of the brain. 
Moreover, new information on the disrupted autonomic regulation and 
altered circadian rhythms in CHD is arising.

Knowledge on these neuromonitoring modalities is steadily 
expanding in different fields of medicine, and it might be possible to 
extrapolate, without generalizing to the unique group of neonates with 
CHD. Cerebral NIRS monitoring has been utilized to guide treatment 
in the preterm population as a predictor of neurodevelopmental 
impairment in preterm neonates (71, 72), although in a large randomized 
trial on treatment guided by cerebral oximetry, no difference in serious 
adverse events was found (73). Secondly, in neonatal and pediatric 
patients undergoing extracorporeal life support (ECLS), the prognostic 
value of cerebral oximetry on neurodevelopment was demonstrated (74, 
75), and a pilot study highlighted the importance of impaired cerebral 
autoregulation in patients with acute neurological events (76). aEEG and 
cEEG are widely used in preterm babies as a biomarker of brain injury, 
as a modality to monitor brain maturation and as a prognostic tool for 
subsequent neurodevelopment (77, 78). Fogtmann et al. performed a 
systematic review on this topic which demonstrated the good predictive 
value of EEG for NDO after prematurity (79). In hypoxic–ischemic 
encephalopathy, the prognostic value of NIRS and EEG has repeatedly 
been demonstrated (80, 81). Specifically, studies showed that that 
prolonged abnormal background on EEG was associated with impaired 
neurodevelopment (82–84), and seizure burden was predictive of 
neurodevelopmental outcome (85–87). EEG seizure burden and 
asymmetric EEG background correlated with brain injury in two 
pediatric ECLS populations (88, 89), while background abnormalities 
predicted poor NDO with good specificity (90). The utility of different 
neuromonitoring modalities in ECLS is summarized in the review by 
Felling et  al. (91). The information extrapolated from these patient 
groups could aid in the comprehension of underlying autoregulation 
mechanisms in patients with CHD. The field of biochemical neurological 
biomarkers has predominantly been studied in adult settings and 
evidence from pediatric populations is only recently emerging. For 
example, a wide array of biomarkers is being assessed for outcome 
prediction after ischemic stroke in adults (92, 93). In pediatric traumatic 
brain injury, S100B levels correlated to the extent of brain injury (94). In 
pediatric ECLS patients, elevation of plasma brain injury biomarkers was 
associated with unfavorable NDO and brain imaging abnormalities (95). 
Even though the underlying conditions differ from CHD, they face 
many similar difficulties concerning hemodynamic disturbances, 
inflammation, altered cerebral perfusion and reperfusion injury (96), 
which makes it plausible that neuromonitoring modalities used in these 
clinical settings could potentially be of use in the setting of CHD. In 
addition, Chiperi et al. (97) recently published a systematic review on 
the use of biochemical biomarkers in pediatric CHD surgery: they 
reported poor predictive value of NSE and BDNF and conflicting results 
on S100B, but suggested GFAP as a possible biomarker for brain injury.
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FIGURE 3

GRADE assessment of quality of evidence.
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4.1 Limitations

The results of this analysis should be interpreted with necessary 
caution. Whereas the single studies are overall of good quality, 
although observational in design, the studies included relatively 
small and diverse groups of patients, with different cardiac 
diagnoses, age ranges and treatment strategies. Even though most 
studies only included patients with normal neurologic exams before 
surgery, pre-existing comorbidities may be  unaccounted for. 
Studies were conducted in different epochs causing differences in 
surgical and medical management strategies. Additionally, there 
was large variability in reported NIRS variables across studies, 
rendering a quantitative meta-analysis impossible. A possible 
explanation is that patients with varying CHD types have altered 
baseline ScO2 from the healthy population, making current 
definitions of cerebral desaturation (typically ScO2 < 45 or < 65%) 
less relevant (98). In future analyses, a relative decrease in ScO2 
from baseline may be  more valuable than absolute values. The 
duration of EEG monitoring was variable (pre- vs. postoperative, 
duration of postoperative monitoring) and authors did not control 
for the effects of sedative medications on EEG traces, possibly 
introducing bias as the most unstable patients likely received more 
suppressive medication.

There was large variability in timing of outcome measurements, 
which were mostly short-term, and instruments for clinical 
assessment of neurological outcome focused on different 
neurodevelopmental domains. For example, postoperative PCPC or 
PSOM may indicate global neurological outcome before discharge, 
whereas comprehensive neurodevelopmental assessment at preschool 
age is the preferred method for detailed evaluation of long-term 
neurological outcomes. No studies were conducted in Low or Middle-
Income Countries, limiting generalizability to these countries.

Should we  aim to establish guidelines surrounding effective 
perioperative neuromonitoring, there is a need for larger, more 
definitive studies with increased consistency in the application of 
these modalities and definition of clinically useful outcomes. In 
addition, patient-specific (e.g., socio-economic status, (epi)genetics) 
and medical factors (e.g., surgical technique, length of stay, ventilation 
time, sedative use) should be considered as they impact the cerebral 
compensatory mechanisms and might better explain the variability in 
neurological outcome in this population. Longer-term data using 
outcome measures encompassing different neurodevelopmental 
domains (cognitive, psychomotor, visuospatial, executive functioning) 
is necessary to more accurately predict the long-term prognosis of 
these patients.

4.2 Conclusion

To conclude, there is some evidence indicating an association 
between perioperative non-invasive neuromonitoring modalities and 
neurological outcome in the CHD population, most convincingly 
cerebral desaturation and autoregulation measured with NIRS, 
electrographic seizures, and prolonged background abnormalities on 
EEG, and elevated lactate in the perioperative period. These results 
should be interpreted with caution however, and in further research, 
the standardization of perioperative monitoring application and 
outcome determination is necessary before clinical implementation of 
these strategies for neurological prognostication.
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