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Alzheimer’s disease (AD) is a neurodegenerative disorder marked by 
cognitive decline, primarily affecting memory and executive function. This 
review highlights recent advancements in single-cell sequencing and spatial 
transcriptomics, which provide detailed insights into the cellular heterogeneity 
and neuroimmune mechanisms of AD. The review addresses the need for 
understanding complex cellular interactions to identify novel therapeutic targets 
and biomarkers. Single-cell sequencing has revolutionized our understanding 
by mapping gene expression at the individual cell level, revealing distinct 
microglial and astrocytic states that contribute to neuroinflammation and 
neurodegeneration. These technologies have uncovered disease-associated 
microglial subpopulations and gene expression changes linked to AD risk genes, 
essential for developing targeted therapies. In conclusion, the integration 
of single-cell and spatial transcriptomics with other omics data is crucial 
for a comprehensive understanding of AD, paving the way for personalized 
medicine. Continued interdisciplinary collaboration will be vital in translating 
these findings into effective treatments, improving patient outcomes.
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1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, affecting millions 
worldwide, with prevalence rates increasing with age (1–3). The disease significantly 
impacts cognitive functions, particularly memory, executive function, and visuospatial 
skills, leading to a progressive decline in the ability to perform daily activities (4, 5). 
The progression of AD can be categorized into three stages: preclinical, mild cognitive 
impairment (MCI), and Alzheimer’s dementia, each with varying degrees of cognitive 
and functional impairment (1, 6). The pathological hallmarks of AD include amyloid 
plaques, neurofibrillary tangles, and significant neuronal loss (7). Amyloid plaques are 
extracellular deposits of amyloid-beta peptides, while neurofibrillary tangles consist of 
hyperphosphorylated tau proteins within neurons, disrupting normal cell function (8, 
9). These pathologies contribute to synaptic dysfunction, neuroinflammation, and 
ultimately neuronal death, which are critical drivers of cognitive decline observed in 
AD patients (10, 11).
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Single-cell sequencing is a cutting-edge technology that allows 
for the analysis of gene expression at the individual cell level, 
providing a detailed map of cellular diversity and function (4). This 
technique involves isolating single cells, amplifying their genetic 
material, and sequencing it to identify unique gene expression 
profiles (9). The ability to dissect the transcriptomes of individual 
cells provides unprecedented resolution in understanding cellular 
heterogeneity in complex tissues like the brain (8). In neuroimmune 
research, single-cell sequencing has become invaluable for 
identifying distinct cell types, states, and interactions within the 
brain’s immune landscape (12). This technology enables the detailed 
characterization of microglia, astrocytes, and other immune cells, 
revealing their roles in neuroinflammation and neurodegeneration 
(13). By mapping the cellular and molecular changes associated with 
AD, researchers can uncover new targets for therapeutic 
intervention and develop strategies to modulate neuroimmune 
responses (14).

In recent years, single-cell sequencing and spatial transcriptomics 
have significantly advanced our understanding of Alzheimer’s disease 
(AD). Studies have identified new disease-associated microglial 
populations and other non-neuronal cell types that play crucial roles 
in neuroinflammation and neurodegeneration in AD. For example, 
recent research has uncovered distinct microglial subpopulations with 
differential roles in amyloid-beta clearance and neuroinflammation 
(15, 16). Additionally, recent meta-analyses and systematic reviews 
have highlighted the potential of these technologies in identifying new 
biomarkers for AD (17, 18). Innovations in spatial transcriptomics, 
such as Visium and MERFISH, have enabled high-resolution mapping 
of gene expression in AD-affected brain regions, revealing how 
cellular interactions change in response to amyloid pathology (19). 
Furthermore, the integration of transcriptomics with other omic 
technologies, like proteomics, is providing a more comprehensive 
view of the molecular mechanisms driving AD, offering new 
opportunities for biomarker discovery and therapeutic targeting 
(20, 21).

2 Neuroimmune mechanisms in 
Alzheimer’s disease

2.1 Inflammatory responses in AD

Microglia, the resident immune cells of the central nervous 
system, are crucial in AD through various activation states and 
functions (22). Activated microglia can phagocytose amyloid-beta 
(Aβ) plaques, but chronic activation leads to neurotoxic substance 
release, exacerbating neuronal damage (23). Genetic studies have 
shown several AD-associated genes are predominantly expressed in 
microglia, suggesting their critical involvement in early disease 
stages (24).

Astrocytes also play a significant role in AD-related 
neuroinflammation. These cells become reactive and release 
inflammatory cytokines that can alter the neuronal environment (25). 
Reactive astrocytes exacerbate neuronal damage through the release 
of neurotoxic substances, contributing to excitotoxicity and further 
neuronal loss (26). Their interaction with microglia, such as the 
activation of P2X7 receptors by astrocytic ATP release, promotes the 
formation of the NLRP3 inflammasome, implicated in AD (27).

The NF-κB and NLRP3 inflammasome pathways are key 
mediators of the inflammatory response in AD. NF-κB activation in 
microglia and astrocytes leads to the transcription of pro-inflammatory 
cytokines, contributing to chronic neuroinflammation (27). The 
NLRP3 inflammasome further amplifies this response by promoting 
the release of interleukin-1β (IL-1β), a potent pro-inflammatory 
cytokine (28, 29). Targeting these pathways has shown promise in 
reducing neuroinflammation and improving cognitive function in 
animal models of AD (30) (Figure 1).

2.2 Immune cell heterogeneity

The brain’s immune landscape includes microglia, astrocytes, and 
infiltrating peripheral immune cells, each contributing uniquely to 
AD (31). Microglia are primary immune cells, while astrocytes 
participate actively in immune responses and interact closely with 
microglia (32). Peripheral immune cells, such as macrophages and 
lymphocytes, can infiltrate the brain in AD, further complicating the 
neuroimmune dynamics (33).

Single-cell sequencing has revolutionized our understanding of 
immune cell heterogeneity in the brain, identifying unique 
subpopulations with distinct transcriptomic signatures (30). In AD, 
single-cell RNA sequencing has uncovered diverse microglial states, 
including disease-associated microglia (DAM), characterized by 
upregulated genes involved in phagocytosis and lipid metabolism (34).

The functional heterogeneity of immune cells in the brain 
significantly impacts AD progression and pathology. Different 
subpopulations of microglia and astrocytes can have opposing effects 
on neuroinflammation, neuronal survival, and amyloid clearance, 
highlighting the need for targeted therapeutic approaches (15, 35). 
Understanding the roles of these diverse cell populations is 
crucial for developing effective therapies to mitigate AD pathology (31) 
(Figure 2).

3 Single-cell transcriptomics in 
Alzheimer’s disease

3.1 Role of single-cell transcriptomics

Single-cell transcriptomics (scRNA-seq) is a revolutionary 
technology that enables the profiling of gene expression at the single-
cell level, providing unparalleled insights into cellular heterogeneity. 
Unlike bulk RNA sequencing, which averages gene expression across 
many cells, scRNA-seq captures the transcriptomic diversity of 
individual cells, revealing distinct cellular states and subpopulations 
(15, 36). This granularity is crucial for understanding complex tissues, 
like the brain, where different cell types and states contribute to overall 
function and disease progression (37). The technique involves isolating 
single cells, reverse-transcribing their RNA into complementary DNA 
(cDNA), amplifying the cDNA, and then sequencing it to quantify 
gene expression. Various platforms, such as droplet-based methods 
(10x Genomics) and plate-based methods (SMART-Seq), have been 
developed, each with specific advantages in terms of throughput and 
sensitivity (16). These advancements have made it possible to profile 
thousands to millions of cells in a single experiment, greatly enhancing 
our understanding of cellular diversity (38).
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scRNA-seq technologies have become pivotal in advancing our 
understanding of Alzheimer’s disease (AD), enabling detailed analyses 
of cellular heterogeneity and molecular mechanisms. Two of the most 
widely used platforms for scRNA-seq are droplet-based methods (e.g., 
10x Genomics, Drop-seq) and plate-based methods (e.g., SMART-seq, 
CEL-Seq), each with distinct strengths and limitations (39). Droplet-
based methods, such as 10x Genomics, are known for their high 
throughput, enabling the processing of thousands to millions of cells, 
which is particularly beneficial for large-scale studies of AD pathology. 
However, their sensitivity may be lower, especially when analyzing 
rare cell types, as these methods can miss low-abundance populations 
(15, 40). In contrast, plate-based methods like SMART-seq offer 
higher sensitivity and better detection of rare transcripts, making 
them ideal for studying specific cell types like neurons or microglia in 
AD, which are crucial for understanding disease progression. These 
methods provide more detailed transcriptomic profiles but come with 
higher costs and lower throughput compared to droplet-based 
methods, making them more suited for focused studies on particular 
cell populations (41). A comparison of the two platforms highlights 
their respective advantages: droplet-based methods are more scalable 
and cost-effective, while plate-based methods excel in capturing more 

nuanced and rare transcriptomic information, crucial for dissecting 
the molecular basis of AD (42). By selecting the appropriate platform, 
researchers can tailor their approach to the specific needs of their AD 
studies, balancing between scale and resolution.

The application of single-cell transcriptomics to AD research has 
evolved significantly since its inception. Initial studies focused on bulk 
RNA sequencing, which, while informative, masked the contributions 
of individual cell types to disease pathology (43). The first major 
scRNA-seq study in AD was conducted by Mathys et al. (15), who 
profiled approximately 80,000 cells from the prefrontal cortex of 
individuals with varying degrees of AD pathology, identifying cell-
type-specific transcriptional changes and revealing the complexity of 
the disease at a cellular level. Since then, numerous studies have 
expanded on this work, utilizing advanced single-cell and single-
nucleus RNA sequencing techniques to dissect the transcriptomic 
landscapes of different brain regions and cell types in AD (34). These 
studies have uncovered novel insights into the roles of specific cell 
types, such as microglia and oligodendrocytes, in disease progression, 
and have identified key molecular pathways involved in AD (18).

Single-cell transcriptomics has fundamentally transformed our 
understanding of Alzheimer’s disease by highlighting the cellular 

FIGURE 1

Neuroimmune mechanisms in Alzheimer’s disease. This figure depicts the complex neuroimmune mechanism of Alzheimer’s disease (AD). Microglial 
cells are activated by the deposition of a large amount of Aβ and engulf Aβ plaques, but the activation process releases neurotoxic substances, 
damaging neurons. On one hand, astrocytes can activate the formation of NLRP3 inflammasomes by releasing ATP to activate the P2X7 receptor, 
further releasing neurotoxic substances, exacerbating neuronal damage. On the other hand, astrocytes’ excessive release of glutamate and other 
excitatory amino acids can generate excitotoxicity, damaging neurons. The activation of the NF-κB pathway leads to the transcription of pro-
inflammatory cytokines and Aβ deposition, resulting in neuronal damage and death. Furthermore, in peripheral immunity, the infiltration of 
macrophages and lymphocytes into the brain further exacerbates neural damage. Multiple factors collectively contribute to the progression of AD.
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heterogeneity within affected brain regions. It has revealed distinct 
transcriptional profiles of neurons, glial cells, and other brain cell 
types, showing how these profiles change with disease progression (15, 
41). For instance, scRNA-seq studies have identified disease-associated 
microglial subpopulations that exhibit upregulated inflammatory 
responses, suggesting a critical role for these cells in AD pathology 
(16). Moreover, single-cell transcriptomics has facilitated the 
identification of cell-type-specific gene expression changes associated 
with AD risk genes, providing deeper insights into the molecular 
mechanisms underlying the disease (16). This technology continues 
to drive forward our understanding of AD, paving the way for the 
development of targeted therapeutic strategies (37).

3.2 Cellular heterogeneity in Alzheimer’s 
disease by single-cell transcriptomics

Significant findings from single-cell transcriptomics studies in AD 
have underscored the complex and multifaceted nature of the disease. 
Mathys et al. (15) identified transcriptionally distinct subpopulations 

across six major brain cell types, including those associated with AD 
pathology. This study revealed that early disease-associated changes 
are highly cell-type specific, whereas later changes involve global stress 
responses common across cell types. Another major discovery by 
Grubman et al. (16) highlighted the cell-type-specific gene expression 
regulation in the entorhinal cortex of AD patients. They found that the 
Alzheimer’s disease risk gene APOE is differentially regulated across 
various cell types, suggesting diverse roles in disease progression. 
Furthermore, a study by Morabito et al. (43) utilized a multi-omic 
approach to identify disease-associated regulatory elements and target 
genes, providing insights into the gene-regulatory mechanisms in AD.

These discoveries have significantly impacted our understanding 
of Alzheimer’s disease pathogenesis. The identification of cell-type-
specific gene expression changes has revealed how different brain cells 
contribute to AD in unique ways (15). For example, the discovery of 
disease-associated microglial subpopulations has highlighted the 
importance of neuroinflammation in AD (16). Similarly, the 
identification of oligodendrocyte-associated regulatory modules 
linked to AD risk genes has emphasized the role of myelination in 
disease progression (43). These insights have also provided new 

FIGURE 2

Pathological mechanisms underlying Alzheimer’s disease (AD). This figure depicts the molecular and cellular mechanisms contributing to the 
pathogenesis of Alzheimer’s disease (AD). The accumulation of amyloid-beta (Aβ) peptides, derived from the cleavage of amyloid precursor protein 
(APP), leads to the formation of extracellular Aβ plaques, a hallmark of AD pathology. Concurrently, hyperphosphorylation of tau proteins within 
neurons results in the formation of paired helical filaments (PHFs) and neurofibrillary tangles (NFTs), disrupting microtubule stability and intracellular 
transport. These processes contribute to synaptic loss and neuronal dysfunction, which are directly linked to cognitive deficits in AD. 
Neuroinflammation exacerbates disease progression, as shown by the activation of disease-associated microglia (DAM) and astrocytes in response to 
Aβ plaques. DAM release pro-inflammatory factors, further amplifying neuronal damage, while astrocytes mediate the activation of the NLRP3 
inflammasome through ATP signaling, aggravating neurotoxicity. Together, these events culminate in neuronal loss and brain atrophy, manifesting as 
the clinical symptoms of memory impairment and cognitive decline characteristic of AD.
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avenues for therapeutic intervention. By targeting specific cell types 
and their associated pathways, it may be possible to develop more 
effective treatments for AD (41). The understanding of transcriptional 
changes at a single-cell level allows for the precise modulation of 
disease-relevant pathways, potentially leading to personalized 
medicine approaches for AD.

3.3 Single-cell insights into 
disease-associated microglia

scRNA-seq has unveiled the critical roles of disease-associated 
microglia (DAM) in Alzheimer’s disease (AD), providing novel 
insights into its pathogenesis. DAM exhibits a stratified activation 
pattern with early and late states. Early DAM activation occurs 
through a TREM2-independent pathway, characterized by the 
upregulation of genes associated with phagocytic function, such as 
APOE and CSF1R, enabling the clearance of Aβ plaques. In contrast, 
late-stage DAM depends on TREM2 signaling and exhibits increased 
expression of pro-inflammatory genes, such as IL-1β and TNF-α, 
leading to chronic neuroinflammation and neuronal damage. These 
dual roles highlight DAM’s protective function in early-stage AD 
while contributing to exacerbated pathology in later stages (17, 44, 45).

Gene network analyses have provided a deeper understanding of 
DAM stratification mechanisms. Early DAM is regulated by key genes 
such as TREM2, APOE, and LPL, which are critical in lipid metabolism 
and phagocytic pathways. Transcription factors, including SPI1 and 
MEF2, have been identified as central regulators in DAM activation and 
AD risk modulation (15, 46, 47). Single-cell studies have revealed the 
dynamic transcriptional changes in DAM across AD stages, 
emphasizing their potential as biomarkers and therapeutic targets.

The discovery of DAM has significant clinical implications. DAM 
states are potential biomarkers for monitoring early AD progression 
and neuroinflammation. Moreover, therapeutic strategies targeting 
DAM, such as modulating TREM2 signaling to enhance Aβ clearance 
or inhibiting late DAM’s pro-inflammatory cytokines, hold promise 
for mitigating AD progression (48, 49). Future research should focus 
on elucidating DAM’s regulatory mechanisms and exploring species-
specific differences to advance precision medicine approaches in 
AD treatment.

4 Spatial transcriptomics in 
Alzheimer’s disease

4.1 Spatial distribution of immune cells

Spatial transcriptomics, utilizing techniques such as in situ 
hybridization and spatially resolved RNA-seq, has revolutionized 
our understanding of the spatial distribution of immune cells in AD 
(19). These methodologies enable the detailed mapping of gene 
expression across different brain regions, providing insights into the 
localization and density of immune cells in both healthy and 
AD-affected brains (14). For instance, spatial transcriptomic analysis 
using the 10x Genomics Visium platform has revealed significant 
changes in the distribution patterns of immune cells in various brain 
regions such as the hippocampus and cortex in AD models compared 
to healthy controls (20). The Visium platform combines spatially 

resolved transcriptomic data with histological images, enabling 
researchers to link gene expression patterns directly to tissue 
morphology. This technology has been particularly effective in 
mapping amyloid-beta (Aβ) and tau pathology in brain regions 
affected by AD, revealing spatially distinct gene expression signatures 
associated with disease progression (16). By contrast, MERFISH uses 
highly multiplexed in situ hybridization to achieve single-molecule 
resolution, allowing for the identification and localization of 
hundreds to thousands of genes simultaneously. This capability is 
especially valuable for dissecting cell–cell interactions in AD, such 
as the interplay between microglia and astrocytes in response to 
neuroinflammation (50).

In AD brains, there is a marked alteration in the spatial 
distribution of immune cells, including microglia and astrocytes, 
which are closely associated with amyloid plaques and neurofibrillary 
tangles. Studies have demonstrated increased microglial activation 
and clustering around amyloid plaques, suggesting a role in plaque 
clearance and neuroinflammation (19, 51). Comparisons between 
healthy and AD brains indicate not only changes in cell density but 
also significant shifts in the activation states of these immune cells, 
which may contribute to the progression of neurodegenerative 
pathology (52).

4.2 Neuroimmune interactions

The interplay between neurons and immune cells in AD involves 
complex mechanisms such as synaptic pruning and neuroinflammation. 
Spatial transcriptomics has uncovered critical insights into how these 
interactions exacerbate neuronal dysfunction and cell death (53). For 
instance, microglia-mediated synaptic pruning, which is essential for 
normal brain development, becomes dysregulated in AD, leading to 
excessive synapse loss and cognitive decline (19).

Neuroimmune interactions also significantly impact AD 
pathology through mechanisms involving the complement system, 
oxidative stress, and lysosomal pathways. These interactions are 
spatially and temporally dynamic, influencing the progression of AD 
by affecting neuronal health and synaptic integrity (54). Specific case 
studies have highlighted how spatial transcriptomics can map the 
interactions between neurons and immune cells at high resolution, 
providing a detailed analysis of key molecular pathways involved in 
AD (19, 55).

4.3 Cellular spatial patterns in Alzheimer’s 
disease

Disease-associated microglia (DAM) are predominantly localized 
around amyloid-beta (Aβ) plaques, where they are involved in early 
Aβ clearance but also contribute to neuroinflammation in late stages. 
Activated astrocytes are distributed densely in the prefrontal cortex 
and hippocampus, where they release ATP to activate P2X7 receptors, 
triggering inflammatory cascades. Moreover, pathological neurons 
displaying Tau protein hyperphosphorylation and synaptic loss are 
primarily observed in the hippocampal CA1 region, correlating with 
early cognitive deficits (19, 54).

The hippocampus, a region critical for memory, exhibits 
significant early-stage pathological changes, such as Tau 

https://doi.org/10.3389/fneur.2024.1515981
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


He et al. 10.3389/fneur.2024.1515981

Frontiers in Neurology 06 frontiersin.org

phosphorylation and synaptic degeneration. In contrast, the prefrontal 
cortex demonstrates broader inflammatory activation, particularly in 
later stages of AD. Spatial transcriptomics has enabled detailed 
mapping of these region-specific cellular and molecular alterations, 
revealing distinct microglial, astrocytic, and neuronal responses across 
brain regions. This regional heterogeneity underscores the complexity 
of AD pathogenesis and highlights the importance of spatially resolved 
data to link cellular dysfunction to pathology (50, 53).

Spatial transcriptomics has further advanced the study of gene 
expression dynamics near Aβ plaques (19). High-resolution 
techniques, such as Stereo-seq and CosMx, have revealed coordinated 
microglial-astrocytic responses, complement activity, oxidative stress, 
and inflammation in the plaque microenvironment (55). These 
findings suggest a progression from Aβ-driven to inflammation-
driven pathology as the disease advances. By integrating spatial 
transcriptomics with advanced computational approaches, researchers 
are now able to dissect the molecular and cellular networks driving 
AD pathogenesis, providing new targets for therapeutic 
intervention (53).

5 Novel neuroimmune markers in 
Alzheimer’s disease

5.1 Identification of biomarkers

Recent advancements in methods such as single-cell RNA 
sequencing (scRNA-seq), spatial transcriptomics, and proteomics 
have significantly enhanced our ability to identify novel biomarkers 
for AD. Single-cell RNA-seq allows for the dissection of complex 
tissues into individual cell types, revealing distinct molecular 
signatures associated with AD (56). Spatial transcriptomics adds 
another layer by preserving the spatial context of gene expression 
within the brain, which is crucial for understanding the 
microenvironmental influences on AD pathology (54). Proteomics, 
particularly through the analysis of brain-derived exosomal proteins, 
has identified potential biomarkers such as amyloid-β42, total tau, and 
phosphorylated tau (56).

Key biomarkers identified through these techniques include 
specific proteins and RNAs that play pivotal roles in the pathogenesis 
of AD. For instance, amyloid-β and tau proteins are well-established 
markers, but recent studies have highlighted the importance of other 
molecules such as neurofilament light (NfL) and phosphorylated 
tau181 (p-tau181), which have shown promise in distinguishing AD 
patients from healthy controls (57). These biomarkers not only aid in 
early diagnosis but also hold potential for predicting disease 
progression and response to treatment (58).

5.2 New biomarkers in Alzheimer’s disease: 
p-Tau181 and NfL

Alzheimer’s disease (AD) is characterized by the accumulation of 
amyloid-beta (Aβ) plaques and tau neurofibrillary tangles, leading to 
neurodegeneration and cognitive decline. Recent advancements in 
biomarker research have highlighted the significance of 
phosphorylated tau at threonine 181 (p-tau181) and neurofilament 

light chain (NfL) as promising indicators for diagnosing and 
monitoring the progression of AD.

p-Tau181 has emerged as a critical biomarker due to its strong 
association with tau pathology in the brain. Studies have 
demonstrated that elevated levels of plasma p-tau181 correlate with 
the presence of amyloid pathology and tau deposition as measured 
by positron emission tomography (PET) scans. In particular, 
p-tau181 has shown high diagnostic accuracy in distinguishing AD 
from other neurodegenerative disorders, with area under the curve 
(AUC) values indicating excellent performance (59). Furthermore, 
longitudinal studies suggest that p-tau181 levels can predict 
cognitive decline and neurodegeneration, making it a valuable tool 
for early detection and monitoring of disease progression (60). 
Neurofilament light chain (NfL) is another emerging biomarker that 
reflects axonal damage and neurodegeneration. Elevated NfL levels 
in both cerebrospinal fluid (CSF) and plasma have been associated 
with various neurodegenerative diseases, including AD (27, 61). 
Research indicates that NfL levels correlate with cognitive 
impairment and can serve as a prognostic marker for disease 
progression (10, 44). The combination of NfL with other biomarkers, 
such as p-tau181, enhances diagnostic accuracy and provides a more 
comprehensive understanding of the underlying pathology in AD 
(27, 61).

The integration of p-tau181 and NfL into clinical practice could 
revolutionize the approach to diagnosing and managing Alzheimer’s 
disease. These biomarkers not only facilitate early detection but also 
offer insights into the disease’s trajectory, enabling personalized 
treatment strategies. As research continues to validate these 
biomarkers, they hold the potential to significantly improve outcomes 
for individuals at risk for or diagnosed with Alzheimer’s disease.

5.3 Comparative analysis of Alzheimer’s 
disease and other neurodegenerative 
diseases

Alzheimer’s disease (AD) is the most prevalent form of 
neurodegenerative disorders, characterized by progressive cognitive 
decline and specific neuropathological features such as amyloid-beta 
plaques and neurofibrillary tangles. However, it is essential to 
understand how AD compares and contrasts with other 
neurodegenerative diseases, such as Parkinson’s disease (PD), 
frontotemporal dementia (FTD), and dementia with Lewy bodies 
(DLB). Recent studies have highlighted commonalities in biological 
pathways, genetics, and cellular mechanisms between AD and other 
neurodegenerative diseases. For instance, both AD and PD share 
similar inflammatory responses and oxidative stress pathways that 
contribute to neuronal degeneration (62, 63). Additionally, the role of 
tau protein in AD is mirrored by its involvement in other tauopathies, 
suggesting a shared mechanism of neurodegeneration across these 
diseases (64). Moreover, the differential diagnosis of AD from other 
neurodegenerative disorders remains a challenge due to overlapping 
symptoms. For example, olfactory dysfunction has been identified as 
a potential early marker for AD, but similar deficits are also observed 
in PD and DLB. This indicates that while there are distinct pathological 
features associated with each disease, there are also significant overlaps 
that complicate clinical assessments.
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The use of biomarkers has become increasingly important in 
differentiating AD from other neurodegenerative diseases. For 
instance, cerebrospinal fluid (CSF) levels of specific proteins, such as 
α-synuclein, have been shown to vary significantly between AD and 
PD, providing a potential avenue for accurate diagnosis (65). 
Additionally, recent advancements in epigenetic profiling have 
revealed distinct signatures that may help in identifying specific 
neurodegenerative conditions, including AD (66). Furthermore, 
lifestyle factors, such as physical exercise, have been shown to 
influence the progression of AD and other neurodegenerative diseases 
(67). Long-term treadmill exercise has been reported to reduce 
amyloid-beta burdens and improve cognitive function in animal 
models of AD. This suggests that interventions targeting lifestyle 
modifications could have broader implications for managing various 
neurodegenerative diseases. While Alzheimer’s disease is a distinct 
entity within the spectrum of neurodegenerative disorders, its 
pathophysiology shares common features with other diseases. 
Understanding these similarities and differences is crucial for 
developing effective diagnostic and therapeutic strategies.

5.4 Validation and functional studies

The validation of these biomarkers is crucial for their adoption in 
clinical settings. Techniques such as immunohistochemistry 
and flow cytometry are commonly used for this purpose. 
Immunohistochemistry allows for the visualization of biomarker 
distribution within brain tissues, confirming their presence and 
relevance in AD pathology (68). Flow cytometry, on the other hand, 
enables the quantification of biomarkers in blood samples, providing 
a less invasive method for monitoring disease progression (69).

Functional studies further elucidate the roles of these biomarkers 
in AD. In vitro and in vivo models, including the use of CRISPR/Cas9 
for gene editing, have been instrumental in understanding how 
specific biomarkers contribute to disease mechanisms. For instance, 
CRISPR/Cas9 has been used to manipulate genes associated with 
amyloid-β production, providing insights into the molecular pathways 
involved in plaque formation (70). In vivo studies using 
transgenic mouse models have demonstrated how alterations in 
biomarkers such as p-tau181 can influence cognitive decline and 
neurodegeneration (71).

Case studies provide concrete examples of validated biomarkers 
and their functional roles in AD pathology. For example, plasma 
p-tau181 has been shown to predict cognitive decline and 
hippocampal atrophy in patients, underscoring its utility as a 
prognostic marker (32). Similarly, the combination of multiple 
biomarkers, such as amyloid-β42/40 ratio, NfL, and p-tau181, has 
been effective in predicting disease progression in cognitively 
unimpaired elderly individuals (69).

6 Therapeutic implications

6.1 Targeting neuroimmune pathways

Current therapeutic strategies for AD increasingly focus on 
modulating neuroimmune pathways. Anti-inflammatory drugs, 
immunomodulators, and antibody therapies are among the most 

prominent approaches. For instance, monoclonal antibodies such as 
lecanemab and aducanumab target amyloid-β (Aβ) to reduce its 
aggregation, thereby addressing one of the primary pathological 
features of AD (72). Anti-inflammatory drugs aim to mitigate the 
chronic neuroinflammation seen in AD by targeting pathways like the 
NF-κB and NLRP3 inflammasome pathways, which are crucial in 
mediating inflammatory responses in the brain (73).

Recent advancements in single-cell sequencing and spatial 
transcriptomics have provided new insights into potential therapeutic 
targets. These techniques have identified specific immune cell subsets 
and signaling pathways that are dysregulated in AD. For example, 
studies have highlighted the role of microglia and their associated 
pathways, such as the CSF1R signaling, as critical regulators of 
neuroinflammation and potential therapeutic targets (74). By 
modulating these pathways, therapies can potentially reduce 
neuroinflammation and promote neuroprotection, thereby slowing 
the progression of AD (75).

The mechanisms of action of these therapies often involve 
modulating the activity of immune cells, reducing the production of 
pro-inflammatory cytokines, and enhancing the clearance of Aβ. For 
instance, anti-inflammatory drugs can inhibit the activation of 
microglia and astrocytes, reducing the release of neurotoxic substances 
and mitigating neuronal damage (76). Immunomodulators and 
antibody therapies work by binding to specific targets such as Aβ or 
tau proteins, preventing their aggregation and facilitating their 
clearance from the brain (77) (Figure 3).

6.2 Future directions

Emerging therapies for AD include gene therapy, cell-based 
therapies, and precision medicine approaches. Gene therapy aims to 
correct genetic mutations associated with AD or to enhance the 
expression of protective genes. Techniques such as CRISPR/Cas9 
allow for precise genetic modifications, offering potential cures by 
targeting the underlying genetic causes of AD (70). Cell-based 
therapies, including the use of stem cells, aim to replace damaged 
neurons and support neuroregeneration, which could significantly 
improve cognitive functions in AD patients (61).

Challenges and opportunities in the development of these 
therapies include translational hurdles, the need for personalized 
medicine approaches, and ethical considerations. Translating 
findings from animal models to human patients is often 
challenging due to differences in physiology and disease 
progression (78). Personalized medicine approaches, which tailor 
treatments based on an individual’s genetic profile, can enhance 
the efficacy of therapies but require extensive genetic and 
biomarker profiling (79). Ethical considerations, such as the long-
term effects and potential risks of gene editing and stem cell 
therapies, must also be  addressed to ensure patient safety and 
public acceptance (80).

Research gaps that need further investigation include 
understanding the complex interactions between different pathological 
pathways in AD and identifying reliable biomarkers for early diagnosis 
and treatment monitoring. Studies are needed to explore the roles of 
neuroinflammation, oxidative stress, and other pathological 
mechanisms in greater detail to develop more effective multi-target 
therapies (81). Potential breakthroughs in these areas could lead to the 
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development of novel therapies that not only alleviate symptoms but 
also modify the disease course, offering hope for a cure for AD.

7 Integration of big data and AI in 
neuroimmune research

7.1 Role of big data in single-cell 
sequencing

The integration of big data in single-cell sequencing has 
transformed our ability to understand the complex neuroimmune 
interactions in Alzheimer’s disease (AD). Techniques for handling 
large datasets, such as data harmonization and advanced computational 
algorithms, are essential for processing the vast amounts of 
information generated by scRNA-seq and spatial transcriptomics (20). 
These methods enable researchers to combine data from multiple 
studies, enhancing the robustness and reproducibility of findings (18).

Big data contributions have provided comprehensive views of 
neuroimmune interactions, uncovering new discoveries about cellular 

and molecular mechanisms in AD. For instance, the integration of 
large-scale single-cell datasets has revealed previously unrecognized 
subpopulations of immune cells and their roles in AD pathology (25). 
By analyzing the gene expression profiles of individual cells, 
researchers can identify specific markers and pathways involved in 
neuroinflammation and neurodegeneration, leading to a deeper 
understanding of disease progression (21).

Case studies have demonstrated the power of big data applications 
in AD research. The ssREAD database, for example, compiles over 189 
datasets from single-cell and spatial transcriptomics studies, providing 
a valuable resource for the scientific community (41). This database 
allows researchers to perform integrative analyses, such as cell clustering 
and identification of differentially expressed genes, facilitating the 
discovery of new therapeutic targets and biomarkers for AD (20).

7.2 AI and machine learning applications

Artificial intelligence (AI) and machine learning (ML) 
applications have significantly enhanced data analysis in neuroimmune 

FIGURE 3

Identification of biomarkers, treatment strategies, and future directions in Alzheimer’s disease. This figure illustrates a comprehensive approach to 
Alzheimer’s disease (AD) research, including the identification of biomarkers, treatment strategies, and future directions. Panel A highlights the unique 
advantages of single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and proteomics in identifying novel biomarkers for AD. These 
technologies can identify specific proteins and RNAs that play a key role in the pathogenesis of AD, providing more accurate early diagnosis and more 
effective treatment. Panel B outlines current treatment strategies, including anti-inflammatory drugs, immunomodulators, antibody therapies, and 
targeted therapies, which involve modulating immune cell activity, reducing the production of pro-inflammatory cytokines, and enhancing the 
clearance of amyloid-beta (Aβ). Panel C presents future directions in AD treatment, including gene therapy, cell-based therapies, precision medicine, 
and artificial intelligence (AI) applications.

https://doi.org/10.3389/fneur.2024.1515981
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


He et al. 10.3389/fneur.2024.1515981

Frontiers in Neurology 09 frontiersin.org

research. Machine learning algorithms and AI-based predictive 
models enable the extraction of meaningful patterns from complex 
datasets, improving the accuracy of disease modeling and prediction 
of disease progression (42). These technologies allow for the 
integration of multi-omics data, combining genetic, proteomic, and 
clinical information to provide a holistic view of AD (82).

In research applications, AI has been used to identify therapeutic 
targets by analyzing single-cell sequencing data. For instance, 
AI-driven analyses have pinpointed specific immune cell types and 
signaling pathways that are dysregulated in AD, offering new avenues 
for therapeutic intervention (31). Additionally, machine learning 
models have been employed to predict patient responses to treatments, 
paving the way for personalized medicine approaches in AD care (83).

Future prospects for AI in neuroimmune research include 
AI-driven drug discovery and integration with clinical practice. AI 
algorithms can screen vast libraries of compounds to identify potential 
drugs that modulate neuroimmune pathways, accelerating the drug 
development process (84). Moreover, integrating AI tools into clinical 
practice can enhance diagnostic accuracy and treatment efficacy, 
providing personalized care based on an individual’s genetic and 
molecular profile (83). However, challenges such as data privacy, 
algorithm transparency, and the need for large, high-quality datasets 
must be addressed to fully realize the potential of AI in this field (85).

8 Conclusion

Recent advancements in single-cell sequencing and spatial 
transcriptomics have significantly enhanced our understanding of 
AD. These technologies have revealed the complexity and 
heterogeneity of brain cell types, identifying distinct cellular 
subpopulations and specific gene expression profiles associated with 
AD. Key findings include the discovery of disease-associated 
microglial subpopulations and cell-type-specific regulatory elements 
linked to AD risk genes, which provide new insights into the 
molecular mechanisms underlying the disease and potential 
therapeutic targets (15, 16, 19, 43).

Looking forward, single-cell and spatial transcriptomics are 
poised to drive new research paradigms and personalized therapeutic 
approaches for AD. By continuing to integrate these technologies with 
other omics data, researchers can develop a more comprehensive 
understanding of the disease, ultimately leading to the identification 
of novel therapeutic strategies. Collaboration, funding, and 
interdisciplinary efforts will be  essential to advance this field and 
improve patient outcomes (20).
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Glossary

AD Alzheimer’s Disease

MCI Mild Cognitive Impairment

Aβ Amyloid-beta

scRNA-seq Single-Cell RNA Sequencing

NF-κB Nuclear Factor Kappa-light-chain-enhancer of Activated B cells

NLRP3 NACHT, LRR, and PYD domains-containing protein 3

IL-1β Interleukin-1 beta

DAM Disease-Associated Microglia

APOE Apolipoprotein E

NfL Neurofilament Light

p-tau181 Phosphorylated Tau 181

CRISPR/Cas9 Clustered Regularly Interspaced Short Palindromic Repeats/Cas9

AI Artificial Intelligence

ML Machine Learning

RNA Ribonucleic Acid

cDNA Complementary DNA

ATP Adenosine Triphosphate

CSF1R Colony Stimulating Factor 1 Receptor

TACA The Alzheimer’s Cell Atlas

RNA-seq RNA Sequencing

ssREAD Single-Cell RNA Expression Analysis Database

HER2 Human Epidermal Growth Factor Receptor 2

LPS Lipopolysaccharide

Nrf2 Nuclear factor erythroid 2-related factor 2

TNF Tumor Necrosis Factor

IL2 Interleukin 2
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