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Background: Alzheimer’s disease (AD) is a common neurodegenerative 
disorder worldwide and the using of magnetic resonance imaging (MRI) in the 
management of AD is increasing. The present study aims to summarize MRI in 
AD researches via bibliometric analysis and predict future research hotspots.

Methods: We searched for records related to MRI studies in AD patients from 
2004 to 2023  in the Web of Science Core Collection (WoSCC) database. 
CiteSpace was applied to analyze institutions, references and keywords. 
VOSviewer was used for the analysis of countries, authors and journals.

Results: A total of 13,659 articles were obtained in this study. The number of 
published articles showed overall exponential growth from 2004 to 2023. The 
top country and institution were the United States and the University of California 
System, accounting for 40.30% and 9.88% of the total studies, respectively. Jack 
CR from the United States was the most productive author. The most productive 
journal was the Journal of Alzheimers Disease. Keyword burst analysis revealed 
that “machine learning” and “deep learning” were the keywords that frequently 
appeared in the past 6 years. Timeline views of the references revealed that “#0 
tau pathology” and “#1 deep learning” are currently the latest research focuses.

Conclusion: This study provides an in-depth overview of publications on 
MRI studies in AD. The United States is the leading country in this field with a 
concentration of highly productive researchers and high-level institutions. The 
current research hotspot is deep learning, which is being applied to develop 
noninvasive diagnosis and safer treatment of AD.
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1 Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease in elderly 
individuals and can cause progressive memory loss and cognitive impairment (1). It is 
considered a serious problem for both individual health and government healthcare systems 
worldwide (2). AD is characterized by the accumulation of β-amyloid (Aβ) plaques and 
neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein in the brain, 
which impair neuronal function and communication (3, 4). The advent of new anti-amyloid 
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monoclonal antibodies such as aducanemab, lecanemab, and 
donanemab as treatment for early AD, may slow disease progression 
but also pose significant risks such as amyloid related imaging 
abnormalities (ARIA) (5–8). Although many studies have explored 
the pathogenesis, diagnostics and treatment of AD, the underlying 
mechanisms are currently not well understood.

In recent years, with the rapid development of medical imaging 
technologies, magnetic resonance imaging (MRI) has been widely 
applied to investigate the pathological features of AD, which 
provides a new perspective for better understanding the 
pathogenesis of AD. Structural MRI-based measures of medial 
temporal lobe atrophy are regarded as valid markers in clinical AD 
diagnosis (9–11). Researchers have used MRI as a unique and 
noninvasive tool to monitor cortical gray matter loss (12–14), white 
matter lesions (15), and small vessel abnormalities (16) 
longitudinally in AD patients. Then multimodal imaging 
techniques, including MRI and positron emission computed 
tomography (PET) technology, are also widely used in the early 
diagnosis and prognosis prediction of AD clinically, and researchers 
aim to provide important imaging evidence from the aspects of 
structure (9, 10, 17, 18), function (19–23), metabolism (24), and 
biomarkers (1, 25–27). Moreover, with rapid advancements in high-
field MRI in small animals, many studies have been conducted to 
explore the underlying mechanisms and drug development of AD 
in animal models using high-field MRI (22, 28–31). Although these 
MRI studies have enhanced our understanding of the imaging 
features and underlying mechanisms of AD, little attention has been 
given to the current research status, hotspots, and frontier trends in 
this field (32).

In recent years, bibliometric analysis has been widely used to explore 
the literature in specific research fields, which can quantitatively analyze 
and visualize the literature data and measure characteristics through 
various bibliometric tools (33–35), thus helping researchers quickly and 
accurately understand the research status, hotspots, and trends of this 
topic in the field. In this study, we conducted a bibliometric analysis of 
publications related to MRI studies in AD in the Web of Science Core 
Collection (WoSCC) between 2004 and 2023. This study aimed to 
explore the research status, hotspots, and frontier trends of MRI studies 
in AD over the past 20 decades, which may help new researchers better 
grasp future research interest.

2 Methods

2.1 Database

The WoSCC database was chosen as the data source. It is the most 
frequently used and acceptable database for researchers in a variety 
of fields.

2.2 Search strategy

We searched for publications about MRI in the field of AD on 
August 26, 2024. The search query string was as follows: 
TS = (Alzheimer’s disease OR Alzheimer disease OR Alzheimer) 
AND (magnetic resonance imaging OR MRI OR T1WI OR T2WI 

OR DWI OR diffusion-weighted imaging OR ESWAN OR enhanced 
gradient echo T2 star weighted angiography OR SWI OR 
susceptibility weighted imaging OR MRS OR magnetic resonance 
spectroscopy OR ASL OR arterial spin labeling OR DCE OR dynamic 
contrast-enhanced OR PWI OR perfusion weighted imaging OR 
BOLD-fMRI OR blood oxygenation level-dependent functional 
magnetic resonance imaging OR DTI OR diffusion tensor imaging 
OR DKI OR diffusion kurtosis imaging OR IVIM OR intravoxel 
incoherent motion OR CEST OR chemical exchange saturation 
transfer OR APT OR amide proton transfer OR MPRAGE OR three-
dimensional T1-weighted magnetization-prepared rapid gradient 
echo OR QSM OR quantitative susceptibility mapping OR rs-fMRI 
OR resting-state functional MRI OR fMRI OR functional magnetic 
resonance imaging OR VBM OR voxel-based morphology OR 
multimodal imaging technique OR volumetric MRI OR structural 
magnetic resonance imaging) AND (FPY = 2004–2023). The 
language was limited to English, and the document types were 
limited to articles and review articles. Information regarding titles, 
keywords, abstracts, authors, institutions and reference records of the 
papers was downloaded and saved in plain text format. The study 
flowchart is shown in Figure 1.

2.3 Data analysis and visualization

Microsoft Excel 2017 (Microsoft, Redmond, WA, United States) 
was used to display the global trend of publications and analyze the 
targeted files export statistical charts and tables of the most productive 
countries/regions, institutions, authors and journals.

VOSviewer (version 1.6.20) and CiteSpace (version 6.3. R1) are 
two widely used software programs for constructing and visualizing 
bibliometric networks (33, 36). CiteSpace was applied to analyze 
institutions, reference clusters and keyword bursts. VOSviewer was 
used for the analysis of countries/regions, authors and journals. The 
node in each map represents a country, institution or reference. The 
size of the node (country, institution or reference) represents the 
number of publications. The larger the node, the greater is the number 
of publications. The links between the nodes represent the strength 
of collaborations.

3 Results

3.1 Global trends in publications

A total of 13,659 articles were included in the subsequent 
analyzes. The number of articles published each year and the 
cumulative number of articles published are shown in Figure 2, which 
shows a consistent overall upward trend in the number of annual 
publications from 2004 to 2022. The fastest annual growth was in 
2020, with an increase of 138 articles. The statistical graph is adjusted 
to fit a linear curve that follows the following equation: the fitted 
curve index is y = 700.62x – 2230, with a correlation coefficient of 
0.9511. In addition, the number of articles published in 2023 
decreased from 1,335  in 2022 to 1,276, which may be  caused by 
research bias in that it takes time for articles to reach a certain 
number of citations after publication.
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3.2 Analysis of countries/regions and 
institutions

A total of 108 countries/regions published related articles in this 
field, 57 of which published no fewer than 10 articles. Table 1 shows 
the top  10 most productive countries/regions. The United  States 
ranked first with 5,504 articles, accounting for 40.30% of the total 
number of articles published, followed by China (2,150, 15.74%), 
England (1,782, 13.05%), and Germany (1,192, 8.73%).

The H-index is a mixed index that is used as a significant indicator 
of the number and level of academic output of a scientific researcher, 
country, journal, or institution (37). The country with the highest 
H-index was the United States, followed by England, Germany and the 
Netherlands. A cooperative network of countries and their 
collaborations via VOSviewer is shown in Figure 3.

In addition, 9,233 institutions published articles in this field, of 
which 1,491 institutions had no fewer than 5 articles. Table  2 
summarizes the top  10 institutions and their partnerships. The 
University of California System published the most, with 1,350 
articles, accounting for 9.88%, followed by the University of London 
(854, 6.25%), Harvard University (738, 5.40%), and Mayo Clinic (625, 
4.58%). The cooperative network of institutions and their 
collaborations via CiteSpace are shown in Figure 4.

3.3 Analysis of authors

A total of 48,736 authors were included in this study, 3,784 of 
whom published no fewer than 5 articles. Table 3 summarizes the 
top 10 most productive authors. Half of the authors were from the 

United States. Among them, Jack CR, Scheltens P, and Petersen RC 
were the top 3 productive authors, with 413, 240, and 224 articles, 
respectively.

3.4 Analysis of journals

A total of 1,326 journals published related articles in this field, of 
which 367 authors published no fewer than 5 articles. The top 15 most 
prolific journals are listed in Table 4. Among the top 15 journals, one 
in three were from the United States. In addition, the journal with the 
highest IF was Brain among the top 15 journals. Journal of Alzheimers 
Disease [impact factor (IF) 2023: 3.4] published the most (1,175 
publications), followed by Neurobiology of Aging (IF 2023: 3.7, 592 
publications), and Neuroimage (IF 2023: 4.7, 561 publications). The 
top 15 journals published 5,460 articles, accounting for 40.12% of the 
total number of publications. These journals have made great 
contributions to the development of MRI studies in AD, indicating 
that more high-quality articles in this field will be published in these 
journals as a priority in the future.

3.5 Analysis of hotspots

3.5.1 Analysis of keywords
Keywords are the central ideas of an article. The research hotspots 

in MRI research on AD have been investigated mainly through 
keyword burst detection. The top 25 keywords according to CiteSpace 
are presented in Figure 5 and are sorted by the initial year of the burst. 
As shown in the diagram, “medial temporal lobe,” “entorhinal cortex,” 

FIGURE 1

Work flow diagram of the study.
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“temporal lobe atrophy,” “gray matter loss,” “white matter lesions” and 
“hippocampal volume” had the longest burst durations (8–9 years), 
indicating the importance of these lesion locations for research in this 
field. “Deep learning,” “gray matter loss,” “entorhinal cortex,” and 
“vascular dementia” had the highest burst intensities, with burst 
strengths of 77.32, 75.55, 72.09, and 53.62, respectively. Moreover, 
“subjective cognitive decline,” “machine learning,” “convolutional 
neural networks” and “deep learning” appeared most frequently in the 
past 6 years, and they all lasted to the present, indicating that these are 
current and future research hotspots.

3.5.2 Reference analysis
Reference analysis uses reference as the element of analysis to 

reflect the relationship between the references by analyzing 
patterns and trends in citations. CiteSpace software was used to 
build reference clustering. Each cluster was considered to represent 
a research focus.

From the analysis results, the modularity Q was 0.781, and the 
mean silhouette S was as high as 0.9202, indicating an excellent 
clustering effect and good network homogeneity.

Table  5 and Figure  6 present the 12 main clusters and their 
respective first five feature words. According to the clustering results, 
there were 12 clusters as follows: “#0 voxel-based morphometry,” “#1 
deep learning,” “#2 tau pathology,” “#3 hippocampal atrophy,” “#4 
white matter integrity,” “#5 resting state,” “#6 amyloid load,” “#7 
arterial spin,” “#8 random forest algorithm,” “#9 hippocampal 
activation,” “#10 plasma biomarker,” and “#11 white 
matter hyperintensities.”

As shown in Table 5, cluster #0 contained 69 keywords with the 
first five feature words of voxel-based morphometry, which included 
voxel-based morphometry, the whole-brain atrophy rate, volumetric 
MRI, and the cingulate gyrus. Cluster #1 included 60 keywords, and 
the first five keywords were deep learning, convolutional neural 
network, artificial intelligence, neural network, and structural 

FIGURE 2

Global trend of publications on MRI research in AD from 2004 to 2023.

TABLE 1 Top 10 productive countries/regions.

Rank Countries/Regions Publications Percentage H-index

1 United States 5,504 40.30% 248

2 China 2,150 15.74% 104

3 England 1,782 13.05% 157

4 Germany 1,192 8.73% 119

5 Italy 930 6.81% 108

6 Canada 882 6.46% 109

7 Netherlands 845 6.19% 117

8 South Korea 791 5.79% 75

9 France 774 5.67% 107

10 Japan 731 5.35% 72
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MRI. Cluster #2 included 59 keywords, and the first five features were 
tau pathology, tau PET, tau accumulation, tau deposition, and 
subjective cognitive decline. Cluster #3 consisted of 59 keywords with 
the first five feature words of hippocampal atrophy, the ADNI cohort, 
tensor-based morphometry, multitask learning, and automated 3D 
mapping. Cluster #4 had 40 keywords, and the first five words were 
white matter integrity, white matter degeneration, white matter 
microstructure, uncinate fasciculus, and white matter disruption. 
Cluster #5 had 32 keywords, and the first five words were resting state, 
default mode network, default mode network, functional connectivity, 
and functional connection. Cluster #6 involved 31 keywords, with the 

first five feature words being amyloid load, 42 measure, transforming 
cerebrospinal fluid, calculated Pittsburgh compound B unit, and 
dynamic biomarker. Cluster #7 had 30 keywords, and the first five 
feature words extracted were arterial spin, diagnostic criteria, 
cerebrospinal fluid, prospective cohort study, and cerebral blood flow. 
Cluster #8 contained 30 keywords, with the first five words being the 
random forest algorithm, feature extraction method, grading 
biomarker, major brain diseases, and 5-year trend. Cluster #9 had 29 
keywords, and the first five words were related to hippocampal 
activation, functional MRI studies, parietal deactivation, functional 
alteration, and genetic risk. Cluster #10 included 12 keywords, and the 

FIGURE 3

Country/region citation network visualization map generated via VOSviewer. The node represents a country/region, the size of the node represents the 
publication counts of a country/region, and the lines between nodes represent the strength of collaborations.

TABLE 2 Top 10 productive institutions.

Rank Institution Publications Percentage H-index

1 University of California System 1,350 9.88% 163

2 University of London 854 6.25% 123

3 Harvard University 738 5.40% 126

4 Mayo Clinic 625 4.58% 130

5 University College London 625 4.58% 108

6 University of California San Francisco 548 4.01% 120

7 Harvard Medical School 523 3.83% 104

8 Institut National de la Sante et de Larecherche Medical Inserm 514 3.76% 90

9 Massachusetts General Hospital 494 3.62% 108

10 Helmholtz Association 477 3.49% 80
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first five features were plasma biomarkers, dementia risk, prognostic 
capabilities, diagnosing dementia, and tau PET tracers. Cluster #11 
involved 9 keywords, with the first five feature words being white 
matter hyperintensities, white matter lesions, cerebral amyloid 
angiopathy, age-associated aggregation, and at-risk.

In Figure 6, the above 12 clusters are displayed according to the 
reference time. Each line represents a cluster, where the nodes 
represent a reference, and the size of each node is associated with the 

number of references. Therefore, a timeline view of the references 
visually presents the phased hotspots of MRI studies in AD from the 
time dimension. As shown in Figure  6, “#0 voxel-based 
morphometry” and “#9 hippocampal activation” were the earliest 
studies in this field. “#0 tau pathology” and “#1 deep learning” are 
currently the latest research hotspots, suggesting that an increasing 
number of researchers are paying attention to the application of deep 
learning and tau pathology in MRI studies of AD.

FIGURE 4

Institutions’ citation network visualization map generated via CiteSpace. The node represents an institution, the size of the node represents the 
publication counts of an institution, and the lines between nodes represent the strength of collaborations. The color of circles and the links between 
them reflect the occurrence time. The brighter they are, the more recently they occurred.

TABLE 3 Top 10 most productive authors.

Rank Author Country Publications H-index

1 Jack CR United States 413 158

2 Scheltens P Netherlands 240 149

3 Petersen RC United States 224 179

4 Barkhof F Netherlands 222 148

5 Weiner MW United States 214 135

6 Knopman DS United States 211 143

7 Moyer, Daniel United States 189 147

8 Fox NC United Kingdom 177 136

9 Van Der Flier WM Netherlands 162 104

10 Teipel SJ Germany 161 78
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4 Discussion

This study investigated the global trend of publications by authors 
from different countries and institutions, as well as the references and 
keywords in MRI studies on AD through bibliometric analysis from 

2004 to 2023. The increasing number of annual publications suggests 
that an increasing number of researchers are paying attention to this 
field. It can be expected that the number of publications in this field 
will continue to remain high over the next few years. The most 
productive country was the United  States. Jack CR from the 

TABLE 4 Top 15 productive journals according to the number of publications.

Rank Journal Country Publications JCR IF (2023)

1 Journal of Alzheimers Disease Netherlands 1,175 Q2 3.4

2 Neurobiology of Aging England 592 Q2 3.7

3 Neuroimage United States 561 Q1 4.7

4 Frontiers in Aging Neuroscience Switzerland 513 Q2 4.1

5 Neurology United States 404 Q1 7.7

6 Alzheimers and Dementia United States 299 Q1 13

7 Neuroimage-Clinical Netherlands 291 Q2 3.4

8 PLoS One United States 287 Q1 2.9

9 Alzheimers Research and Therapy United Kingdom 234 Q1 7.9

10 Brain England 218 Q1 10.6

11 Human Brain Mapping United States 209 Q1 3.5

12 Frontiers in Neuroscience Switzerland 202 Q2 3.2

13 Current Alzheimer Research Netherlands 169 Q4 1.8

14 Dementia and Geriatric Cognitive Disorders Switzerland 164 Q4 1.4

15 Scientific Reports England 162 Q1 3.8

FIGURE 5

The top 25 keywords with the strongest citation bursts from 2004 to 2023 according to CiteSpace. The blue line represents the time period, and the 
red line represents the time span of the burst.
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United States was the most productive author. The most productive 
journal was the Journal of Alzheimers Disease, and the 15 journal with 
the highest IF was Brain. According to hotspot analysis, the period of 
the last 20 years can be roughly divided into 3 stages with different 
research hotspots, which sequentially evolved from (I) exploring the 
morphological changes in the AD brain by structural MRI (sMRI) to 
(II) identifying different biomarkers of AD and exploring the 
functional changes via functional MRI (fMRI) in AD patients and 
finally to (III) artificial intelligence (AI) applications.

In the current bibliographic study, CiteSpace software was used to 
construct a timeline graph of reference clusters and explore keyword 
bursts. According to the reference clustering results and keyword burst 
analysis, the evolution of hotspots in MRI studies of AD from 2004 to 
2023 can be divided into three stages: stage I (2004–2010), stage II 
(2010–2018), and stage III (2018–2023).

4.1 Stage I

Stage I focused on the study of morphological changes in the AD 
brain via sMRI. The main keywords were associated with gray matter 
loss, the entorhinal cortex, temporal lobe atrophy, hippocampal 
atrophy, brain atrophy, and white matter lesions.

sMRI is widely used to explore the underlying pathophysiology of 
AD (38). Brain atrophy detected by sMRI is a valid biomarker of the 
stage and intensity of AD pathology (9, 10, 39). Structural changes in 
the brain map accurately upstream to Braak stages of NFT deposition 
(4, 40, 41) and downstream of neuropsychological deficits (42, 43). 
Considerable evidence suggests that AD initiates in the entorhinal 
cortex and hippocampus and spreads thereafter to the rest of the 
brain. The earliest sites of tau deposition and MRI-based atrophy are 
located along the perforant (polysynaptic) hippocampal pathway 
(entorhinal cortex, hippocampus and posterior cingulate cortex), 
which is consistent with early memory deficits (9, 44, 45). Progressive 
atrophy in the temporal, parietal and frontal neocortex is closely 
related to neuronal loss, as well as language, praxic, visuospatial and 
behavioral impairments (4, 17, 46, 47).

Several different processing methods, such as voxel-based 
morphometry (VBM) (48), boundary shift integral (BSI) (4, 49), and 
tensor-based morphometry (TBM) (45, 50), are employed to detect 
subtle changes and assess atrophy in the brain MR images of the same 
individual or groupwise comparisons. VBM studies have revealed that 
regional gray matter atrophy lies mainly in the bilateral mesial 
temporal lobes, including the hippocampus, amygdala, entorhinal 
cortex, and posterior cingulum, and extends to the frontal and parietal 
lobes with the progression of AD (51–53). VBM studies have also 
revealed white matter abnormalities in patients with AD compared 
with healthy controls (54–59). Nevertheless, structural neuroimaging 
studies of white matter volume in AD patients have yielded variable 
findings owing to heterogeneous subjects or small sample sizes, as well 
as methodological differences among studies. For example, two 
studies (56, 57) reported white matter volume reduction only in 
bilateral temporal structures, whereas other studies (54, 55, 58, 59) 
reported widespread white matter volume abnormalities beyond the 
temporal lobe. Li reported that white matter atrophy in AD patients 
occurred mainly in bilateral structures close to memory formations, 
such as the hippocampus, amygdala, and entorhinal cortex, through 
meta-analysis (60).

4.2 Stage II

Stage II focused on the study of biomarkers and fMRI in AD, and 
the main keywords were biomarkers, transgenic mice, and Pittsburgh 
compound b.

The major biomarkers of AD that are typically considered for 
clinical trials and observational studies are cerebrospinal fluid (CSF) 
Aβ1-42, CSF total-tau (t-tau), fluoro-deoxy-glucose positron emission 
tomography (FDG–PET), Pittsburgh compound B-PET (PIB–PET), 
and sMRI. As suggested by Wahlund and Blennow (61, 62), CSF tau, 
p-tau, and sMRI may reflect the disease stage or intensity of AD, 
whereas CSF Aβ represents a specific molecular pathway or etiology. 
These main CSF biomarkers have high diagnostic accuracy for 
identifying prodromal AD in the mild cognitive impairment (MCI) 
stage, with a sensitivity and specificity of 85–90% (25, 26). However, 
variability in measurements between clinical laboratories has hindered 
the identification of a unified critical value for CSF biomarkers 
because of differences in analytical procedures for manual ELISA 
methods between different laboratories, as well as variability in 
reagent quality and manufacturing procedures resulting in batch-to-
batch variations (63). Research based on Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) data has shown that sMRI is more 
closely related to cognition than CSF biomarkers are (64, 65).

In earlier stages of AD, such as MCI or preclinical AD, atrophy 
can be minimal, although metabolic imaging (FDG PET) findings 
may already be abnormal (66, 67). Although there are many amyloid 
imaging PET tracers based on 11C and 18F, the most studied tracer in 
the field of AD is PIB (68). C-pPIB can be  used as a powerful 
biomarker of rCBF to measure neural activity and improve the 
diagnostic ability of PET for AD in conjunction with [11C]-aPIB (69). 
Tiepolt (70) reported that early [18F]FBB and [11C]PiB PET brain 
images are analogous to [18F]FDG PET images of the AD brain and 
that these tracers could be used as potential biomarkers in place of 
[18F]FDG. Furthermore, [11C]-PIB R (1) could serve as a 
complementary biomarker of neuronal activity and neurodegeneration 
in addition to the Aβ load given by [11C]-PIB BP(ND) (71). These 
findings suggest that Aβ deposition measured by PIB is an upstream 
process, whereas neurodegeneration is a downstream process initiated 
by Aβ deposition and is more closely related to cognitive decline (10, 
72). There are two possible reasons why the keyword “PIB (amyloid 
PET tracer)” appears in the field of MRI studies in AD. One of which 
is some studies have evaluated AD using both PET-CT and MRI for 
pairwise comparison (72). Another potential reason is that partial 
studies have used PET-MR, a novel imaging technique, to evaluate 
AD (73).

Genetic data from the ADNI database and from transgenic 
model experiments have been crucial in advancing the understanding 
of AD pathophysiology. All of these human genetic data can 
be obtained from apolipoprotein E (APOE) genotyping, genome-
wide association studies (GWAS), and whole-exome and whole-
genome sequencing. Researchers have strived to identify new genetic 
susceptibility loci for AD by integrating genetic and imaging data 
obtained from the ADNI database. The first GWAS of an ADNI 
quantitative phenotype was published in 2009 (74). Potkin identified 
a number of loci potentially associated with hippocampal atrophy 
through an imaging-genetics approach, and progress has been rapid 
since then. Furney discovered PICALM, a significant gene associated 
with entorhinal cortical thickness (75). To date, GWASs have 
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identified more than 20 genetic loci associated with the risk of AD (1, 
27, 76). It is well known that APOE ε4 is the major genetic risk factor 
for late-onset or sporadic AD (77), whereas mutations in amyloid 
precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 
(PSEN2) can cause early-onset or familial AD (78, 79). It is widely 
reported that APOE e4 allele is the strongest genetic risk factor of 
ARIA incidence in anti-Aβ monoclonal antibody-treated AD patients 
(6, 7, 80). Furthermore, transgenic murine model experiments have 
revealed the underlying mechanisms as well as treatment of AD in 
animal models using high-field MRI (22, 28–31, 81). Burgess (28) 
demonstrated that repeated MR imaging-guided focused ultrasound 
treatments led to spatial memory improvement in a Tg mouse model 
of AD, which may be mediated by decreased amyloid pathologic 
abnormalities and increased neuronal plasticity. Snow (22) 
demonstrated for the first time that diffusion tensor imaging (DTI) 
abnormalities were present in the gray matter of an AD mouse model 
in which both pathological hallmarks are present. Shah (31) identified 
that hypersynchrony of function connection (FC) may be used as a 
new non-invasive read-out of early AD and can be  recovered by 
anti-Aβ treatment in TG2576 mice, providing an early therapeutic 
window before amyloid plaque deposition. Overall, MRI is more 
widely used in clinical settings for assisting in the early diagnosis and 
prognosis prediction of AD patients, while preclinical research 
toward precision medicine and pathological mechanisms in small 
animal models using MRI is relatively less, because of the high 
requirements for MR equipment, e.g., ultra-high field MRI (often 
≥7.0 T) is generally required.

Furthermore, multimodal MRI is widely used for the early 
diagnosis of AD. In addition to sMRI and PET-MRI, fMRI has been 
used to measure the activity of neurons and evaluate the functional 
relationships between brain regions indirectly and noninvasively. 
First, increased hippocampal activity has been found to be associated 
with increased risk for AD (82, 83). Studies have revealed reduced left 
CA2, 3 and dentate gyrus (CA23DG) activity in cognitively intact 
APOE ε4 carriers, which may suggest that reduced neural activity in 
hippocampal subregions may underlie the compensatory increase in 
extrahippocampal activity in people with a genetic risk for AD prior 
to the onset of cognitive deficits (84). Second, arterial spin labeling 
(ASL) is an important MR imaging technique used to assess cerebral 
blood flow (CBF) quantitatively at the tissue level by magnetically 
labeling inflowing blood (23). AD patients have consistently shown a 
reduction in CBF in a posterior parietal region, including the posterior 
cingulate, angular gyrus, precuneus, and superior parietal gyrus (21, 
85–88). Chao reported that abnormal perfusion in the precuneus may 
predict conversion from MCI to AD (89). Collij demonstrated that the 
combination of CBF and the entorhinal cortex atrophy score can 
significantly increase the diagnostic ability of AD, with a prediction 
probability of 95% (90). The ASL pattern is remarkably similar to the 
pattern of hypometabolism observed with FDG PET, and both 
modalities have similar diagnostic performance (23, 88, 91). Third, 
resting-state fMRI (rs-fMRI) has become one of the most widely used 
neuroimaging techniques for studying brain function correlated with 
pathological biomarkers of AD (92, 93). Studies have detected 
decreased FC in the default mode network (DMN), and the posterior 

TABLE 5 Reference cluster by CiteSpace.

ClusterID Size Silhouette Label (LLR)

0 69 0.955 Voxel-based morphometry (2992.45, 1.0E-4); using voxel-based morphometry (1914.88, 1.0E-4); whole-brain atrophy 

rate (1438.5, 1.0E-4); volumetric MRI study (1330.05, 1.0E-4); cingulate gyrus (1149.32, 1.0E-4)

1 60 0.982 Deep learning (5967.06, 1.0E-4); convolutional neural network (4964.83, 1.0E-4); artificial intelligence (3307.65, 1.0E-4); 

neural network (3216.05, 1.0E-4); using structural MRI (3201.32, 1.0E-4)

2 59 0.851 Tau pathology (6786.06, 1.0E-4); tau PET (5047.84, 1.0E-4); tau accumulation (4851.45, 1.0E-4); tau deposition (4281.51, 

1.0E-4); subjective cognitive decline (4158.91, 1.0E-4)

3 59 0.922 Hippocampal atrophy (2054.71, 1.0E-4); ADNI cohort (2035.3, 1.0E-4); tensor-based morphometry (1790.55, 1.0E-4); 

multitask learning (1674.93, 1.0E-4); automated 3D mapping (1674.93, 1.0E-4)

4 40 0.908 White matter integrity (3551.81, 1.0E-4); white matter degeneration (3424.05, 1.0E-4); white matter microstructure 

(2253.75, 1.0E-4); uncinate fasciculus (1911.3, 1.0E-4); white matter disruption (1842.68, 1.0E-4)

5 32 0.956 Resting state (3769.44, 1.0E-4); default mode network (2944.09, 1.0E-4); default-mode network (1770.92, 1.0E-4); 

functional connectivity (1486.72, 1.0E-4); functional connection (1381.02, 1.0E-4)

6 31 0.843 Amyloid load (929.77, 1.0E-4); 42 measure (832.49, 1.0E-4); transforming cerebrospinal fluid (832.49, 1.0E-4); calculated 

pittsburgh compound B unit (832.49, 1.0E-4); dynamic biomarker (820.8, 1.0E-4)

7 30 0.879 Arterial spin (2945.98, 1.0E-4); diagnostic criteria (2619.73, 1.0E-4); cerebrospinal fluid (1991.38, 1.0E-4); prospective 

cohort study (1977, 1.0E-4); cerebral blood flow (1896.79, 1.0E-4)

8 30 0.839 Random forest algorithm (1340.56, 1.0E-4); feature extraction method (878.77, 1.0E-4); grading biomarker (871.55, 1.0E-

4); major brain diseases (864.39, 1.0E-4); 5-year trend (864.39, 1.0E-4)

9 29 0.979 Hippocampal activation (1770.17, 1.0E-4); functional MRI studies (1474.67, 1.0E-4); parietal deactivation (1397.54, 1.0E-

4); functional alteration (1230.53, 1.0E-4); genetic risk (1189.52, 1.0E-4)

10 12 1 Plasma biomarker (673.5, 1.0E-4); dementia risk (672, 1.0E-4); prognostic capabilities (541.39, 1.0E-4); diagnosing 

dementia (531.4, 1.0E-4); tau PET tracer (531.4, 1.0E-4)

11 9 0.992 White matter hyperintensities (1952.04, 1.0E-4); white matter lesion (1247.47, 1.0E-4); cerebral amyloid angiopathy 

(1127.61, 1.0E-4); age-associated aggregation (610.06, 1.0E-4); at-risk cohort (610.06, 1.0E-4)
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cingulate cortex/pecuneus is the most severely affected brain region 
(20). DMN is one of the most vulnerable brain networks in AD 
because of the earliest accumulation of Aβ (19, 20, 94, 95). The early 
deposition of the pathological protein Aβ in the DMN region may 
be related to the influence of resting-state whole-brain activity on the 
lymphatic clearance pathway (96), suggesting that rs-fMRI technology 
has the potential to be used as an imaging indicator for the early 
identification of AD and for guiding clinical prevention and treatment. 
Anti-amyloid monoclonal antibodies have raised concerns about 
adverse effects, particularly ARIA (5, 6, 8). ARIA includes ARIA-E 
(parenchymal or sulcal hyperintensities on FLAIR indicative of 
parenchymal edema or sulcal effusions) and ARIA-H (hypointense 
regions on gradient recalled-echo/T2* indicative of hemosiderin 
deposition) (97). Timely detection and monitor of ARIA in clinical 
practice is crucial.

4.3 Stage III

Stage III focused on the study of AI techniques in the MRI analysis 
of the AD brain. The research focused on “#0 tau pathology” and “#1 
deep learning (DL),” and the main keywords used were subjective 
cognitive decline, machine learning (ML), convolutional neural 
network (CNN), and DL.

Recently, increasing evidence has shown that hyperphosphorylated 
tau protein appears earlier than Aβ does and is more closely related to 
cognitive impairment, which is deemed to be more sensitive for the 

early detection of AD (98, 99). Both sMRI and FDG-PET are 
commonly used for measuring tau-mediated neuronal injury. 
Emerging MRI modalities such as DTI and rs-fMRI have also shown 
great potential in capturing changes due to tau pathology (100, 101). 
Visual assessment (102) or quantification of the hippocampus (103) is 
the most frequently used biomarker for measuring tau-mediated 
injury in AD and has been confirmed via several autopsy studies (40). 
In addition, atrophy is closely associated with tau accumulation in 
certain brain regions and is related to biomarkers of tau accumulation 
and brain hypometabolism, such as CSF p-tau/t-tau levels, FDG-PET, 
or PET imaging with tau ligands (104, 105). At present, most of the 
studies on tau PET have focused on specific regions of interest, 
including the occipital lobe, parietal lobe, temporal lobe cortex and 
parietal lobe cortex, in the AD cohort, which may reflect the 
correlation between tau protein deposition and cognitive decline 
(106). Ossenkoppele reported that tau PET was a promising 
prognostic tool for predicting cognitive decline in preclinical and 
prodromal stages of AD, that was superior to amyloid PET and MRI 
(107). Although tau PET imaging has attracted much attention 
compared with Aβ PET imaging, it still needs to be verified on a large 
scale to become a reliable tool for AD diagnosis.

In the past 6 years, the keywords have gradually evolved to use 
AI-powered technologies, particularly ML and DL, combined with 
MRI to achieve early diagnosis and prognosis of AD (108, 109). DL 
is an important branch of ML that uses neural networks of simple 
interconnected units to extract patterns from data to solve complex 
problems (110). A neural network is the basis of the DL method. 

FIGURE 6

Timeline graph of reference clusters by CiteSpace. The node represents a reference, and the size of each node is associated with the number of 
references. Each line represents a cluster, and the numbers 0–11 refer to the top 12 clusters which represent 12 different research directions. The 
emergence time point and time span of all clusters are shown. Colors indicate the occurrence time: the brighter they are, the more recently they 
occurred.
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Common AI algorithms include logistic regression (LR), support 
vector machines (SVMs), random forests (RFs), CNNs, and 
nonconvolutional artificial neural networks (NC-ANNs). ML and DL 
have a wide range of applications for the early differentiation of 
normal cognition and AD (110–112). To date, the most widely used 
image analysis model is CNN (113). CNNs have gained popularity 
quickly in MRI analysis for AD, first in 2017, with promising 
performance (114). Ashyam applied DeepBrainNet, a recent DL 
algorithm with transfer learning, to discriminate neurologic diseases 
on the basis of MRI brain age and achieved 86% accuracy in 
differentiating AD patients from healthy controls (HCs) (115). The 
CNN studies that combined T1WI with FDG-PET data yielded 
considerably different results (98% vs. 90% accuracy for AD patients 
vs. HCs) (116). Frizzell demonstrated that CNNs have better 
performance metrics than the other major algorithm types do in the 
classification of AD, MCI, and normal aging and the prediction of 
MCI conversion to AD (111). Sima applied an DL-based assistive 
software that can automatically detect and quantify ARIA on brain 
MRI scans, which has the potential to be a clinically important tool 
to improve safety monitoring and management of patients with AD 
treated with Aβ-directed monoclonal antibody therapies (117). With 
the development of AI, more noninvasive examinations, minimally 
invasive diagnoses, and more safer treatment methods have been 
developed, suggesting that the application of AI in AD has attracted 
the attention of many researchers and will be a research hotspot in 
the next few years.

5 Limitation

Some limitations of this study must be  highlighted. First, all 
publications included in this study were downloaded from the 
WoSCC; therefore, they may not represent the complete research field 
of MRI in AD. Second, our study included only English literature, 
which may have led to language bias and the consequent omission of 
high-quality literature from other languages. Third, the publication 
number of countries, institutions and authors are based on all 
co-authors, rather than the institutions and countries of the first 
author. And some authors not only list the school of medicine as their 
affiliation but also list the hospital as a second affiliation. This led to 
overlap on the results, causing a bias of the influence. Finally, it takes 
time for articles to reach a certain number of citations after 
publication, which may mean that high-quality articles published in 
recent years have not yet reached the level of citations commensurate 
with their quality and may have led to research bias.

6 Conclusion

MRI research on AD is rapidly progressing. Advances in basic 
science and molecular diagnostics have provided unprecedented 
possibilities for early diagnosis and prognosis prediction. The 
United States has always been in a leading position in this field. In 
addition, notably, the research focus in this field has gradually shifted 
from invasive diagnosis and treatment to noninvasive diagnosis and 
more accurate safer treatment through AI-aided technologies such as 
ML and DL.

Recent advancements in AD treatment have focused on 
eliminating Aβ plaques, whereas MR imaging abnormalities 
collectively referred to as ARIA have been reported for several agents, 
thereby lowering the expectations around the eagerly awaited first-
generation monoclonal antibodies. Therefore, application of the 
AI-aided technology to monitor and predict the efficacy and the 
probable side effect of new drugs or new therapies on brain MRI scans 
from AD patients is projected to be the research hotspot in the future.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

XS: Methodology, Writing – original draft. JZ: Conceptualization, 
Investigation, Writing – original draft. RL: Data curation, Writing – 
original draft. YP: Software, Supervision, Writing – review & editing. 
LG: Investigation, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by the youth research project of Jiangxi science and 
technology department (20171BAB215049).

Acknowledgments

The authors would like to thank all study participants.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation 
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

https://doi.org/10.3389/fneur.2024.1510522
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Sun et al. 10.3389/fneur.2024.1510522

Frontiers in Neurology 12 frontiersin.org

References
 1. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, et al. 

Alzheimer's disease. Lancet. (2016) 388:505–17. doi: 10.1016/S0140-6736(15)01124-1

 2. Alzheimer’s Association. 2023 Alzheimer's disease facts and figures. Alzheimers 
Dement. (2023) 19:1598–695. doi: 10.1002/alz.13016

 3. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for 
Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug 
Discov. (2011) 10:698–712. doi: 10.1038/nrd3505

 4. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta 
Neuropathol. (1991) 82:239–59. doi: 10.1007/BF00308809

 5. Jeong SY, Suh CH, Kim SJ, Lemere CA, Lim JS, Lee JH. Amyloid-related imaging 
abnormalities in the era of anti-amyloid Beta monoclonal antibodies for Alzheimer's 
disease: recent updates on clinical and imaging features and MRI monitoring. Korean J 
Radiol. (2024) 25:726–41. doi: 10.3348/kjr.2024.0105

 6. Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. 
Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: 
recommendations from the Alzheimer's Association research roundtable workgroup. 
Alzheimers Dement. (2011) 7:367–85. doi: 10.1016/j.jalz.2011.05.2351

 7. Loomis SJ, Miller R, Castrillo-Viguera C, Umans K, Cheng W, O'Gorman J, et al. 
Genome-wide association studies of ARIA from the Aducanumab phase 3 ENGAGE 
and EMERGE studies. Neurology. (2024) 102:e207919. doi: 10.1212/
WNL.0000000000207919

 8. Filippi M, Cecchetti G, Spinelli EG, Vezzulli P, Falini A, Agosta F. Amyloid-related 
imaging abnormalities and beta-amyloid-targeting antibodies: a systematic review. 
JAMA Neurol. (2022) 79:291–304. doi: 10.1001/jamaneurol.2021.5205

 9. Vemuri P, Jack CR Jr. Role of structural MRI in Alzheimer's disease. Alzheimers Res 
Ther. (2010) 2:23. doi: 10.1186/alzrt47

 10. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson PM. The clinical use of 
structural MRI in Alzheimer disease. Nat Rev Neurol. (2010) 6:67–77. doi: 10.1038/
nrneurol.2009.215

 11. Murray ME, Kouri N, Lin WL, Jack CR Jr, Dickson DW, Vemuri P. 
Clinicopathologic assessment and imaging of tauopathies in neurodegenerative 
dementias. Alzheimers Res Ther. (2014) 6:1. doi: 10.1186/alzrt231

 12. Rose SE, Janke AL, Chalk JB. Gray and white matter changes in Alzheimer's 
disease: a diffusion tensor imaging study. J Magn Reson Imaging. (2008) 27:20–6. doi: 
10.1002/jmri.21231

 13. Itkyal VS, Abrol A, LaGrow TJ, Fedorov A, Calhoun VD. Voxel-wise fusion of 
resting fMRI networks and gray matter volume for Alzheimer's disease classification 
using deep multimodal learning. Res Sq. (2023):rs.3.rs-3740218. doi: 10.21203/
rs.3.rs-3740218/v1

 14. Tian Y, Oh JH, Rhee HY, Park S, Ryu CW, Cho AR, et al. Gray-white matter 
boundary Z-score and volume as imaging biomarkers of Alzheimer's disease. Front 
Aging Neurosci. (2023) 15:1291376. doi: 10.3389/fnagi.2023.1291376

 15. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent 
brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. (2003) 
348:1215–22. doi: 10.1056/NEJMoa022066

 16. Acharya A, Liang X, Tian W, Jiang C, Han Y, Yi L. White matter Hyperintensities 
relate to basal ganglia functional connectivity and memory performance in aMCI and 
SVMCI. Front Neurosci. (2019) 13:1204. doi: 10.3389/fnins.2019.01204

 17. McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler DJ Jr, 
Holland D, et al. Regional rates of neocortical atrophy from normal aging to early 
Alzheimer disease. Neurology. (2009) 73:457–65. doi: 10.1212/WNL.0b013e3181b16431

 18. Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, et al. Medial 
temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology. 
(2008) 71:1986–92. doi: 10.1212/01.wnl.0000336925.79704.9f

 19. Palmqvist S, Scholl M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, et al. 
Earliest accumulation of beta-amyloid occurs within the default-mode network and 
concurrently affects brain connectivity. Nat Commun. (2017) 8:1214. doi: 10.1038/
s41467-017-01150-x

 20. Ibrahim B, Suppiah S, Ibrahim N, Mohamad M, Hassan HA, Nasser NS, et al. 
Diagnostic power of resting-state fMRI for detection of network connectivity in 
Alzheimer's disease and mild cognitive impairment: a systematic review. Hum Brain 
Mapp. (2021) 42:2941–68. doi: 10.1002/hbm.25369

 21. Binnewijzend MA, Kuijer JP, Benedictus MR, van der Flier WM, Wink AM, 
Wattjes MP, et al. Cerebral blood flow measured with 3D pseudocontinuous arterial 
spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a 
marker for disease severity. Radiology. (2013) 267:221–30. doi: 10.1148/radiol.12120928

 22. Snow WM, Dale R, O'Brien-Moran Z, Buist R, Peirson D, Martin M, et al. In vivo 
detection of gray matter neuropathology in the 3xTg mouse model of Alzheimer's 
disease with diffusion tensor imaging. J Alzheimers Dis. (2017) 58:841–53. doi: 10.3233/
JAD-170136

 23. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X. Arterial spin 
labeling perfusion of the brain: emerging clinical applications. Radiology. (2016) 
281:337–56. doi: 10.1148/radiol.2016150789

 24. Voevodskaya O, Sundgren PC, Strandberg O, Zetterberg H, Minthon L, Blennow K, 
et al. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in 
Alzheimer disease. Neurology. (2016) 86:1754–61. doi: 10.1212/WNL.0000000000002672

 25. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, 
et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging 
initiative subjects. Ann Neurol. (2009) 65:403–13. doi: 10.1002/ana.21610

 26. Visser PJ, Verhey F, Knol DL, Scheltens P, Wahlund LO, Freund-Levi Y, et al. 
Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in 
patients with subjective cognitive impairment or mild cognitive impairment in the 
DESCRIPA study: a prospective cohort study. Lancet Neurol. (2009) 8:619–27. doi: 
10.1016/S1474-4422(09)70139-5

 27. Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, et al. Genetic studies of 
quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. 
Alzheimers Dement. (2015) 11:792–814. doi: 10.1016/j.jalz.2015.05.009

 28. Burgess A, Dubey S, Yeung S, Hough O, Eterman N, Aubert I, et al. Alzheimer 
disease in a mouse model: MR imaging-guided focused ultrasound targeted to the 
hippocampus opens the blood-brain barrier and improves pathologic abnormalities and 
behavior. Radiology. (2014) 273:736–45. doi: 10.1148/radiol.14140245

 29. Grandjean J, Derungs R, Kulic L, Welt T, Henkelman M, Nitsch RM, et al. Complex 
interplay between brain function and structure during cerebral amyloidosis in APP 
transgenic mouse strains revealed by multi-parametric MRI comparison. NeuroImage. 
(2016) 134:1–11. doi: 10.1016/j.neuroimage.2016.03.042

 30. Kuhla A, Ruhlmann C, Lindner T, Polei S, Hadlich S, Krause BJ, et al. APPswe/
PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without 
apparent brain atrophy: a MRS and MRI study. Neuroimage Clin. (2017) 15:581–6. doi: 
10.1016/j.nicl.2017.06.009

 31. Shah D, Praet J, Latif Hernandez A, Hofling C, Anckaerts C, Bard F, et al. Early 
pathologic amyloid induces hypersynchrony of BOLD resting-state networks in 
transgenic mice and provides an early therapeutic window before amyloid plaque 
deposition. Alzheimers Dement. (2016) 12:964–76. doi: 10.1016/j.jalz.2016.03.010

 32. Yue JH, Zhang QH, Yang X, Wang P, Sun XC, Yan SY, et al. Magnetic resonance 
imaging of white matter in Alzheimer's disease: a global bibliometric analysis from 1990 
to 2022. Front Neurosci. (2023) 17:1163809. doi: 10.3389/fnins.2023.1163809

 33. Chen C, Dubin R, Kim MC. Emerging trends and new developments in 
regenerative medicine: a scientometric update (2000 – 2014). Expert Opin Biol Ther. 
(2014) 14:1295–317. doi: 10.1517/14712598.2014.920813

 34. Ma C, Su H, Li H. Global research trends on prostate diseases and erectile 
dysfunction: a bibliometric and visualized study. Front Oncol. (2020) 10:627891. doi: 
10.3389/fonc.2020.627891

 35. Shen Z, Wu H, Chen Z, Hu J, Pan J, Kong J, et al. The global research of artificial 
intelligence on prostate Cancer: a 22-year bibliometric analysis. Front Oncol. (2022) 
12:843735. doi: 10.3389/fonc.2022.843735

 36. Yu Y, Li Y, Zhang Z, Gu Z, Zhong H, Zha Q, et al. A bibliometric analysis using 
VOSviewer of publications on COVID-19. Ann Transl Med. (2020) 8:816. doi: 10.21037/
atm-20-4235

 37. Ioannidis JPA, Baas J, Klavans R, Boyack KW. A standardized citation metrics 
author database annotated for scientific field. PLoS Biol. (2019) 17:e3000384. doi: 
10.1371/journal.pbio.3000384

 38. Reijmer YD, van Veluw SJ, Greenberg SM. Ischemic brain injury in cerebral 
amyloid angiopathy. J Cereb Blood Flow Metab. (2016) 36:40–54. doi: 10.1038/
jcbfm.2015.88

 39. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain 
atrophy and cognitive decline in AD. Neurology. (1999) 52:1687–9. doi: 10.1212/
WNL.52.8.1687

 40. Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD, et al. 
MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry 
study. Neurology. (2008) 71:743–9. doi: 10.1212/01.wnl.0000324924.91351.7d

 41. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. 
MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical 
change. Neurology. (2009) 73:294–301. doi: 10.1212/WNL.0b013e3181af79fb

 42. Thompson PM, Hayashi KM, De Zubicaray GI, Janke AL, Rose SE, Semple J, et al. 
Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage. (2004) 
22:1754–66. doi: 10.1016/j.neuroimage.2004.03.040

 43. Vemuri P, Whitwell JL, Kantarci K, Josephs KA, Parisi JE, Shiung MS, et al. 
Antemortem MRI based STructural abnormality iNDex (STAND)-scores correlate with 
postmortem Braak neurofibrillary tangle stage. NeuroImage. (2008) 42:559–67. doi: 
10.1016/j.neuroimage.2008.05.012

 44. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. 
Dynamics of gray matter loss in Alzheimer's disease. J Neurosci. (2003) 23:994–1005. 
doi: 10.1523/JNEUROSCI.23-03-00994.2003

 45. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of 
regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. 
Proc Natl Acad Sci USA. (2002) 99:4703–7. doi: 10.1073/pnas.052587399

https://doi.org/10.3389/fneur.2024.1510522
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(15)01124-1
https://doi.org/10.1002/alz.13016
https://doi.org/10.1038/nrd3505
https://doi.org/10.1007/BF00308809
https://doi.org/10.3348/kjr.2024.0105
https://doi.org/10.1016/j.jalz.2011.05.2351
https://doi.org/10.1212/WNL.0000000000207919
https://doi.org/10.1212/WNL.0000000000207919
https://doi.org/10.1001/jamaneurol.2021.5205
https://doi.org/10.1186/alzrt47
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1038/nrneurol.2009.215
https://doi.org/10.1186/alzrt231
https://doi.org/10.1002/jmri.21231
https://doi.org/10.21203/rs.3.rs-3740218/v1
https://doi.org/10.21203/rs.3.rs-3740218/v1
https://doi.org/10.3389/fnagi.2023.1291376
https://doi.org/10.1056/NEJMoa022066
https://doi.org/10.3389/fnins.2019.01204
https://doi.org/10.1212/WNL.0b013e3181b16431
https://doi.org/10.1212/01.wnl.0000336925.79704.9f
https://doi.org/10.1038/s41467-017-01150-x
https://doi.org/10.1038/s41467-017-01150-x
https://doi.org/10.1002/hbm.25369
https://doi.org/10.1148/radiol.12120928
https://doi.org/10.3233/JAD-170136
https://doi.org/10.3233/JAD-170136
https://doi.org/10.1148/radiol.2016150789
https://doi.org/10.1212/WNL.0000000000002672
https://doi.org/10.1002/ana.21610
https://doi.org/10.1016/S1474-4422(09)70139-5
https://doi.org/10.1016/j.jalz.2015.05.009
https://doi.org/10.1148/radiol.14140245
https://doi.org/10.1016/j.neuroimage.2016.03.042
https://doi.org/10.1016/j.nicl.2017.06.009
https://doi.org/10.1016/j.jalz.2016.03.010
https://doi.org/10.3389/fnins.2023.1163809
https://doi.org/10.1517/14712598.2014.920813
https://doi.org/10.3389/fonc.2020.627891
https://doi.org/10.3389/fonc.2022.843735
https://doi.org/10.21037/atm-20-4235
https://doi.org/10.21037/atm-20-4235
https://doi.org/10.1371/journal.pbio.3000384
https://doi.org/10.1038/jcbfm.2015.88
https://doi.org/10.1038/jcbfm.2015.88
https://doi.org/10.1212/WNL.52.8.1687
https://doi.org/10.1212/WNL.52.8.1687
https://doi.org/10.1212/01.wnl.0000324924.91351.7d
https://doi.org/10.1212/WNL.0b013e3181af79fb
https://doi.org/10.1016/j.neuroimage.2004.03.040
https://doi.org/10.1016/j.neuroimage.2008.05.012
https://doi.org/10.1523/JNEUROSCI.23-03-00994.2003
https://doi.org/10.1073/pnas.052587399


Sun et al. 10.3389/fneur.2024.1510522

Frontiers in Neurology 13 frontiersin.org

 46. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, et al. The 
biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. 
Neurology. (1999) 52:1158–65. doi: 10.1212/WNL.52.6.1158

 47. Frisoni GB, Henneman WJ, Weiner MW, Scheltens P, Vellas B, Reynish E, et al. 
The pilot European Alzheimer's disease Neuroimaging initiative of the European 
Alzheimer's disease consortium. Alzheimers Dement. (2008) 4:255–64. doi: 10.1016/j.
jalz.2008.04.009

 48. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 
(2000) 11:805–21. doi: 10.1006/nimg.2000.0582

 49. Silbert LC, Quinn JF, Moore MM, Corbridge E, Ball MJ, Murdoch G, et al. Changes 
in premorbid brain volume predict Alzheimer's disease pathology. Neurology. (2003) 
61:487–92. doi: 10.1212/01.WNL.0000079053.77227.14

 50. Thompson PM, Apostolova LG. Computational anatomical methods as applied to 
ageing and dementia. Br J Radiol. (2007) 80 Spec No 2:S78–91. doi: 10.1259/
BJR/20005470

 51. Bozzali M, Filippi M, Magnani G, Cercignani M, Franceschi M, Schiatti E, et al. 
The contribution of voxel-based morphometry in staging patients with mild cognitive 
impairment. Neurology. (2006) 67:453–60. doi: 10.1212/01.wnl.0000228243.56665.c2

 52. Karas GB, Burton EJ, Rombouts SA, van Schijndel RA, O'Brien JT, Scheltens P, 
et al. A comprehensive study of gray matter loss in patients with Alzheimer's disease 
using optimized voxel-based morphometry. NeuroImage. (2003) 18:895–907. doi: 
10.1016/S1053-8119(03)00041-7

 53. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, Petersen RC, 
et al. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects 
progress from mild cognitive impairment to Alzheimer's disease. Brain. (2007) 
130:1777–86. doi: 10.1093/brain/awm112

 54. Balthazar ML, Yasuda CL, Pereira FR, Pedro T, Damasceno BP, Cendes F. 
Differences in grey and white matter atrophy in amnestic mild cognitive impairment 
and mild Alzheimer's disease. Eur J Neurol. (2009) 16:468–74. doi: 
10.1111/j.1468-1331.2008.02408.x

 55. Baxter LC, Sparks DL, Johnson SC, Lenoski B, Lopez JE, Connor DJ, et al. 
Relationship of cognitive measures and gray and white matter in Alzheimer's disease. J 
Alzheimers Dis. (2006) 9:253–60. doi: 10.3233/JAD-2006-9304

 56. Honea RA, Thomas GP, Harsha A, Anderson HS, Donnelly JE, Brooks WM, et al. 
Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. 
Alzheimer Dis Assoc Disord. (2009) 23:188–97. doi: 10.1097/WAD.0b013e31819cb8a2

 57. Serra L, Cercignani M, Lenzi D, Perri R, Fadda L, Caltagirone C, et al. Grey and 
white matter changes at different stages of Alzheimer's disease. J Alzheimers Dis. (2010) 
19:147–59. doi: 10.3233/JAD-2010-1223

 58. Villain N, Desgranges B, Viader F, de la Sayette V, Mezenge F, Landeau B, et al. 
Relationships between hippocampal atrophy, white matter disruption, and gray matter 
hypometabolism in Alzheimer's disease. J Neurosci. (2008) 28:6174–81. doi: 10.1523/
JNEUROSCI.1392-08.2008

 59. Yoon B, Shim YS, Hong YJ, Koo BB, Kim YD, Lee KO, et al. Comparison of 
diffusion tensor imaging and voxel-based morphometry to detect white matter damage 
in Alzheimer's disease. J Neurol Sci. (2011) 302:89–95. doi: 10.1016/j.jns.2010.11.012

 60. Li J, Pan P, Huang R, Shang H. A meta-analysis of voxel-based morphometry 
studies of white matter volume alterations in Alzheimer's disease. Neurosci Biobehav Rev. 
(2012) 36:757–63. doi: 10.1016/j.neubiorev.2011.12.001

 61. Wahlund LO, Blennow K. Cerebrospinal fluid biomarkers for disease stage and 
intensity in cognitively impaired patients. Neurosci Lett. (2003) 339:99–102. doi: 
10.1016/S0304-3940(02)01483-0

 62. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma 
biomarkers in Alzheimer disease. Nat Rev Neurol. (2010) 6:131–44. doi: 10.1038/
nrneurol.2010.4

 63. Mattsson N, Andreasson U, Persson S, Carrillo MC, Collins S, Chalbot S, et al. CSF 
biomarker variability in the Alzheimer's Association quality control program. Alzheimers 
Dement. (2013) 9:251–61. doi: 10.1016/j.jalz.2013.01.010

 64. Vemuri P, Wiste HJ, Weigand SD, Knopman DS, Trojanowski JQ, Shaw LM, et al. 
Serial MRI and CSF biomarkers in normal aging, MCI, and AD. Neurology. (2010) 
75:143–51. doi: 10.1212/WNL.0b013e3181e7ca82

 65. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, 
et al. CSF biomarkers in prediction of cerebral and clinical change in mild cognitive 
impairment and Alzheimer's disease. J Neurosci. (2010) 30:2088–101. doi: 10.1523/
JNEUROSCI.3785-09.2010

 66. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. 
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. 
Lancet Neurol. (2010) 9:119–28. doi: 10.1016/S1474-4422(09)70299-6

 67. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. 
Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical 
model of dynamic biomarkers. Lancet Neurol. (2013) 12:207–16. doi: 10.1016/
S1474-4422(12)70291-0

 68. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging 
brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol. (2004) 
55:306–19. doi: 10.1002/ana.20009

 69. Fu L, Liu L, Zhang J, Xu B, Fan Y, Tian J. Comparison of dual-biomarker PIB-PET 
and dual-tracer PET in AD diagnosis. Eur Radiol. (2014) 24:2800–9. doi: 10.1007/
s00330-014-3311-x

 70. Tiepolt S, Hesse S, Patt M, Luthardt J, Schroeter ML, Hoffmann KT, et al. Early 
[(18)F]florbetaben and [(11)C]PiB PET images are a surrogate biomarker of neuronal 
injury in Alzheimer's disease. Eur J Nucl Med Mol Imaging. (2016) 43:1700–9. doi: 
10.1007/s00259-016-3353-1

 71. Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, et al. Dual-
biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia 
with PET and 11C-labeled Pittsburgh compound B. J Nucl Med. (2011) 52:393–400. doi: 
10.2967/jnumed.110.083683

 72. Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial 
PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: 
implications for sequence of pathological events in Alzheimer's disease. Brain. (2009) 
132:1355–65. doi: 10.1093/brain/awp062

 73. Sheikh-Bahaei N, Sajjadi SA, Manavaki R, McLean M, O'Brien JT, Gillard JH. 
Positron emission tomography-guided magnetic resonance spectroscopy in Alzheimer 
disease. Ann Neurol. (2018) 83:771–8. doi: 10.1002/ana.25202

 74. Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, et al. 
Hippocampal atrophy as a quantitative trait in a genome-wide association study 
identifying novel susceptibility genes for Alzheimer's disease. PLoS One. (2009) 4:e6501. 
doi: 10.1371/journal.pone.0006501

 75. Furney SJ, Simmons A, Breen G, Pedroso I, Lunnon K, Proitsi P, et al. Genome-
wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer's 
disease. Mol Psychiatry. (2011) 16:1130–8. doi: 10.1038/mp.2010.123

 76. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. 
Genome-wide association study identifies variants at CLU and PICALM associated with 
Alzheimer's disease. Nat Genet. (2009) 41:1088–93. doi: 10.1038/ng.440

 77. Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, et al. 
APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol 
Psychiatry. (2011) 16:903–7. doi: 10.1038/mp.2011.52

 78. Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM, et al. 
Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of 
Alzheimer's disease. Alzheimers Res Ther. (2011) 3:1. doi: 10.1186/alzrt59

 79. Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease 
pathogenesis. Biol Psychiatry. (2015) 77:43–51. doi: 10.1016/j.biopsych.2014.05.006

 80. VandeVrede L, Gibbs DM, Koestler M, La Joie R, Ljubenkov PA, Provost K, et al. 
Symptomatic amyloid-related imaging abnormalities in an APOE epsilon4/epsilon4 
patient treated with aducanumab. Alzheimers Dement (Amst). (2020) 12:e12101. doi: 
10.1002/dad2.12101

 81. Shu X, Qin YY, Zhang S, Jiang JJ, Zhang Y, Zhao LY, et al. Voxel-based diffusion 
tensor imaging of an APP/PS1 mouse model of Alzheimer's disease. Mol Neurobiol. 
(2013) 48:78–83. doi: 10.1007/s12035-013-8418-6

 82. Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging 
markers for the prediction and early diagnosis of Alzheimer's disease dementia. Trends 
Neurosci. (2011) 34:430–42. doi: 10.1016/j.tins.2011.05.005

 83. Sperling R. Potential of functional MRI as a biomarker in early Alzheimer's 
disease. Neurobiol Aging. (2011) 32:S37–43. doi: 10.1016/j.neurobiolaging.2011.09.009

 84. Suthana NA, Krupa A, Donix M, Burggren A, Ekstrom AD, Jones M, et al. 
Reduced hippocampal CA2, CA3, and dentate gyrus activity in asymptomatic people at 
genetic risk for Alzheimer's disease. NeuroImage. (2010) 53:1077–84. doi: 10.1016/j.
neuroimage.2009.12.014

 85. Yoshiura T, Hiwatashi A, Noguchi T, Yamashita K, Ohyagi Y, Monji A, et al. 
Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer's 
disease. Eur Radiol. (2009) 19:2819–25. doi: 10.1007/s00330-009-1511-6

 86. Yoshiura T, Hiwatashi A, Yamashita K, Ohyagi Y, Monji A, Takayama Y, et al. 
Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral 
blood flow using arterial spin-labeling in patients with Alzheimer disease. AJNR Am J 
Neuroradiol. (2009) 30:1388–93. doi: 10.3174/ajnr.A1562

 87. Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML, et al. 
Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin 
labeling MRI. Neurology. (2006) 67:1215–20. doi: 10.1212/01.wnl.0000238163.71349.78

 88. Musiek ES, Chen Y, Korczykowski M, Saboury B, Martinez PM, Reddin JS, et al. 
Direct comparison of fluorodeoxyglucose positron emission tomography and arterial 
spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement. 
(2012) 8:51–9. doi: 10.1016/j.jalz.2011.06.003

 89. Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K, et al. ASL perfusion 
MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis 
Assoc Disord. (2010) 24:19–27. doi: 10.1097/WAD.0b013e3181b4f736

 90. Collij LE, Heeman F, Kuijer JP, Ossenkoppele R, Benedictus MR, Moller C, et al. 
Application of machine learning to arterial spin labeling in mild cognitive impairment 
and Alzheimer disease. Radiology. (2016) 281:865–75. doi: 10.1148/radiol.2016152703

 91. Chen Y, Wolk DA, Reddin JS, Korczykowski M, Martinez PM, Musiek ES, et al. 
Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in 
Alzheimer disease. Neurology. (2011) 77:1977–85. doi: 10.1212/WNL.0b013e31823a0ef7

https://doi.org/10.3389/fneur.2024.1510522
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1212/WNL.52.6.1158
https://doi.org/10.1016/j.jalz.2008.04.009
https://doi.org/10.1016/j.jalz.2008.04.009
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1212/01.WNL.0000079053.77227.14
https://doi.org/10.1259/BJR/20005470
https://doi.org/10.1259/BJR/20005470
https://doi.org/10.1212/01.wnl.0000228243.56665.c2
https://doi.org/10.1016/S1053-8119(03)00041-7
https://doi.org/10.1093/brain/awm112
https://doi.org/10.1111/j.1468-1331.2008.02408.x
https://doi.org/10.3233/JAD-2006-9304
https://doi.org/10.1097/WAD.0b013e31819cb8a2
https://doi.org/10.3233/JAD-2010-1223
https://doi.org/10.1523/JNEUROSCI.1392-08.2008
https://doi.org/10.1523/JNEUROSCI.1392-08.2008
https://doi.org/10.1016/j.jns.2010.11.012
https://doi.org/10.1016/j.neubiorev.2011.12.001
https://doi.org/10.1016/S0304-3940(02)01483-0
https://doi.org/10.1038/nrneurol.2010.4
https://doi.org/10.1038/nrneurol.2010.4
https://doi.org/10.1016/j.jalz.2013.01.010
https://doi.org/10.1212/WNL.0b013e3181e7ca82
https://doi.org/10.1523/JNEUROSCI.3785-09.2010
https://doi.org/10.1523/JNEUROSCI.3785-09.2010
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1002/ana.20009
https://doi.org/10.1007/s00330-014-3311-x
https://doi.org/10.1007/s00330-014-3311-x
https://doi.org/10.1007/s00259-016-3353-1
https://doi.org/10.2967/jnumed.110.083683
https://doi.org/10.1093/brain/awp062
https://doi.org/10.1002/ana.25202
https://doi.org/10.1371/journal.pone.0006501
https://doi.org/10.1038/mp.2010.123
https://doi.org/10.1038/ng.440
https://doi.org/10.1038/mp.2011.52
https://doi.org/10.1186/alzrt59
https://doi.org/10.1016/j.biopsych.2014.05.006
https://doi.org/10.1002/dad2.12101
https://doi.org/10.1007/s12035-013-8418-6
https://doi.org/10.1016/j.tins.2011.05.005
https://doi.org/10.1016/j.neurobiolaging.2011.09.009
https://doi.org/10.1016/j.neuroimage.2009.12.014
https://doi.org/10.1016/j.neuroimage.2009.12.014
https://doi.org/10.1007/s00330-009-1511-6
https://doi.org/10.3174/ajnr.A1562
https://doi.org/10.1212/01.wnl.0000238163.71349.78
https://doi.org/10.1016/j.jalz.2011.06.003
https://doi.org/10.1097/WAD.0b013e3181b4f736
https://doi.org/10.1148/radiol.2016152703
https://doi.org/10.1212/WNL.0b013e31823a0ef7


Sun et al. 10.3389/fneur.2024.1510522

Frontiers in Neurology 14 frontiersin.org

 92. Li S, Daamen M, Scheef L, Gaertner FC, Buchert R, Buchmann M, et al. Abnormal 
regional and global connectivity measures in subjective cognitive decline depending on 
cerebral amyloid status. J Alzheimers Dis. (2021) 79:493–509. doi: 10.3233/JAD-200472

 93. Alorf A, Khan MUG. Multi-label classification of Alzheimer's disease stages from 
resting-state fMRI-based correlation connectivity data and deep learning. Comput Biol 
Med. (2022) 151:106240. doi: 10.1016/j.compbiomed.2022.106240

 94. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical 
hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and 
relation to Alzheimer's disease. J Neurosci. (2009) 29:1860–73. doi: 10.1523/
JNEUROSCI.5062-08.2009

 95. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. 
Molecular, structural, and functional characterization of Alzheimer's disease: evidence 
for a relationship between default activity, amyloid, and memory. J Neurosci. (2005) 
25:7709–17. doi: 10.1523/JNEUROSCI.2177-05.2005

 96. Han F, Liu X, Mailman RB, Huang X, Liu X. Resting-state global brain activity 
affects early beta-amyloid accumulation in default mode network. Nat Commun. (2023) 
14:7788. doi: 10.1038/s41467-023-43627-y

 97. Barakos J, Sperling R, Salloway S, Jack C, Gass A, Fiebach JB, et al. MR imaging 
features of amyloid-related imaging abnormalities. AJNR Am J Neuroradiol. (2013) 
34:1958–65. doi: 10.3174/ajnr.A3500

 98. Bao W, Jia H, Finnema S, Cai Z, Carson RE, Huang YH. PET imaging for early 
detection of Alzheimer's disease: from pathologic to physiologic biomarkers. PET Clin. 
(2017) 12:329–50. doi: 10.1016/j.cpet.2017.03.001

 99. Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, et al. 
Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease. 
Ann Neurol. (1997) 41:17–24. doi: 10.1002/ana.410410106

 100. McMillan CT, Irwin DJ, Avants BB, Powers J, Cook PA, Toledo JB, et al. White 
matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. 
J Neurol Neurosurg Psychiatry. (2013) 84:949–55. doi: 10.1136/jnnp-2012-304418

 101. Xiao-Chuan W, Zheng-Hui H, Zheng-Yu F, Yue F, Yun-Huang Y, Qun W, et al. 
Correlation of Alzheimer-like tau hyperphosphorylation and fMRI bold intensity. Curr 
Alzheimer Res. (2004) 1:143–8. doi: 10.2174/1567205043332216

 102. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. 
Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal 
ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg 
Psychiatry. (1992) 55:967–72. doi: 10.1136/jnnp.55.10.967

 103. Jack CR Jr, Petersen RC, O'Brien PC, Tangalos EG. MR-based hippocampal 
volumetry in the diagnosis of Alzheimer's disease. Neurology. (1992) 42:183–8. doi: 
10.1212/WNL.42.1.183

 104. Krajcovicova L, Klobusiakova P, Rektorova I. Gray matter changes in Parkinson's 
and Alzheimer's disease and relation to cognition. Curr Neurol Neurosci Rep. (2019) 
19:85. doi: 10.1007/s11910-019-1006-z

 105. Ni R. Magnetic resonance imaging in Tauopathy animal models. Front Aging 
Neurosci. (2021) 13:791679. doi: 10.3389/fnagi.2021.791679

 106. Pontecorvo MJ, Devous MD, Kennedy I, Navitsky M, Lu M, Galante N, et al. A 
multicentre longitudinal study of flortaucipir (18F) in normal ageing, mild cognitive 
impairment and Alzheimer's disease dementia. Brain. (2019) 142:1723–35. doi: 10.1093/
brain/awz090

 107. Ossenkoppele R, Smith R, Mattsson-Carlgren N, Groot C, Leuzy A, Strandberg 
O, et al. Accuracy of tau positron emission tomography as a prognostic marker in 
preclinical and prodromal Alzheimer disease: a head-to-head comparison against 
amyloid positron emission tomography and magnetic resonance imaging. JAMA Neurol. 
(2021) 78:961–71. doi: 10.1001/jamaneurol.2021.1858

 108. Guan H, Wang C, Cheng J, Jing J, Liu T. A parallel attention-augmented bilinear 
network for early magnetic resonance imaging-based diagnosis of Alzheimer's disease. 
Hum Brain Mapp. (2022) 43:760–72. doi: 10.1002/hbm.25685

 109. Turhan G, Kucuk H, Isik EO. Spatio-temporal convolution for classification of 
alzheimer disease and mild cognitive impairment. Comput Methods Prog Biomed. (2022) 
221:106825. doi: 10.1016/j.cmpb.2022.106825

 110. Warren SL, Moustafa AA. Functional magnetic resonance imaging, deep 
learning, and Alzheimer's disease: a systematic review. J Neuroimaging. (2023) 33:5–18. 
doi: 10.1111/jon.13063

 111. Frizzell TO, Glashutter M, Liu CC, Zeng A, Pan D, Hajra SG, et al. Artificial 
intelligence in brain MRI analysis of Alzheimer's disease over the past 12 years: a 
systematic review. Ageing Res Rev. (2022) 77:101614. doi: 10.1016/j.arr.2022.101614

 112. Arya AD, Verma SS, Chakarabarti P, Chakrabarti T, Elngar AA, Kamali AM, et al. A 
systematic review on machine learning and deep learning techniques in the effective diagnosis 
of Alzheimer's disease. Brain Inform. (2023) 10:17. doi: 10.1186/s40708-023-00195-7

 113. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–44. doi: 
10.1038/nature14539

 114. Ghafoorian M, Karssemeijer N, Heskes T, Bergkamp M, Wissink J, Obels J, et al. 
Deep multi-scale location-aware 3D convolutional neural networks for automated 
detection of lacunes of presumed vascular origin. Neuroimage Clin. (2017) 14:391–9. 
doi: 10.1016/j.nicl.2017.01.033

 115. Bashyam VM, Erus G, Doshi J, Habes M, Nasrallah I, Truelove-Hill M, et al. MRI 
signatures of brain age and disease over the lifespan based on a deep brain network and 
14 468 individuals worldwide. Brain. (2020) 143:2312–24. doi: 10.1093/brain/awaa160

 116. Huang Y, Xu J, Zhou Y, Tong T, Zhuang XAlzheimer’s Disease Neuroimaging 
Initiative. Diagnosis of Alzheimer's disease via multi-modality 3D convolutional neural 
network. Front Neurosci. (2019) 13:509. doi: 10.3389/fnins.2019.00509

 117. Sima DM, Phan TV, Van Eyndhoven S, Vercruyssen S, Magalhaes R, Liseune A, 
et al. Artificial intelligence assistive software tool for automated detection and 
quantification of amyloid-related imaging abnormalities. JAMA Netw Open. (2024) 
7:e2355800. doi: 10.1001/jamanetworkopen.2023.55800

https://doi.org/10.3389/fneur.2024.1510522
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.3233/JAD-200472
https://doi.org/10.1016/j.compbiomed.2022.106240
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1523/JNEUROSCI.2177-05.2005
https://doi.org/10.1038/s41467-023-43627-y
https://doi.org/10.3174/ajnr.A3500
https://doi.org/10.1016/j.cpet.2017.03.001
https://doi.org/10.1002/ana.410410106
https://doi.org/10.1136/jnnp-2012-304418
https://doi.org/10.2174/1567205043332216
https://doi.org/10.1136/jnnp.55.10.967
https://doi.org/10.1212/WNL.42.1.183
https://doi.org/10.1007/s11910-019-1006-z
https://doi.org/10.3389/fnagi.2021.791679
https://doi.org/10.1093/brain/awz090
https://doi.org/10.1093/brain/awz090
https://doi.org/10.1001/jamaneurol.2021.1858
https://doi.org/10.1002/hbm.25685
https://doi.org/10.1016/j.cmpb.2022.106825
https://doi.org/10.1111/jon.13063
https://doi.org/10.1016/j.arr.2022.101614
https://doi.org/10.1186/s40708-023-00195-7
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.nicl.2017.01.033
https://doi.org/10.1093/brain/awaa160
https://doi.org/10.3389/fnins.2019.00509
https://doi.org/10.1001/jamanetworkopen.2023.55800

	The global research of magnetic resonance imaging in Alzheimer’s disease: a bibliometric analysis from 2004 to 2023
	1 Introduction
	2 Methods
	2.1 Database
	2.2 Search strategy
	2.3 Data analysis and visualization

	3 Results
	3.1 Global trends in publications
	3.2 Analysis of countries/regions and institutions
	3.3 Analysis of authors
	3.4 Analysis of journals
	3.5 Analysis of hotspots
	3.5.1 Analysis of keywords
	3.5.2 Reference analysis

	4 Discussion
	4.1 Stage I
	4.2 Stage II
	4.3 Stage III

	5 Limitation
	6 Conclusion

	References

