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The diseases of the central nervous system (CNS) often cause irreversible damage 
to the human body and have a poor prognosis, posing a significant threat to 
human health. They have brought enormous burdens to society and healthcare 
systems. However, due to the complexity of their causes and mechanisms, effective 
treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical 
therapy, has been utilized in the treatment of various diseases. VNS has shown 
promising outcomes in some CNS diseases and has been approved by the Food 
and Drug Administration (FDA) in the United States for epilepsy and depression. 
Moreover, it has demonstrated significant potential in the treatment of stroke, 
consciousness disorders, and Alzheimer’s disease. Nevertheless, the exact efficacy 
of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article 
discusses the current clinical evidence supporting the efficacy of VNS in CNS 
diseases, providing updates on the progress, potential, and potential mechanisms 
of action of VNS in producing effects on CNS diseases.
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1 Introduction

The introduction of vagus nerve stimulation into clinical applications has been a long and 
convoluted process. VNS was initially proposed by American neurologist James Corning in 
the late 19th century in an attempt to treat epilepsy. Due to his misconceptions about epilepsy, 
VNS was abandoned (1). It wasn’t until 1988 that the first implantation of VNS was reported 
(2), leading to an increase in research on vagus nerve stimulation. After years of study, the 
efficacy and safety of VNS were confirmed, and diseases it could potentially treat gradually 
emerged. VNS was first approved by the U.S. Food and Drug Administration for treating drug-
resistant epilepsy (3). Subsequently, it was later approved for treating refractory depression, 
obesity, refractory migraines, and cluster headaches (4, 5). With advancements in the 
technology of implantable vagus nerve stimulation (iVNS) and its associated high surgical 
costs and side effects, non-invasive vagus nerve stimulation (nVNS) was proposed and 
implemented. Meanwhile, the clinical applications and effects of iVNS and nVNS also differ. 
Vagus nerve stimulation is a relatively newer therapeutic approach, and besides its explicitly 
approved clinical uses, there exist numerous potential applications (Figure 1). This article will 
provide an overview of the applications, potential, side effects, and mechanisms of action of 
vagus nerve stimulation in central nervous system diseases.
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2 Vagus nerve stimulation

2.1 Invasive vagus nerve stimulation

Invasive Vagus Nerve Stimulation (iVNS) involves surgically 
implanting a vagus nerve stimulation device into the human body. The 
vagus nerve stimulator consists of stimulating electrodes implanted 
around the vagus nerve through a small cervical incision and a pulse 
generator implanted in the subclavian region (6, 7). The device 
delivers electrical stimulation every few minutes. Additionally, 
patients can use a wristband magnet to trigger the pulse generator, 
providing an extra dose of stimulation. Over several weeks following 
implantation, the current is gradually adjusted to the target level based 
on patient tolerability (7). The electrode types include helical 
electrodes that wrap around the vagus nerve and intravascular 
electrodes placed within the internal jugular vein. Helical electrodes 
are commonly used for broad nerve activation, while intravascular 
electrodes are designed to reduce off-target effects and enhance 
stimulation specificity (8). The complications of VNS include those 
related to surgery and those associated with the device and nerve 
stimulation. During VNS implantation, the implanted device is 
typically tested using one pulse train lasting 1 min with specific 
parameters (1 mA, 550 μs, 20 Hz). This phase may result in 
bradycardia or even cardiac arrest (6, 9). Surgical complications such 
as peritracheal hematoma, infection, and vagus nerve injury have also 
been reported (10). Complications associated with the device and 
nerve stimulation include delayed arrhythmias (bradycardia, cardiac 
arrest), laryngopharyngeal dysfunction (hoarseness, dyspnea, and 
coughing) due to stimulation of the recurrent laryngeal nerve, 
obstructive sleep apnea, phrenic nerve stimulation caused by 
proximity, tonsillar pain resembling glossopharyngeal neuralgia, and 
sternocleidomastoid muscle spasms (6, 11–13). The iVNS therapy 
system is indicated for stimulating the left vagus nerve located within 
the carotid sheath, specifically below the point where the superior and 
inferior cervical cardiac branches diverge from the vagus nerve (14). 
Typically, the left-sided cervical vagus nerve is chosen as the 
implantation site for the stimulating electrodes because stimulating 
the right-sided vagus nerve can lead to severe adverse reactions. The 
right vagus nerve innervates the sinoatrial node and parts of the 
myocardium, and nerve stimulation can cause various cardiac side 
effects, such as cardiac arrest. In comparison to the right-sided vagus 
nerve, the left-sided vagus nerve innervates the atrioventricular node, 
resulting in relatively milder adverse reactions (7). Furthermore, 
studies have shown that stimulation frequencies of 50 Hz or higher 
during VNS can cause significant and irreversible damage to the vagus 
nerve. To minimize adverse events associated with direct stimulation 
of the carotid sheath, stimulation frequencies were randomly selected 
within the range of 20–30 Hz (14, 15). AspireSR is a pulse generator 
that detects heart rate through specific detection algorithms, 
recommended for use in cardiac patients due to the cardiac side effects 
of VNS (16). Additionally, SenTiva VNS has a cardiac detection 
feature that not only detects heart activity but also allows for changes 
in VNS output parameters, making VNS therapy more tailored and 
safe. The SenTiva device is smaller in size compared to AspireSR. For 
pediatric patients whose development is not yet complete, having an 
appropriately sized implantable pulse generator is particularly crucial. 
Moreover, for those seeking smaller surgical incisions and aesthetic 
considerations, SenTiva represents a favorable choice. Despite being 

withdrawn from clinical use by the U.S. Food and Drug Administration 
in 2020 due to reset errors, SenTiva regained approval in 2022 (16, 17).

2.2 Non-invasive vagus nerve stimulation

Invasive Vagus Nerve Stimulation requires surgical implantation, 
while non-invasive Vagus Nerve Stimulation avoids trauma and is 
more cost-effective. nVNS devices stimulate the VN at specific body 
surface sites to achieve therapeutic effects. nVNS comprises 
transcutaneous auricular Vagus Nerve Stimulation (taVNS) and 
transcutaneous cervical Vagus Nerve Stimulation (tcVNS), relying on 
the distribution of vagal afferents in the ear and neck, respectively 
(18). taVNS transmits signals by stimulating the auricular branch of 
the vagus nerve (ABVN). Peuker and Filler found anatomical 
structures in the ear—such as parts of the ear canal and auricle—that 
send their afferent information via vagal branches. The optimal site for 
stimulation is the cymba conchae, as ABVN primarily exists in the 
skin surrounding the cymba conchae (19, 20). tcVNS involves 
stimulation of the vagus nerve within the carotid sheath, with the 
stimulation signals activating the VN through the skin and other 
tissues near the carotid sheath, thereby inducing vagus nerve action 
potentials. tVNS can be administered using various devices, such as 
the transcutaneous Vagus Nerve Stimulation device NEMOS and the 
neck-stimulating gammaCore (21). The use of VNS is restricted to the 
left vagus nerve, while tVNS might not have this limitation. Research 
by Chen et al. suggests that unilateral VN stimulation transmits only 
on one side, while unilateral ABVN stimulation integrates within the 
nucleus tractus solitarii and then transmits bilaterally via the vagus 
nerve. Results indicate that right transcutaneous vagus nerve 
stimulation is as safe as left transcutaneous vagus nerve stimulation 
(22). Studies by He et al. and Hein E et al. respectively employed 
bilateral transcutaneous vagus nerve stimulation in clinical trials 
involving children and adults. No adverse cardiac-related reactions 
were observed in these experiments (23, 24). Although nVNS is 
relatively safe, it is not without side effects, which include localized 
skin irritation caused by electrode placement, headaches, 
nasopharyngitis, gastrointestinal reactions, palpitations, and vocal 
cord hoarseness (14). Different devices have varying stimulation 
methods, frequencies, durations, and other parameters. Currently, 
there are no standardized optimal stimulation parameters, nor is there 
literature establishing superiority between taVNS and tcVNS 
stimulation methods.

3 Clinical and potential applications in 
central nervous system diseases

3.1 Epilepsy

Since the 1990s, numerous studies have evidenced the favorable 
effects of VNS in reducing seizure frequency in epilepsy patients (25, 
26). In 1997 and 1999, the American Academy of Neurology (AAN) 
Therapeutics and Technology Assessment Subcommittee conducted 
two evaluations of VNS therapy for epilepsy. The committee concluded 
that VNS is suitable for adults and adolescents aged 12 and above with 
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refractory partial-onset seizures (excluding those suitable for 
potentially curative surgical resection) (27, 28). Due to the infrequent 
occurrence of complete seizure remission with VNS and its 
invasiveness and high cost, VNS is deemed more appropriate for 
individuals intolerant to or not benefiting from antiseizure medication 
(ASMs) (28). Subsequently, the feasibility and safety of VNS were 
further acknowledged, with observed reductions in seizure frequency 
over time (29, 30). Moreover, during the use of invasive VNS in 
epilepsy patients, the blood concentrations of ASMs remained 
unaffected by VNS and could even reduce the dosage of ASMs (31, 
32). Currently, invasive Vagus Nerve Stimulation has been approved 
for epilepsy treatment in numerous countries and regions, including 
the European Union, the USA, Canada, China, and Japan (33). In 
recent years, although iVNS has shown promising results in the 
treatment of drug-resistant epilepsy, it is still chosen only after 
antiseizure medications and surgical options have been ruled out, 
primarily due to its invasive nature and cost-effectiveness concerns. 
This is largely due to its invasive nature and cost-effectiveness 
concerns. Studies on the cost-effectiveness of iVNS have demonstrated 
a significant reduction in epilepsy-related direct medical expenses 
following VNS implantation compared to pre-implantation costs 
(34–36). Evans et al. (37) included the cost of device implantation in 
their analysis and obtained similar results. However, the reduction in 
costs is observed only when the treatment is effective and not 
prematurely discontinued due to ineffectiveness or severe side effects. 
Additionally, surgical and other medical costs vary across countries, 
leaving the cost-effectiveness of VNS still uncertain (33).

Further research has found that VNS is effective for various types 
of epilepsy and can serve as an adjunctive therapy for both focal and 
generalized seizures. However, in clinical practice, iVNS is more 

commonly used for patients with focal seizures. Some researchers 
suggest this could be because focal seizures may develop a higher 
likelihood of drug resistance, or it might relate to the relatively lower 
incidence of refractory generalized seizures in adults (33). Recent 
studies have also discovered positive effects of VNS on drug-resistant 
generalized seizures, particularly in cases of genetic generalized 
epilepsy, significantly reducing seizure frequency and epilepsy-related 
hospitalizations among these patients (38).

Invasive Vagus Nerve Stimulation can also be used as adjunctive 
therapy for pediatric epilepsy, with abundant research confirming its 
effectiveness and safety (12, 39). Children’s response to invasive VNS 
(reduction in seizure rate by ≥50%) is similar to that of adults, and 
seizure frequency tends to decrease with prolonged treatment (12, 40). 
Besides reducing seizure rates, iVNS has shown favorable outcomes 
in seizure duration, severity, post-seizure severity, quality of life, and 
overall clinical improvement (39–41). iVNS is similarly effective for 
pediatric or adolescent epilepsy syndromes, including Dravet 
syndrome (DS), Lennox–Gastaut syndrome (LGS), hypothalamic 
hamartomas, epileptic encephalopathies, Rett syndrome, and tuberous 
sclerosis complex (TSC) (39, 42–49). Initially, the FDA approved iVNS 
for patients aged 12 and older. However, Elliott et  al. found no 
significant differences in treatment efficacy or complications between 
children under 12 and older children (12 to under 18 years old) (50). 
The American Academy of Neurology guideline development 
subcommittee suggested that for children with partial and generalized 
seizures who are not suitable for brain surgery, iVNS could 
be considered (29). Subsequent clinical studies reported the use of 
iVNS in children around 5 years old, revealing more pronounced 
improvements in quality of life and cognitive outcomes in the younger 
age group (under 5 years old) (41). Thus, for children with 

FIGURE 1

Use of VNS in central nervous system diseases.
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drug-resistant epilepsy, considering VNS implantation early on could 
mitigate the adverse effects of epilepsy on their development.

Studies have suggested that Vagus Nerve Stimulation can serve as 
an adjunctive therapy to control seizures during pregnancy for women 
with epilepsy (51, 52). There are reported cases where expectant 
mothers undergoing iVNS treatment for epilepsy during pregnancy 
led to fetal anomalies, including unilateral congenital glaucoma, mild 
malformations, and heart murmurs (52, 53). However, in these cases 
of neonatal anomalies, these pregnant women were also on multiple 
antiseizure medications in addition to VNS therapy. Ding et al. (54) 
reviewed and analyzed past relevant literature, concluding that VNS 
during pregnancy is relatively safe and effective for both the fetus and 
the mother, suggesting there’s no need to deactivate VNS during 
pregnancy. However, clinical trials involving VNS therapy for 
pregnant women with epilepsy are scarce, and the sample sizes in 
existing case reports are small. Additionally, VNS is often used in 
conjunction with ASMs, making it challenging to distinguish whether 
adverse reactions are solely attributable to VNS as an isolated factor. 
Therefore, further relevant experiments are necessary to determine the 
suitability of VNS for pregnant women.

Determining the optimal stimulation parameters for patients of 
different ages and those with specific seizure types or syndromes 
remains uncertain. The side effects and stimulation levels in invasive 
Vagus Nerve Stimulation might be closely related. Higher stimulation 
levels tend to result in higher rates and severity of side effects 
compared to lower stimulation levels (32). The settings recommended 
by manufacturers for VNS therapy in epilepsy are typically 
1.5–2.25 mA with a pulse width of 250 μs and a frequency of 20 Hz. 
However, manufacturers only provide recommendations for 
therapeutic dosing and titration rather than definitive guidelines (55). 
Fahoum et al. attempted to explore target dosing for drug-resistant 
epilepsy (DRE) and inferred overall target output current and duty 
cycle for VNS therapy in epilepsy to be 1.61 mA and 17.1% duty cycle, 
respectively. Their analysis suggested that patients with longer 
durations of VNS therapy were more likely to respond to treatment, 
implying that patients with inadequate sustained dosing might still 
benefit from achieving target dosing. Therefore, improvements in 
VNS outcomes might be  achieved through appropriately 
implementing evidence-based dosing and titration guidelines (55). 
Additionally, rapid titration in DRE patients results in faster clinical 
benefits regardless of age, and children demonstrate greater tolerance 
to rapid titration (56, 57). However, most of these reports assess 
efficacy based on response rates. In practice, while considering 
efficacy, it’s essential to tailor parameters differently for individuals 
based on their unique constraints (such as age, physique, etc.) and 
side effects.

Based on existing clinical trials targeting transcutaneous Vagus 
Nerve Stimulation (tVNS) for treating drug-resistant epilepsy, the 
majority of scholars widely acknowledge tVNS as an effective, cost-
efficient, and relatively safe adjunct therapy for such patients (58–63). 
These studies assessed the effectiveness of tVNS in terms of seizure 
frequency, severity, quality of life, and epilepsy rating scales. 
Additionally, compared to invasive Vagus Nerve Stimulation, research 
indicates that transcutaneous Vagus Nerve Stimulation exhibits milder 
adverse reactions (60, 61, 63, 64). tVNS has also shown positive 
clinical outcomes for post-stroke epilepsy (65). Furthermore, studies 
have clinically validated the safety and efficacy of transcutaneous 
auricular Vagus Nerve Stimulation in treating childhood epilepsy (24). 

These findings suggest that tVNS represents a highly promising 
adjunct therapy for drug-resistant epilepsy applicable to both adults 
and children. However, differences exist in the devices used, 
stimulation parameters, and duration of studies in these clinical trials, 
hence the optimal stimulation parameters for tVNS remain unclear 
(66, 67), necessitating further research and exploration. tVNS holds 
significant potential in epilepsy treatment, given its non-invasive 
nature and relatively high safety profile, making it more acceptable to 
patients. However, there is currently no research indicating how to 
choose between tVNS or iVNS for patients with drug-resistant 
epilepsy. Apart from their efficacy in treating epilepsy, the choice 
between iVNS and tVNS in practice also involves cost-effectiveness 
considerations, which require further supporting evidence.

3.2 Depression

In clinical trials of Vagus Nerve Stimulation for epilepsy treatment, 
an unexpected discovery emerged regarding VNS’s regulatory effect 
on human emotions, suggesting a sustained improvement in mood 
(68, 69). These studies revealed the potential of VNS in treating 
depression. Early studies predominantly involved treatment-resistant 
depression patients (those unresponsive to various antidepressant 
therapies, including medications and electroconvulsive therapy). 
Following VNS treatment, these patients exhibited notable 
improvements in their 28-item Hamilton Rating Scale for Depression 
(HRS-D-28), Montgomery-Åsberg Depression Rating Scale 
(MADRS), and Clinical Global Impression Improvement score 
(CGI-I1 or 2) (70, 71). Additionally, these patients showed good 
tolerance to the treatment (72, 73). In subsequent randomized 
controlled trials, treatment-resistant depression patients receiving 
adjunctive VNS showed better performance on depression-related 
assessment scales compared to those undergoing conventional therapy 
alone, indicating the positive effects of adjunctive VNS (74, 75). 
Furthermore, apart from clinical efficacy, VNS also enhanced their 
quality of life, reduced mortality, and suicide rates (5, 75, 76). However, 
John et al. found in their experiments that the short-term efficacy 
(10 weeks) of VNS as an adjunctive treatment for treatment-resistant 
depression was not significant (77). Moreover, other experiments have 
shown that VNS-induced improvement in symptoms of depression 
accumulates over time in the short term and persists (5, 75, 78), 
suggesting that longer treatment durations might be  necessary to 
achieve the desired effects when using VNS for depression. In 2005, 
VNS was approved for depression treatment. The National Institute 
for Health and Care Excellence (NICE) released guidelines for the use 
of invasive Vagus Nerve Stimulation in treating treatment-resistant 
depression, suggesting its consideration when patients have failed 
multiple antidepressants and psychological therapies, including 
electroconvulsive therapy or other forms of neurostimulation, such as 
VNS. Current studies mostly demonstrate iVNS as an effective anti-
depression treatment, although the evidence literature is limited and 
requires further substantiation of its efficacy and safety.

Additionally, VNS might offer promising prospects for pregnant 
women and children with depression. Antidepressants have a range of 
effects on pregnant women, such as miscarriage, premature birth, fetal 
malformations, and neonatal adaptation syndrome (79). In this 
context, VNS as a treatment approach provides a new avenue. A case 
report from 2005 detailed significant relief from pregnancy-related 
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depression in a patient receiving a combination of antidepressants and 
VNS therapy (80). There have been noticeable improvements in 
emotional and depression-related assessment scores among pediatric 
patients as well (81). However, the effectiveness and safety of VNS 
therapy for treatment-resistant depression in children and pregnant 
women have not been well elucidated. Therefore, more research is 
needed to determine specific criteria for selecting candidates for iVNS 
treatment within depression.

Transcutaneous Vagus Nerve Stimulation is also effective in 
treating depression. Several clinical trials using tVNS for treatment-
resistant depression have demonstrated its effectiveness and safety. 
Combining tVNS with standard treatment offers greater benefits to 
patients (23, 82–85). Furthermore, the efficacy of tVNS in treating 
depression is comparable to that of citalopram (an antidepressant), 
suggesting that tVNS could not only serve as an adjunctive therapy 
but also potentially as an alternative treatment (86). However, there is 
still a lack of high-quality evidence regarding the effectiveness of tVNS 
for different types and severity levels of depression (87).

3.3 Stroke

Ischemic stroke and hemorrhagic stroke are two types of strokes, 
both with serious consequences that lead to a range of lingering effects 
impacting patients’ daily lives and social interactions. Vagus Nerve 
Stimulation serves as an auxiliary method in conventional 
rehabilitation treatments, displaying promising outcomes in the 
treatment of ischemic strokes. In recent years, there has been a 
growing number of animal experiments and clinical trials investigating 
VNS treatment for ischemic strokes. However, the application of VNS 
therapy is excluded for hemorrhagic strokes.

3.3.1 Limb motor function
Stroke often leads to loss of limb motor function. Studies indicate 

that about 60% of patients still experience upper limb movement 
impairments 6 months after surgery, significantly impacting their 
quality of life (88). VNS has been widely used in clinical settings for 
the recovery of upper limb function after ischemic stroke. Numerous 
clinical trials suggest that VNS in conjunction with rehabilitation (a 
home exercise program) has a positive impact on upper limb recovery 
in patients. Measurements such as the Fugl-Meyer Upper Extremity 
Assessment (FMA-UE), Wolf Motor Function Test (WMFT), Box and 
Block Test, Nine-Hole Peg Test, Stroke Impact Scale, and Motor 
Activity Log (MAL) all show positive changes (89–91).

Research has also emerged on tVNS for upper limb function 
recovery in stroke patients. Compared to a sham-VNS combined with 
upper limb movement therapy group, the Fugl-Meyer (UFM) scores 
significantly improved in the non-invasive vagus nerve stimulation 
combined with upper limb movement therapy group. This 
demonstrates the feasibility and effectiveness of tVNS in upper limb 
function recovery (92, 93). Motor-activated auricular vagus nerve 
stimulation (MAAVNS) is a closed-loop vagus nerve stimulation 
system that combines electromyography (EMG) and taVNS. Initially, 
EMG sensors detect movement in a specific muscle, and the EMG 
signal is then processed to activate the nerve stimulator, pairing 
muscle movement with tVNS (94). In a recent study, Badran et al. 
found that MAAVNS was more beneficial for upper limb function 
recovery (twice as effective as taVNS alone), and the total stimulation 

pulses received by the MAAVNS group were also fewer than those in 
the taVNS group (95).

3.3.2 Sensory function
Besides the impairment in limb movement, sensory loss after a 

stroke is also quite common, and successful movement often relies on 
the integration of sensory and motor functions (96). In a clinical study 
focusing on VNS treatment for upper limb movement impairments, 
a patient experiencing both motor and sensory issues underwent VNS 
therapy, resulting in significant recovery in limb movement while the 
sensory problems persisted. Subsequently, this patient received VNS 
combined with sensory therapy, leading to a marked improvement in 
sensory function (97). VNS holds promise as a new approach to 
treating sensory impairments, yet further evidence is needed to 
support this.

3.3.3 Dysphagia
Stroke patients commonly experience difficulty swallowing, which 

can lead to several complications such as pneumonia, dehydration, 
and malnutrition, with pneumonia being a severe complication that 
can cause fatalities. Yuan et al. reported a case where a patient’s oral 
swallowing function significantly improved after 6 weeks of using 
ta-VNS for treating swallowing difficulties (98). A recent double-
blind, placebo-controlled, parallel study involving 40 acute stroke 
patients arrived at similar conclusions (99). tVNS holds promise as a 
complementary therapy for post-stroke swallowing difficulties, yet 
further research is needed.

3.4 Disorders of consciousness

Disorders of consciousness (DOC) refer to impaired 
consciousness following severe brain or neurological injury. Based on 
their neurological behavioral functions, DOC can be classified into 
four categories: coma, vegetative state/unresponsive wakefulness 
syndrome (VS/UWS), minimally conscious state (MCS), and 
emergence from MCS to higher levels of consciousness (eMCS) (100). 
In recent years, the utilization of vagus nerve stimulation (VNS) 
techniques has sparked considerable interest among neuroscientists 
for treating disorders of consciousness. These techniques offer a 
promising neuroregulatory treatment method for the rehabilitation of 
DOC patients.

Studies investigating the use of vagus nerve stimulation in treating 
disorders of consciousness have explored various etiologies, including 
traumatic brain injury (TBI) (101), stroke (102), hypoxic–ischemic 
encephalopathy (HIE) (103), and intracerebral hemorrhage (104). 
Vagus nerve stimulation, whether invasive VNS (105) or non-invasive 
VNS (101, 103, 106), has shown favorable outcomes in treating 
DOC. In these studies, assessment of consciousness disorders includes 
behavioral assessment and brain function evaluation. Behavioral 
assessment of DOC patients primarily utilizes the revised Coma 
Recovery Scale-Revised (CRS-R). Nearly all studies using CRS-R as a 
primary outcome measure reported significant improvements in 
scores post-intervention (101, 103, 105–107), except for Wang et al.’s 
study (which did not find significant changes in the scale) (108). 
Additionally, efficacy might increase over extended periods of time 
(109). Brain function assessment via scale scoring includes 
electroencephalograms (EEG) (105), positron emission tomography 
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(PET) (105), and functional magnetic resonance imaging (observed 
changes in default mode networks and cerebral blood flow) (103, 104), 
providing evidence of cerebral changes post-stimulation. Yu et al. 
(104) found that individuals who responded to auditory stimulation 
(RtAS) had demonstrated better therapeutic outcomes following tVNS 
compared to those who did not respond, suggesting that preserved 
auditory function might be  a key preexisting factor for tVNS 
responders among DOC patients.

Research on VNS has primarily focused on patients classified as 
VS/UWS or MCS. Wang observed significant alterations in cortical 
connectivity in specific brain regions through electroencephalographic 
observation in MCS patients, with noticeable changes in interbrain 
connectivity in MCS patients (108). Noe et al. also found a significant 
improvement in CRS-R scores in MCS patients with tVNS, while VS/
UWS patients did not significantly benefit (101). However, other 
studies have indicated that VS/UWS patients also benefit from vagus 
nerve stimulation (104). In summary, the specific target population 
for the application of VNS in DOC remains inconclusive. In a review 
of VNS treatment for DOC, the author concluded that existing studies 
had insufficient sample sizes, low quality (lack of strict adherence to 
methodology, inadequate sample size selection, reliance on single 
outcome indicators to assess consciousness levels, and short 
monitoring follow-up), thus preventing definitive conclusions or 
recommendations (110).

3.5 Alzheimer’s disease

Alzheimer’s disease (AD) typically starts subtly and gradually 
progresses, manifesting as declining cognitive abilities and memory 
impairments, eventually affecting normal life (111). There is not 
extensive research on iVNS (implantable vagus nerve stimulation) for 
treating Alzheimer’s disease, but the existing reports show promising 
outcomes. Two reports involving 27 AD patients revealed 
improvements or stability in Alzheimer’s disease assessment scales 
such as the Alzheimer’s Disease Assessment Scale-Cognitive Subscale 
(ADAS-cog), the Mini-Mental State Examination (MMSE), and 
Clinician’s Interview-Based Impression of Change plus Caregiver 
Input (CIBIC+) (112, 113). Additionally, patients did not experience 
a significant decline in mood, behavior, or quality of life 1 year post-
treatment (113). Apart from enhancing cognitive capabilities, iVNS 
demonstrates a positive impact on memory loss, effectively 
ameliorating Alzheimer’s disease symptoms. Studies indicate that 
iVNS enhances word recognition memory, working memory, and 
memory retention in language learning (114, 115). In summary, iVNS 
may delay AD progression and improve its symptoms. However, 
reports on iVNS treatment for AD are limited and have garnered little 
attention. This might be attributed to the fact that AD patients are 
mostly elderly, and the high risk of invasive vagus nerve stimulation 
in the elderly population cannot be overlooked.

The impact of tVNS on Alzheimer’s disease is currently under 
exploration in human trials (NCT04908358, NCT04877782). One 
study involving 140 elderly individuals will divide participants into 
tVNS and sham stimulation groups, receiving percutaneous vagus 
nerve stimulation-breathing controlled auricular electrical 
stimulation for 10 min (twice, with a 4-week interval). The efficacy 
of VNS will be  determined through the Face-Name Associative 
Memory Exam (FNAME) and Alzheimer’s disease-related biomarkers 

in blood. Another study aims to explore the impact of tVNS on 
memory and attention by monitoring its effects on 
Alzheimer’s disease.

Research on the effects of tVNS on memory has also emerged. 
Early findings suggested that tVNS could alter associative memory 
performance in older individuals (116). In an experiment involving 
60 healthy volunteers, tVNS did not impact word processing or overall 
emotional memory recognition. However, compared to sham 
stimulation, tVNS increased the hit rate percentage for high 
confidence memory words, suggesting an impact on recollective 
memory performance (117). Sun et  al. proposed that tVNS has 
beneficial effects on offline working memory in healthy individuals 
(118). Mertens attempted to replicate the positive effects of iVNS on 
word recognition memory using tVNS but found no improvement in 
word recognition memory in healthy individuals (119). Researchers 
speculated that this outcome might be related to the parametric design 
of the stimulation. Mariana compared Mertens’ parameter settings 
with those used in other papers that measured successful memory 
outcomes, indicating that the standard “off ” interval length might 
be critical for modulating successful memory (120). Recent studies 
also suggest that tcVNS can improve attention, performance, and 
working memory (121).

There’s substantial research on the effects of tVNS on cognition, 
demonstrating that electrical stimulation can enhance cognitive 
abilities and increase cognitive control in healthy volunteers (122–
124). Studies found that tVNS modulates conflict-induced cognitive 
control and action execution in behavioral and electroencephalogram 
data (125). There are varying perspectives on the impact of tVNS on 
cognitive flexibility. Tona et al. suggested that tVNS does not influence 
working flexibility (126). However, Borges remains optimistic about 
the potential of tVNS to influence cognitive flexibility. In his study, 
he  compared the effects of tVNS on core executive functions, 
including inhibitory control and cognitive flexibility, and suggested 
that tVNS might have a stronger impact on cognitive flexibility than 
on inhibitory control (127). In recent research, tVNS has shown 
promising implications for neurocognitive functional recovery in 
elderly patients, effectively reducing the occurrence of delayed 
neurocognitive recovery (dnCR) after total joint arthroplasty (TJA) in 
the elderly (128). Effective results were observed in cognitive 
impairment patients by stimulating two ear acupoints related to the 
heart (auricle CO15) and kidney (CO10) (129). This provides evidence 
for tcVNS in slowing cognitive decline in the elderly and 
preventing dementia.

As Alzheimer’s disease is common among the elderly, the risk 
of carotid atherosclerotic plaques is relatively higher due to its 
specific nature (111). Vargas-Caballero et al. (120) mentioned in 
their article that the surgical implantation of iVNS devices into the 
cervical vagus nerve would involve manipulating the carotid 
arteries, increasing the risk of plaque rupture and leading to severe 
complications like cerebrovascular disease. While invasive vagus 
nerve stimulation and its potential for greater closed-loop 
interventions might be  preferable clinically, non-invasive vagus 
nerve stimulation may be a better choice for treating Alzheimer’s 
disease (120). tVNS demonstrates certain effects on memory 
capabilities and cognition, has low costs, and high safety, making it 
a very promising treatment for Alzheimer’s disease, which mainly 
affects elderly patients. However, the effectiveness of tVNS as a 
treatment method requires further clinical trials.
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3.6 Anxiety

VNS has been shown to alleviate anxiety symptoms, a finding 
initially observed in epilepsy patients. In addition to improving 
epilepsy and depression, iVNS has been found to significantly reduce 
anxiety levels (130). George et  al. (131) reported that iVNS 
demonstrated notable efficacy in treatment-resistant obsessive-
compulsive disorder (OCD), panic disorder, and post-traumatic stress 
disorder (PTSD) based on Hamilton Anxiety Rating Scale (HAM-A) 
scores. Furthermore, OCD patients showed significant improvements 
in Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores. 
Additionally, iVNS has been found beneficial in alleviating PTSD 
symptoms, effectively enhancing the extinction of conditioned fear 
(132, 133). The anxiolytic effects of iVNS appear to be frequency-
dependent (134). In studies by Burger et  al. (135), tVNS also 
accelerated fear extinction but did not lead to better retention of 
extinction memory after 24 h. However, Genheimer et  al. (136) 
presented contrasting findings, as her study did not observe significant 
anxiety reduction with tVNS. Therefore, further research is necessary 
to clarify these effects.

3.7 Autism spectrum disorder

Initially, VNS was found to alter the behavior of children with 
epilepsy and ASD, including changes in alertness, mood, and 
communication styles. It also significantly improved various aspects 
of quality of life (137–139). Moreover, these behavioral and 
developmental improvements were found to be  independent of 
epilepsy control, further demonstrating the potential of VNS in 
treating ASD (140). However, research related to ASD remains highly 
limited, and whether VNS provides benefits for children with ASD is 
still an open question.

3.8 Parkinson’s disease

In a study using nVNS to treat gait disturbances associated with 
Parkinson’s disease (PD), tcVNS improved gait parameters and 
alleviated freezing of gait (FOG) symptoms in PD patients. Significant 
reductions were observed in UPDRS III scores, with notable 
improvements in gait parameters such as walking speed, stride length, 
and step velocity (141). The number of steps required for turning was 
particularly reduced. Additionally, Farrand et al. (142) found that 
higher VNS frequencies contributed to behavioral improvements and 
attenuation of pathological markers in PD models. These findings 
suggest that VNS may be  a potential therapeutic option for PD, 
although further studies are required to validate and optimize its 
application in PD treatment.

3.9 Migraine and cluster headache

Since some epilepsy patients also experience migraine symptoms, 
iVNS was initially found to improve migraine symptoms while 
alleviating epilepsy (143). Hord et al. (144) followed up with epilepsy 
patients undergoing iVNS treatment and similarly received positive 
feedback regarding iVNS’s efficacy in relieving migraine. Subsequently, 

iVNS was further demonstrated to be effective in alleviating chronic 
refractory migraine and cluster headache, although these studies 
involved small sample sizes (145, 146). Compared to iVNS, nVNS has 
attracted more attention. Both tcVNS and taVNS have been found to 
significantly relieve acute migraine, reduce headache days and attack 
frequency, lower pain intensity, and improve pain-free rates (147, 
148). Studies on chronic cluster headache have shown that tcVNS can 
terminate pain within 11 ±  1 min (149). Additionally, nVNS has 
shown promising results in relieving acute cluster headaches, with 
sustained treatment potentially providing further benefits. However, 
in chronic cluster headache cohorts, tcVNS has not demonstrated 
significant advantages (150). Although increasing evidence suggests 
that VNS could bring significant benefits to patients with migraine or 
cluster headache, further high-quality studies are urgently needed.

4 Mechanisms of VNS in CNS 
disorders

Vagus nerve stimulation therapy demonstrates intricate 
mechanisms in its application for treating central nervous system 
disorders. Presently, the mechanisms of VNS in central nervous 
system disorders remain inconclusive, and research into its 
mechanisms is an ongoing exploration. This holds significant 
importance in expanding VNS applications within the central nervous 
system clinically. The mechanisms of VNS are associated with the 
anatomy of the vagus nerve. Vagus nerve fibers have four projection 
areas in the brainstem, including the nucleus ambiguus (NA) and 
dorsal motor nucleus (DMV) for the efferent branches of the vagus 
nerve, along with the nucleus tractus solitarii (NTS) and spinal 
trigeminal nucleus for incoming fibers (151). NTS acts as the primary 
relay station for vagus nerve input in the brain, receiving the most 
incoming vagus nerve signals. Moreover, this nucleus projects to 
various structures, such as periventricular gray matter, dorsal raphe 
nucleus, paraventricular nucleus of the thalamus, amygdala, and 
septum. When the vagus nerve receives external electrical stimulation, 
the incoming fibers get excited, and the incoming signal spreads from 
peripheral nerves to the NTS and locus coeruleus (LC), eventually 
propagating to subcortical structures (mainly the hippocampal 
region) and cortical structures (including the insular cortex, prefrontal 
cortex, and motor cortex) (152). Previous research analyses suggest 
that VNS primarily functions by inhibiting central inflammation, 
promoting neuroprotection, and enhancing cortical plasticity integrity.

4.1 Suppression of central inflammation

Inflammation is a protective response of the body to external 
stimuli; however, excessive inflammation can lead to structural 
damage in brain function. Neuroinflammation is triggered by 
activated and proliferating microglia, astrocytes, and other myeloid 
cells, which produce pro-inflammatory cytokines, chemokines, and 
other inflammatory mediators, ultimately leading to neuronal damage 
(153). When a stroke occurs, a severe inflammatory response in the 
central nervous system damages neurons, and VNS’s central anti-
inflammatory mechanism can alleviate this process. Several central 
nervous system diseases are closely associated with the occurrence of 
excessive inflammation, such as epilepsy and depression (154–156). 
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The central anti-inflammatory effect of VNS has drawn significant 
attention and research from many scholars, with abundant and 
compelling evidence demonstrating its inhibitory role in 
inflammation. Its mechanisms primarily encompass three aspects 
(Figure  2): firstly, it can alter the phenotype of microglia cells; 
secondly, it reduces the secretion of inflammatory cytokines by 
activating the widespread α7nAchR receptors present in the CNS; and 
finally, it maintains the integrity of the blood–brain barrier, preventing 
inflammatory factors from damaging the central nervous system. The 
α7nAchR receptor is a crucial anti-inflammatory participant in the 
human body and is extensively expressed in the brain, including 
neurons, neuroglial cells, and endothelial cells. Activation of these 
receptors enhances the neurons’ resistance to ischemic or other types 
of injuries (157). Moreover, research indicates that VNS can induce an 
endogenous cholinergic anti-inflammatory pathway by increasing 
acetylcholine release through vagus nerve activation, subsequently 
activating α7nAchR receptors upon binding with acetylcholine (158).

4.1.1 Alteration of microglial cell phenotype
As part of the homeostasis of the central nervous system, resting 

microglia maintain immune surveillance under physiological 
conditions. They have the ability to engulf pathogens and cellular 
debris that invade the brain and, under certain stimuli, transform into 
an activated phenotype to perform their function (159). Activated 
microglia undergo morphological changes and primarily exist in two 
phenotypes: the M1 phenotype, which secretes pro-inflammatory 
factors and induces self-perpetuating damage to neurons; and the M2 

phenotype, which protects neurons and promotes recovery (160). 
Chen et  al. found that tVNS induces a shift in the phenotype of 
microglial cells from the M1 polarized Iba-1/CD86 microglia to the 
M2 polarized Iba-1/CD206 microglia (161), enhancing the anti-
inflammatory capacity of microglial cells. Additionally, the α7nAchR 
is identified as a critical target for altering the phenotype of microglial 
cells. In an Alzheimer’s disease model, tcVNS significantly shifted the 
phenotype of microglial cells from neurodestructive to 
neuroprotective, increasing the release of BDNF, basic fibroblast 
growth factor (bFGF), anti-inflammatory cytokines (IL-4, IL-10, 
TGF-β), and decreasing the release of pro-inflammatory cytokines 
(IL-1β, IL-6, TNF-α), ultimately delaying cognitive decline (162). 
Zhang et al.’s research (163) suggests that the JAK2/STAT3 pathway 
might be a downstream pathway of α7nAChR. Activation of α7nAChR 
by ACh through this pathway promotes the transformation of M1 
microglial cells into the M2 phenotype.

4.1.2 Reduction of the secretion of inflammatory 
cytokines

Reducing Inflammatory Factors with VNS is also related to the 
activation of α7nAchR on microglial cells. The activation of α7nAchR 
on microglial cells may provide neuronal protection in vitro under 
conditions of hypoxia and glucose deprivation, reducing the 
inflammatory response to ischemic damage (164). Studies have shown 
that after 24 h of vascular occlusion in I/R mice, VNS activated 
α7nAchR on microglial cells, reducing levels of inflammatory cytokines 
(TNF-α, IL-1β, and IL-6), while accompanied by an increase in 

FIGURE 2

Central anti-inflammatory effect of VNS. (A) VNS changed microglia phenotype from M1 phenotype to M2 type; On the other hand, by activating the 
a7nAchR receptor, which is widely present in the CNS, the inflammatory cytokines secreted by pro-inflammatory cells are reduced. (B) Maintain the 
integrity of the blood-brain barrier and prevent the destruction of the central nervous system by inflammatory factors or other substances.
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anti-inflammatory cytokines (IL-4, IL-10, TGF-β), thus safeguarding 
neuronal functional recovery following acute brain injury (162, 165, 
166). Lu et al. (167) suggested that VNS’s post-stroke anti-inflammatory 
effect might involve the activation of α7nAChR on microglial cells, 
amplifying the levels of phosphorylated signal transducer and activator 
of transcription 3 (p-STAT3) and Janus kinase 2 (JAK2). Increased 
phosphorylation of both inhibits the NF-κB pathway, reducing the 
production of pro-inflammatory cytokines (168). In a mouse model of 
brain ischemia, Jiang et  al. found that VNS might upregulate the 
expression of peroxisome proliferator-activated receptor gamma 
[PPARγ, a ligand-activated transcription factor that plays a positive anti-
inflammatory and neuroprotective role during CNS inflammation 
(169)] by activating α7nAChR, thereby suppressing inflammatory 
factors in the CNS and exerting an anti-inflammatory effect (170). 
Further evidence supports the crucial role of α7nAChR in VNS’s 
reduction of inflammatory factors. Similarly, tVNS can upregulate the 
expression of α7nAchR on hippocampal microglial cells. α7nAchR 
prevents the expression of phosphorylated-p65 and nuclear 
translocation of the NF-κB pathway, thereby regulating the expression 
of pro-inflammatory cytokines, alleviating depressive symptoms (171).

4.1.3 Maintenance of blood–brain barrier 
integrity

Maintaining the integrity of the blood–brain barrier (BBB) is 
crucial for the stability of the central nervous system (CNS) as it 
effectively prevents certain substances, mostly harmful, from entering 
the brain from the bloodstream, thus playing a pivotal role in 
mitigating CNS inflammatory reactions post-stroke (172). 
Additionally, increased BBB permeability is often associated with 
inflammation-related neurodegenerative changes (173). Current 

research suggests that Vagus Nerve Stimulation can improve the 
integrity of the BBB, reducing its permeability, thereby preventing 
inflammatory factors from entering the CNS, effectively alleviating 
symptoms in mice with cortical microinfarcts (CMI) (174). However, 
the specific mechanisms by which VNS regulates BBB permeability 
remain unclear. Some researchers suggest that Vagus Nerve 
Stimulation lowers brain vascular permeability, possibly by preventing 
the upregulation of Aquaporin-4 (AQP-4) around blood vessels (175). 
Others propose the presence of nerve terminals around the BBB 
(potentially including cholinergic and noradrenergic terminals), and 
activation of α7nAchR may reduce BBB permeability. This suggests 
that VNS might transmit signals to the BBB through these peripheral 
cholinergic and noradrenergic terminals (176). Another potential 
mechanism involves immune regulation in the brain 
microenvironment. VNS could reduce the expression of Matrix 
Metalloproteinases-2/9 (MMP-2/9) in astrocytes while safeguarding 
vascular endothelial cadherin from microvascular damage (177). Jin 
et al. (178) proposed a new hypothesis stating that VNS enhances the 
concentration of neurotrophic factors within the brain (such as 
BDNF), potentially serving as a protective mechanism for the BBB.

4.2 Promotion of neuroprotection

Previous research indicates that the vagus nerve plays a 
significant role in neuroprotection (Figure  3). Various 
neuroprotective pathways of Vagus Nerve Stimulation (VNS) have 
been discovered, including the release of neurotrophic factors, 
modulation of neurotransmitters, and improvement in cerebral 
vascular regeneration.

FIGURE 3

Neuronal protection of VNS. p70S6K, p70 ribosomal protein S6 kinase kinases; CREB, cAMP-responsive element-binding protein; PI3K, 
phosphatidylinositol 3-kinase; NE, norepinephrine; α1-AR, α1-norepinephrine receptors; GSK-3β, glycogen synthase kinase-3β; CC3, cleaved caspase 3.
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4.2.1 BDNF/TrkB
Vagus Nerve Stimulation therapy for depression is closely linked 

to the BDNF/TrkB signaling pathway. BDNF, a brain-derived 
neurotrophic factor, protects neurons by enhancing synaptic plasticity, 
inhibiting cell apoptosis, and promoting nerve regeneration. Tyrosine 
receptor kinase B (TrkB) serves as the primary receptor for BDNF. The 
BDNF/TrkB signaling pathway has been shown to be  closely 
associated with the occurrence and development of various brain 
disorders (179). In individuals with mood disorders, notably, BDNF 
levels are significantly reduced, while antidepressants can increase 
BDNF expression and signaling (180). The mechanism behind VNS’s 
effect on depression may be linked to this signaling pathway.

Studies have indicated a close relationship between the vagus 
nerve and BDNF. When the vagus nerve is severed, hippocampal 
BDNF mRNA expression decreases, leading to diminished neuronal 
changes (181). Research by Follesa et al. (182) demonstrated increased 
BDNF expression in the hippocampus and cerebral cortex of rats after 
just 3 h of VNS. This effect is also observed in chronic VNS, where the 
hippocampal cell proliferation increases, and there are sustained 
alterations in neuronal dendritic complexity (183). Recent findings 
suggest that when α7nAchR is blocked, the activity in the BDNF 
pathway is inhibited, supporting the notion that α7nAchR might 
mediate VNS’s effects on BDNF (184).

TrkB also plays a role in this context. Following vagus nerve 
stimulation, phosphorylation occurs at tyrosine 705, 816, and 515 on the 
hippocampal TrkB receptor. Blocking the TrkB receptor significantly 
diminishes or even eliminates the therapeutic effects of VNS (185). 
Phosphorylation at tyrosine 705 facilitates the regulation of other 
tyrosines and their activation (186). Phosphorylation at tyrosine 515 
leads to the activation of Ras/MAPK and PI3K signaling pathways, while 
phosphorylation at tyrosine 816 induces survival signal transduction 
mediated by phospholipase C-γ1 (PLC-γ1), inducing neuroprotection 
(187). Carreno et al. (188) further identified downstream factors of Y515, 
including Akt and p70 ribosomal protein S6 kinase (p70S6k), ultimately 
resulting in the phosphorylation of cAMP-response element-binding 
protein (CREB). Additionally, experimental evidence has confirmed the 
ligand-dependent activation of TrkB (189). This indicates that both 
BDNF and TrkB are indispensable components in the VNS mechanism 
for treating depression, and the BDNF/TrkB signaling pathway plays a 
crucial role in VNS’s antidepressant effects.

4.2.2 Monoaminergic neurotransmitter
Monoamine neurotransmitters encompass norepinephrine (NE), 

dopamine (DA), and serotonin (5-HT). The mechanism by which 
VNS improves treatment-resistant depression might be associated 
with increased baseline discharge activity of norepinephrine (NE) 
neurons in the LC, enhancing noradrenergic output (190). It’s also 
related to the increase in 5-HT in the dorsal raphe nucleus (DRN) 
after 14 days (191). This effect is similar to the desensitization of the 
5-HT1A autoreceptor observed after antidepressant use, which 
restores the normal firing rate of 5-HT neurons in the DRN (192). 
Moreover, VNS’s anti-anxiety and antidepressant effects rely mainly 
on 5-HT neurons (193). However, changes in 5-HT1A autoreceptor 
sensitivity have not been observed after VNS, suggesting that its 
impact on 5-HT neuron discharge is indirect (154).

Studies suggest that NE might act as an intermediary, enhancing 
5-HT neuron discharge by increasing excitability via α1-adrenergic 
receptor stimulation in the DRN (154). Liu et al. observed diminished 

efficacy of VNS when noradrenergic neurons were inactivated, further 
supporting the role of NE as an intermediary (194). Although VNS 
notably increases extracellular 5-HT levels in the DRN, similar 
changes were not observed in two postsynaptic structures, the 
hippocampus and prefrontal cortex (195). Nonetheless, VNS has been 
shown to enhance the straight activation of 5-HT1A postsynaptic 
receptors in these regions, likely contributing to augmented 
serotonergic neurotransmission in the forebrain (154). Research 
indicates that VNS exhibits antidepressant effects by increasing NE 
concentrations in the periphery, thalamus, and cortical regions (196). 
Manta et  al. (195) found that long-term VNS not only affects 
extracellular 5-HT levels but also increases extracellular DA levels 
detected in the prefrontal cortex (PFC) and nucleus accumbens 
(NAc), potentially aiding in alleviating depressive symptoms.

VNS’s inhibition of epileptic seizures is also linked to hippocampal 
and cortical NE concentrations (197). By activating NE neuron 
excitability, VNS significantly increases NE release in LC projection 
areas (including the hippocampus and prefrontal cortex) (182), 
impacting the diminished VNS-induced seizure inhibition. Recent 
studies corroborate this view, demonstrating that VNS, by increasing 
activity in noradrenergic neurons in the LC, elevates arousal and 
causes widespread, uneven cortical activation in epilepsy patients, 
influencing their sleep–wake states (198). This NE-dependent 
modulation is likely mediated by α-adrenergic receptors since their 
activation can suppress epileptiform activity. In a model of 
pentylenetetrazole-induced seizures in rats, blockade of α2-adrenergic 
receptors in the hippocampus reversed VNS’s attenuating effect on 
seizures (197). Recent mouse experiments also underscore the 
importance of α-adrenergic receptors in inhibiting seizures (199).

4.2.3 GABA
GABA, an inhibitory neurotransmitter, plays a crucial role in the 

overall control and fine-tuning of excitatory transmission and is 
associated with various brain disorders (200). It is primarily 
distributed in the nucleus tractus solitarii (NTS), dorsal motor nucleus 
of the vagus nerve (DMV), medial septum (MS), and hippocampus 
(200, 201).

The NTS is a primary medullary site where vagus nerve afferents 
terminate. Vagus nerve stimulation can enhance GABA release by 
activating the NTS (202). The GABA system plays a significant role in 
epilepsy treatment, as observed in patients receiving VNS, where there 
is a notable increase in total GABA and free GABA levels in the 
cerebrospinal fluid (203). Within the NTS, γ-aminobutyric acid 
operates through GABA receptors for inhibitory control. VNS 
increases inhibition of NTS output via GABA transmission, reducing 
susceptibility to chemically induced reflex epileptic seizures (204). 
Marrosu et al. (205) suggested that VNS plays a role in modulating 
cortical excitability related to epilepsy, associated with the 
normalization of cortical GABAA receptor density.

Vagus nerve stimulation might impact memory by enhancing 
neuroplasticity in brain structures associated with memory storage 
(206). Studies link this memory processing to increased excitability in 
hippocampal neuron networks and the presence of local theta rhythms 
(207, 208). Broncel’s research indicated that GABAA and GABAB 
receptors in the MS (medial septum, a candidate for vagus nerve input 
from the NTS to hippocampal structures) are involved in regulating 
hippocampal theta rhythms induced by VNS, closely associated with 
anxiety behaviors and learning-memory capabilities (208).
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Thus, vagus nerve stimulation influences the central nervous 
system through the GABA system. Additionally, consistently low 
GABA levels have been found in brain regions responsible for 
emotional cognitive processes in depression patients, such as the 
prefrontal cortex, posterior cingulate cortex, anterior cingulate cortex, 
and amygdala (209). Therefore, it’s speculated that part of VNS’s 
therapeutic effects on depression might involve the GABA system.

4.2.4 α7nAchR/Akt
Akt, also known as protein kinase B, has diverse roles in the 

nervous system, playing a crucial part in cell development, 
function, and survival processes. Phosphorylated Akt (p-Akt) can 
activate downstream cysteine aspartate-specific proteases, reducing 
cleaved caspase-3 (CC3), thereby exerting a cell-protective effect 
(210). Studies by Krafft et al. (211) demonstrated that in a mouse 
model of cerebral hemorrhage, activation of α7nAchR reduces 
neuronal cell death by increasing p-Akt and lowering CC3 
expression. Moreover, in a mouse model of cerebral ischemia, 
VNS-induced α7nAchR activation increased p-Akt while reducing 
cleaved caspase expression in the brain, ultimately reducing 
neuronal cell death (165). Furthermore, Akt phosphorylation 
depends on the phosphoinositide 3-kinase (PI3K) signaling 
pathway (212). Vagus nerve stimulation has been shown to 
decrease cardiomyocyte apoptosis through the PI3K/Akt signaling 
pathway (213), indirectly indicating that PI3K may serve as an 
intermediary in the α7nAchR/Akt pathway. However, further 
related research is required to confirm this relationship.

4.3 Increase of cortical plasticity

Vagus nerve stimulation has been confirmed to produce 
widespread excitatory effects in various cortical regions, prompting 
exploration into induced cortical neuroplasticity. In the sensory and 
motor systems, temporarily pairing VNS with sensory stimulation or 
movement reorganizes neural circuits associated with sensation and 
movement networks (214). The cholinergic system in the basal 
forebrain (214, 215) and activation of the noradrenergic system in the 
locus coeruleus (216) may play important roles in this neural circuitry 
reshaping. This involves increased activity in noradrenergic neurons 
in the LC and cholinergic neurons in the basal forebrain (BF), which 
are a source of cortical-projecting cholinergic neurons (198, 217). 
VNS induces acetylcholine release in the basal forebrain and 
modulates neural activity in the BF, playing a critical role in the cortex 
(215). Impaired cholinergic projection in the basal forebrain cortex 
leads to a loss of motor network plasticity (218), while excitability and 
synchrony in the auditory cortex are disrupted upon blocking 
muscarinic receptors in the auditory cortex (219).

The sensory system comprises two pathways: the feedback (FB) 
and feedforward (FF) pathways. The superficial layers of the primary 
sensory cortex act as the hub for the feedforward (FF) pathway, while 
the deeper layers serve as the hub for the feedback (FB) pathway. 
Acetylcholine and norepinephrine, respectively, modulate the FF and 
FB pathways (220, 221). In the study by Kumagai et al. (199), VNS 
primarily activated the FF pathway within the sensory system rather 
than the FB pathway. This indicates that VNS-induced neural 
regulation can alter the FF-FB balance in the auditory cortex, known 
as neural gain, and the regulation of FF-FB balance induced by VNS 
may contribute to various clinical outcomes.

5 Pupil dilation may be a sensitive 
readout of VNS effects on brain states

In the cortex, the activity of basal forebrain cholinergic and local 
noradrenergic axons can be sensitively tracked by pupillary dilation 
(222). Furthermore, under constant brightness, pupillary dilation can 
read out the brain state characteristics of the mouse cortex and 
hippocampus sensitively and non-invasively (223). As a result, some 
scholars propose pupillary dilation as a sensitive biosensor for the 
titration effects of VNS-induced brain neuromodulation states. The 
amplitude of VNS-induced pupillary dilation corresponds to its 
stimulation parameters, and this VNS-induced pupillary dilation is 
mediated by acetylcholine released from the basal forebrain to the 
neocortex network, interacting nonlinearly with the current 
momentary brain state (214). However, there is still limited research 
in this area, and whether pupillary dilation is the most suitable 
representation of VNS stimulation is yet to be  determined. 
Nevertheless, it’s a promising avenue to explore and provides direction 
for research on vagus nerve stimulation.

6 Conclusion

In conclusion, VNS is a promising therapeutic approach for 
central nervous system disorders. In addition to its officially approved 
applications for the treatment of refractory epilepsy and depression, 
accumulating evidence suggests that VNS may also provide benefits 
to patients with Alzheimer’s disease, stroke, disorders of consciousness, 
anxiety, Parkinson’s disease, autism spectrum disorder, migraines, and 
cluster headaches. Both iVNS and tcVNS can stimulate the vagus 
nerve (VN) at the carotid sheath and have demonstrated promising 
results in the treatment of various CNS diseases. However, the effects 
of taVNS, such as in anxiety disorders, remain controversial and 
certainly require further research for validation. Furthermore, 
research should be refined and personalized to address the specific 
pathological mechanisms of different CNS diseases. Each patient’s 
bio-psycho-social background should be considered, as this helps 
provide a more comprehensive and effective treatment strategy. 
Recent studies indicate that VNS predominantly affects the CNS by 
inhibiting central inflammation, promoting neuroprotection, and 
enhancing cortical plasticity. Altering the phenotype of CNS 
microglial cells, reducing pro-inflammatory factors, and maintaining 
blood–brain barrier permeability can suppress the intensity of CNS 
inflammation, thereby reducing damage to brain tissues. Protection 
of neurons is mainly mediated through modulation of neurotrophic 
factors or neurotransmitters. However, there are still several challenges 
in this field. Firstly, VNS often serves as an adjunct or complementary 
therapy for CNS diseases, and the quality of related literature varies 
significantly, including differences in sample size and observed 
indicators. Moreover, optimal stimulation protocols for specific CNS 
diseases or diverse populations are scarce, limiting its broader 
application and clinical efficacy. Expanding the indications for VNS 
and determining the best stimulation protocols require more high-
quality research. Secondly, predicting the effectiveness of VNS for 
various CNS diseases is in its infancy, which poses barriers to targeted 
treatment. Finally, the precise mechanism of VNS’s therapeutic effect 
remains unclear. Existing research mostly focuses on the factors 
influenced by VNS rather than investigating its primary action, 
severely limiting the expansion of VNS into other CNS diseases. 
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Understanding how VNS interacts with neural circuits could identify 
new stimulation targets. Therefore, future VNS research will prioritize 
addressing these issues.
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Glossary

α7nAChR α7 Nicotinic Acetylcholine Receptor

ABVN Auricular Branch of the Vagus Nerve

AD Alzheimer’s Disease

ADAS-cog Alzheimer’s Disease Assessment Scale-Cognitive Subscale

Akt Protein Kinase B

AQP-4 Aquaporin-4

ASD Autism Spectrum Disorder

ASMs Antiseizure Medications

BBB Blood–brain barrier

BDNF Brain-Derived Neurotrophic Factor

bFGF Basic Fibroblast Growth Factor

CGI Clinical Global Impression

CIBIC+ Clinician’s Interview-Based Impression of Change

CNS Central Nervous System

CRS-R Coma Recovery Scale-Revised

DA Dopamine

DOC Disorders of Consciousness

DRN Dorsal Raphe Nucleus

DRE Drug-resistant Epilepsy

EEG Electroencephalograms

FDA Food and Drug Administration

FNAME Face-Name Associative Memory Exam

FOG Freezing of Gait

HAM-A Hamilton Anxiety Rating Scale

HRS-D-28 28-item Hamilton Rating Scale for Depression

JAK2 Janus Kinase 2

LC Locus Coeruleus

MADRS Montgomery-Åsberg Depression Rating Scale

MCS Minimally Conscious State

eMCS Emergence from MCS to higher levels of consciousness

MMP Matrix Metalloproteinases

MMSE Mini-Mental State Examination

MS Medial Septum

NAc Nucleus Accumbens

NE Norepinephrine

NICE National Institute for Health and Care Excellence

NTS Nucleus Tractus Solitarii

OCD Obsessive-Compulsive Disorder

PD Parkinson’s Disease

PET Positron Emission Tomography

PFC Prefrontal Cortex

PI3K Phosphoinositide 3-Kinase

PTSD Post-Traumatic Stress Disorder

TrkB Tropomyosin Receptor Kinase B

UPDRS III Unified Parkinson’s Disease Rating Scale, Part III

VNS Vagus Nerve Stimulation

iVNS Implantable Vagus Nerve Stimulation

nVNS Non-invasive Vagus Nerve Stimulation

tVNS Transcutaneous Vagus Nerve Stimulation

taVNS Transcutaneous Auricular Vagus Nerve Stimulation

tcVNS Transcutaneous Cervical Vagus Nerve Stimulation

VS/UWS Vegetative State/Unresponsive Wakefulness Syndrome

WMFT Wolf Motor Function Test

Y-BOCS Yale-Brown Obsessive-Compulsive Scale
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