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Objective: The relationship between small subcortical ischemic infarction 
remains poorly characterized. Therefore, the present study aimed to investigate 
the association between artery-to-artery embolization and small subcortical 
infarctions.

Methods: This retrospective observational cross-sectional study enrolling 
230 patients with acute middle cerebral artery (MCA) stroke classified into the 
microembolic signals-positive (MES+) and MES-negative (MES−) groups. The 
diffusion weighted imaging (DWI) infarction patterns in the MCA were divided 
into the territorial, border zone (BZ), cortical, and subcortical infarcts. We set the 
standard of small subcortical infarction (SCI) into two levels: < 10 mm diameter 
and <5 mm diameter. Relevant DWI parameters were used to build a nomogram 
for MES+, using free statistics.

Results: MES occurred in 38 of the 230 cases, yielding a positivity rate of 16.5%. 
BZ, SCI <10 mm, cortical ischemia (CI), stenosis, white blood cell count, and 
gender were compared between the MES+ and MES− groups. Multivariate 
analysis revealed that BZ, SCI < 10 mm, and CI were independently associated 
with MES. Based on DWI parameters, a nomogram model was built for MES+. 
The area under the curve of the model was 0.826 (95%CI 0.764 to 0.889). In 
internal cross-validation, the slope of the calibration curve was 1.000, indicating 
that the model accurately predicted unsuccessful treatment outcomes.

Conclusion: Small subcortical infarctions are associated with MES. In the 
present study, we built a predictive nomogram model for MES+ based on small 
subcortical infarctions and other DWI parameters. This model demonstrated 
good performance in clinical practice.
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1 Introduction

Ischemic stroke is the leading cause of death and disability in 
adults worldwide. The incidence of major atherosclerosis (LAA) in 
East Asia is higher than that of other ischemic stroke etiologies (1). 
Artery-to-artery embolization is one of three primary mechanisms 
underlying LAA (2, 3). Microembolics are associated with plaque 
destabilization (4). Microembolic signals (MES) detected by 
transcranial Doppler ultrasound (TCD) represent the most direct 
evidence of an artery-to-artery embolization mechanism in LAA 
stroke, and are related with recurrent stroke (5–7).

Diffusion-weighted imaging (DWI) lesions patterning has been 
shown to be related with the mechanisms of stroke and recurrence (5, 
8–12). Previous studies have shown that border zones and cortical 
infarctions often coexist, and are associated with MES (2, 13, 14). 
However, relatively little is known about the relationship between 
small subcortical ischemia (SCI) and MES.

SCI and lacunar infarction, which are associated with complex 
underlying mechanisms, account for nearly one-third of all cases of 
ischemic strokes (15–17). Due to this heterogeneity in SCI 
mechanisms, controversies exist between the TOAST and CISS stroke 
subclassification guidelines (18, 19). One prior study showed that a 
considerable proportion of small SCI may be associated with LAA 
(20). However, to the best of our knowledge, there is currently no 
evidence to prove the relationship between small SCI and artery-to-
artery (A-A) embolization (21).

Therefore, the present study aimed to explore the relationship 
between small SCI and MES. Furthermore, we combined other lesion 
patterns to build a DWI radiomic model to assess A-A embolisms.

2 Methods

2.1 Patients and study design

This was a retrospective observational cross-sectional study from 
two medical centers that together provide health care for a total 
population of more than 20 million individuals in the Shandong 
province of China. The first institute was the Department of Neurology 
at Weifang Brain Hospital, which was enrolled in the present study 
from January 2015 to October 2019, and the second was the 
Department of Neurology at the Affiliated Hospital of Qingdao 
University, which was enrolled in the present study from January 2014 
to December 2016. Our study was approved by Affiliated Hospital of 
Shandong Second Medical University Ethics Committee. The approval 
no. of the Ethics Committee was wyfy-2024-ky-495.

Herein, we investigated the relationship between DWI infarction 
patterns and MES lasting 60 min during TCD monitoring within 72 h 
after the onset of acute stroke Patients with consecutive acute ischemic 
stroke within the middle cerebral artery (MCA) territory. Stroke was 
diagnosed based on the imaging characteristics obtained via magnetic 
resonance imaging (MRI) and neurological deficits lasting for longer 
than 24 h. The requirement for informed consent was waived. The 
patients’ general data, relevant medical histories, treatments, and 
laboratory examinations were evaluated and recorded by a neurologist.

The exclusion criteria for candidate patients were as follows: (1) 
younger than 40 years old; (2) carotid artery occlusion or middle 
cerebral artery occlusion; (3) absence of a temporal acoustic window 
for TCD monitoring; (4) bilateral anterior infarctions and/or 

anterior-and posterior-circulation infarctions; (5) cardioembolic 
stroke, or strokes with etiologies differing from circulation ischemic 
stroke; (6) severe nephritis or liver disease, or definitive/suspected 
cancer; (7) no enduring MES for 60 min during TCD monitoring; or 
(8) a history of carotid endarterectomy or a carotid artery stent.

2.2 Assessment of MES via TCD monitoring

MES was detected via TCD monitoring (Delica EMS-9A), the 
specific details of which are described in our previous study (22).

2.3 DWI infarction pattern

The DWI infarction pattern in the MCA was divided into the 
territorial, internal border zone (BZ), cortical, and subcortical infarcts, 
and a correlation was analyzed between the DWI infarction pattern 
and MES microembolic signals. BZ infarcts were divided into internal 
and cortical BZ infarcts; of which the latter encompassed infarcts in 
the Frontal cortex (between the anterior cerebral arteries and middle 
cerebral arteries) and Occipital cortex (between the middle cerebral 
arteries and posterior cerebral arteries) (23–25). Based on previous 
study (26, 27), we set the standards of small subcortical infarction into 
two levels, as <10 or < 5 mm in diameter (28). The lesion pattern in a 
single patient may involve the formation of more than one lesion.

2.4 Statistical analysis

SPSS (version 22.0; Chicago, IL, United States) and Free Statistics 
(version 1.7.1) software were used for data analysis. Quantitative data 
are expressed as the mean ± standard deviation, while qualitative data 
are expressed as frequencies and percentages. After testing for 
normality, intergroup comparisons of quantitative data were 
performed using t-tests, and qualitative or categorical data were 
compared using χ2 or Fisher’s exact texts. Statistical significant factors 
(p < 0.05) were analyzed for collinearity before regression analysis. 
Statistically significant factors in the univariate analyses were included 
in a stepwise forward logistic regression analysis to identify the 
independent factors for MES. Odds ratios (ORs) and their 95% CIs 
were used to evaluate the independent contributions of significant 
factors. The Hosmer-Lemeshow test was applied to estimate the 
appropriateness of the model.

A nomogram graph was built using Free Statistics software. 
Receiver operating characteristic (ROC) curve, concordance index 
(C-index), and calibration curve analyses were performed to evaluate 
the discrimination and calibration of the model.

3 Results

3.1 Baseline demographics

During the study period, 1,132 consecutive patients with acute 
stroke were deemed eligible. After excluding patients who met the 
exclusion criteria, 230 patients (149 from the Affiliated Hospital of 
Qingdao University and 81 from Weifang Brain Hospital)with acute 
MCA stroke were enrolled in the study (Figure 1). MES occurred in 
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38 of the 230 cases, with a positivity rate of 16.5%. Male sex, 
stenosis, and white blood cell counts were significantly higher in the 
MES+ group than in the MES-group. There were no significant 
differences in terms of hypertension, diabetes mellitus, ischemic 
heart disease, stroke history, smoking, drinking, dual antiplatelet, 
C-reactive platelets, or platelets between MES+ and MES− patients. 
The general clinical characteristics of the patients are shown in 
Table 1.

3.2 DWI lesion patterns of MCA

There were 40 territorial infarction (TI), 55 cases BZ cases, 154 
SCI cases, and 64 cortical infarction (CI) cases. Among 154 patients 
with SCI, 78 and 33 had SCIs with a diameter < 10 mm and < 5 mm, 
respectively.

3.3 Multiple collinear analysis of 
independent variables and multivariable 
analysis

The variance inflation factors (VIF) of BZ, SCI < 10 mm, CI, 
stenosis, WBC count, and sex were all less than 2. 
Multicollinearity was considered nonexistent. BZ, SCI < 10 mm, 
CI, stenosis, WBC count, and sex were all therefore entered into 
the logistic regression analysis. Multivariate analysis revealed 
that the BZ level, CI, and SCI < 10 mm were independent 
correlation factors for MES. Other factors were not included in 
this equation (Table 2).

As SCI < 5 mm was found to be significantly different between the 
two groups in the univariate analysis, we replaced SCI < 10 mm with 

SCI < 5 mm, and found that SCI < 5 mm was also associated with 
MES, similar to SCI < 10 mm. The results of the binary logistic 
regression revealed that SCI < 5 mm was not included in the 
regression equation, p > 0.05.

3.4 Nomogram construction and validation

Based on the multivariate logistic regression analyses, three 
independent correlation factors were used to explore the 
nomogram (Figure 2), which was assessed using area under the 
curve (AUC), concordance index (C-index), and calibration 
curve analyses. The AUC for predicting MES+ was 0.826 (95%CI 
0.764 to 0.889) (Figure  3A). The accuracy of the model was 
assessed using a calibration curve, and the slope of the 
calibration curve was close to the ideal values (Figure  3B). 
Leave-one-out cross-validation was further performed to 
evaluate the model (Figure 3C); the corrected C-index was 0.826 
and the calibration slope was 1.0. Figure 3D shows the results of 
the decision curve analysis. This analysis revealed that patients 
could benefit from the model when the threshold probabilities 
were approximately 0.1–0.5.

4 Discussion

To the best of our knowledge, there have been no prior studies 
presenting direct and definite research on MES and small 
SCI. However, the present study, conducted across two medical 
centers, provided evidence that small SCI (<10 mm) is 
independently associated with MES, as are CI and BZ infarction, 
while indiscriminate SCI (irrespective of size or diameter) was not 

FIGURE 1

Flowchart of patients included in the present study.
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associated with MES. We further developed a simple radiomics 
prognostic nomogram using DWI parameters, including 
SCI < 10 mm, CI, and BZ. This nomogram was assessed using the 
C-index, AUC, and calibration curve, and showed good 
performance and accuracy in predicting MES+. Based only on 
DWI parameters, the model would help neurologists conveniently 
and accurately identify acute MCA stroke with an A-A embolism. 
For example, a patient’s lesions are distributed in the Frontal BZ, 
Occipital cortex BZ, subcortex (lesion diameter < 10 mm) and 
cortex. In the nomograms two BZ score 57 point, SCI < 10 mm 
score 46 point, CI score 42 point, the total point would be 145 
point, which would indicate this patient may have a 80% risk of 
MES. For patients with higher nomogram scores or high risk of 
MES, dual antiplatelet therapy may be considered necessary (6) 
(see Table 3).

The pathogenesis of microembolism is usually thought to 
involve dislodgement of vulnerable plaques by the blood flow, 
resulting in entry into the distal smaller downstream vessels 
(29). Whether microembolism can enter a subcortical 
perforating artery remains unclear. In a study conducted in a 
monkey model of microembolism, Macdonald concluded that 
microembolics could enter the subcortical penetrating arteries 
of monkeys (30). There have been only a few small-sample 
studies conducted on MES and DWI. One prior study showed 
that without infarction pattern sub-classification, small 
infarction (diameter < 10 mm) was associated with MES. The 
results of our study support this hypothesis. However, it should 
be noted that this prior study included only 28 patients (27). 
Another study of SCI and MES in 37 cases found that acute 
superficial perforator lesions were associated with MES, whereas 

TABLE 2 DWI lesion patterns and MES.

Total (230) MES+ (38) MES- (192) T/χ2 p

TI (n/%) 40(17.4) 3(7.9) 37 (19.3) 2.857 0.105

BZ (n/%) 55(23.9) 20 (52.6) 35 (18.2) 29.879 0.002

1score 11 29

2 score 6 5

3 score 3 1

SCI (n/%) 154(67.0) 25(65.9) 129(67.2) 0.028 0.853

SCI <10 mm 78(33.9) 23(60.5) 55(28.6) 14.385 0.000

SCI <5 mm 33(60.5) 12(31.5) 21(10.9) 10.998 0.002

CI 64(27.8) 21(60.5) 43(22.4) 17.063 0.000

TI, territorial infarcts; BZ, Border zone infarcts; SCI, subcortical infarcts; CI, cortical infarcts.

TABLE 1 Baseline demographics.

Total (230) MES+ (38) MES- (192) T/χ2 p

Gender (male) 166 (72.2) 33 (86.8) 133 (69.3) 4.877 0.029

Age (y) 61.93 ± 9.99 64.45 ± 9.03 61.43 ± 10.11 1.707 0.089

HP (n) 160 (69.6) 24(63.2) 136(70.8) 0.883 0.342

DM (n) 63(27.4) 9(23.7) 54(28.1) 0.315 0.692

CAD (n) 64.8(27.8) 8(21.05) 56(29.2) 1.040 0.428

MI (n) 9(3.9) 1(2.6) 8(4.2) 0.000 1.000

Stroke his (n) 54(23.5) 10(26.3) 44(22.9) 0.204 0.667

Smoking (n) 83(36.1) 17(44.7) 66(34.4) 1.447 0.224

Drinking (n) 58(25.2) 12(31.6) 46(24.0) 0.977 0.315

Dual antiplatelet (n) 87(37.8) 10(26.3) 77(40.1) 2.564 0.143

Stenosis (n) 100(43.5) 24(63.2) 76(39.6) 7.174 0.011

CRP (mmol/L) 5.39 ± 9.81 6.50 ± 9.30 5.21 ± 9.92 0.503 0.616

GLU (mmol/L) 6.51 ± 2.65 6.31 ± 2.43 6.54 ± 2.69 0.354 0.742

WBC (1012/L) 7.31 ± 1.94 6.66 ± 1.80 7.44 ± 1.96 −2.264 0.025

PLT (109/L) 222.1 ± 60.1 213.8 ± 64.5 225.7 ± 68.9 −0.721 0.472

Stenosis: ipsilateral middle cerebral artery or internal carotid artery stenosis; MES: microembolic signals; CRP:C-reactive protein WBC: White blood cell; PLT: blood platelet; GLU: vein blood 
glucose.
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deep perforator lesions were not (31). However, owing to 
insufficient sample sizes, these previous studies could not 
provide evidence to support an independent correlation between 
small SCI and MES (2, 27, 31), and did not establish a predictive 
model. A South Korean study on silent stroke and MES after 
neurointerventional procedures showed that most infarctions 
occurred in the cortical and border zones. However, the 
percentage of SCIs was less than one-tenth (28). We believe that 
silent stroke after the intervention is different from real-world 
emergency stroke. These silent strokes were tiny infarctions with 
diameters of less than 5 mm. Nevertheless, these small lesions 
can still cause neurological deficits. Our research found that 
DWI infarction of <5 mm represented only a small percentage 
compared to infarctions <10 mm.

Cortical infarction patterns represent the embolic mechanisms 
of stroke (5, 28, 31, 32). Hypoperfusion and embolism are the two 
dominant and coincident pathogeneses of ischemic stroke, 
commonly associated with severe large artery stenosis (32). The BZ 
is generally located at the distal intersection of the blood supply to 
two or more main artery (24). Due to severe large-vessel stenosis or 
hypovolemia, local cerebral perfusion of the BZ significantly 
declines, leading to hypoperfusion infarction and impairment of the 
embolic clearing powder (33). Prior studies have found that the 
border zone is a region vulnerable to embolism (28). Consistent 
with previous results, our research showed that cortical and border 
zone infarction patterns were independent correlation factors 
for MES.

Large artery stenosis is an important risk factor of 
MES. Several prior studies have shown that systemic carotid 
artery stenosis and middle cerebral artery stenosis are related to 
MES (7, 34). In the current study, large artery stenosis was also 
associated with MES, but did not show an independent 

association. We  propose that there are several confounding 
factors, including different collateral circulation blood volumes 
and plaque vulnerability. Large-vessel atherosclerotic stenosis is 
the etiopathogenic foundation of both MES and ischemic DWI 
lesions. DWI lesion patterns may reflect more information  
and are more closely related to MES than to large-vessel  
stenosis.

DWI is more sensitive than conventional MRI sequences at 
identifying new small cerebral ischemic infarctions (35). DWI lesion 
patterns, including lesion size and distribution, have shown utility in 
identifying distinct pathophysiological mechanisms and recurrence 
(8, 10, 12, 36). Differences in the stroke pathophysiology may require 
different preventive and treatment strategies. Exploring the DWI 
lesion pattern model of acute MCA stroke is helpful for clinicians in 
analyzing the mechanism of infarction, evaluating the risk of 
recurrent stroke, choosing appropriate treatments, and avoiding 
recurrent stroke.

4.1 Strengths and limitations

The present study showed that a small SCI was associated with 
embolism in two medical center patients. Furthermore, by combining 
cortical and border-zone infarctions, the study employed small SCI as 
a factor to build a predictive nomogram model for MES, and these 
parameters were easily acquired. Third, MES is an important marker 
of recurrent stroke (7), and this model could provide early clues for 
stroke recurrence.

Nevertheless, this study has several limitations. First, MES 
detection was the only method used to identify microemboli, and has 
some limitations. For example, 1 h of MES-TCD monitoring cannot 
avoid false-negative bias. Second, the sample size did not satisfy the 

FIGURE 2

Nomogram to predict the probability of MES in patients with acute stroke of the middle cerebral artery. According to nomogram points for 
BZ, SCI < 10 mm, CI. The total points were the sum of the three points, and we can evaluate the risk of MES from the line of Risk of Event 
according to the total points.
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requirements for external model validation. Finally, this was a 
retrospective cross-sectional study, and our findings therefore need to 
be validated in future cohort studies.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 

FIGURE 3

Discrimination and calibration assessment of the model. (A) ROC curve and AUC of the nomogram in the training cohort. (B) Calibration 
curve for the nomogram to predict the probability of MES+ with bootstrap sampling validation. The bias-corrected curve is plotted by 
bootstrapping using 200 resamples. The ideal curve is the 45° dashed line, which indicates perfect prediction. (C) Calibration curve for 
the nomogram to predict the probability of MES+ with leave-one-out cross-validation. (D) Decision curve for the predictive nomogram. 
The net benefits were measured at different threshold probabilities. The blue line represents the predictive nomogram. The middle blue 
line represents the assumption that all patients are MES+. The middle gray line represents the assumption that all patients are MES–.
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Multivariable Analysis.
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