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Long COVID-19–related and 
non-COVID-19 postviral olfactory 
dysfunction a comparative MRI 
study focusing on the olfactory 
cleft and bulbs
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Jianfeng Liu 1,2*
1 Graduate School, Beijing University of Chinese Medicine, Beijing, China, 2 Department of 
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Objective: To compare the magnetic resonance imaging (MRI) features of the 
olfactory cleft (OC) and olfactory bulbs (OBs) in patients with long COVID-19-
related (LCOD) and non-COVID-19 postviral olfactory dysfunction (NCPVOD) to 
explore mechanisms underlying persistent olfactory dysfunction.

Methods: This retrospective analysis included patients diagnosed with LCOD 
or NCPVOD at the China–Japan Friendship Hospital between February 2023 
and July 2024. All patients underwent olfactory psychophysical testing (Sniffin’ 
Sticks), a visual analogue scale (VAS) for olfactory function, and high-resolution 
MRI scans of the olfactory pathway. MRI features, including OC opacity, OB 
morphology, OB volume, and olfactory sulcus depth, were compared between 
groups. Correlations between MRI findings and olfactory test scores were 
assessed.

Results: Seventy patients were included (35 LCOD, 35 NCPVOD). LCOD patients 
had significantly higher OC opacity scores than NCPVOD patients (p < 0.001). 
No significant differences were found in OB morphology, abnormal OB signals, 
OB volume reduction, or distances between OBs and surrounding structures 
(p > 0.05). LCOD patients had significantly greater right olfactory sulcus depth 
than NCPVOD patients (p = 0.026), with negative correlation to age (r = −0.25, 
p = 0.04). OB volumes positively correlated with TDI and VAS scores.

Conclusion: LCOD patients exhibited greater OC opacity than NCPVOD patients, 
suggesting OC inflammation may contribute to persistent olfactory dysfunction. 
Treating inflammation in the OC could improve long-term olfactory outcomes. 
OB volume reduction was common in both groups.
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1 Introduction

Since the global outbreak of SARS-CoV-2 in 2019, long COVID-19-related olfactory 
dysfunction (LCOD) has emerged as a significant clinical challenge. Olfactory dysfunction 
(OD) is a prevalent and early symptom of COVID-19, with studies reporting that 40–85% 
(1–3)of COVID-19 patients experience smell loss, often with a sudden onset. This condition 
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has significantly impacted patients’ quality of life (4–7). Studies have 
shown that the recovery of olfactory function post-COVID-19 is often 
slow; most patients experience smell recovery approximately 15 (8) to 
30 (9) days after infection, but approximately 5.6% (7) to 12.8% (6) of 
patients exhibit varying degrees of olfactory loss months or years after 
infection. Indeed, 2 years after being cleared of the infection, up to 
2.9% (10) of patients still present with olfactory dysfunction.

Comparatively, postviral olfactory dysfunction unrelated to 
COVID-19 (non-COVID-19 postviral olfactory dysfunction, 
NCPVOD) is generally less prevalent and has a more gradual onset. It 
often results from upper respiratory infections with viruses like 
influenza or rhinovirus, with partial recovery expected over time. 
Although both conditions can lead to chronic smell loss, the 
underlying mechanisms, prevalence, and impacts on the nervous 
system differ. For example, COVID-19 is thought to affect the central 
nervous system by targeting sustentacular cells in the olfactory 
epithelium via ACE2 receptors, leading to indirect neuronal damage 
and potential inflammation in the olfactory bulb (11, 12). In contrast, 
NCPVOD primarily affects the olfactory epithelium without extensive 
neuroinflammatory involvement (13).

While basic differences in prevalence and severity have been 
established between COVID-19-related and non-COVID postviral 
olfactory dysfunction (4, 14), there is limited research examining 
MRI-detectable structural and functional differences in the olfactory 
system across these two types of dysfunction. The variability in the 
impact of viruses on the olfactory pathway, affecting both the olfactory 
epithelium and central olfactory processing regions, adds complexity 
to understanding these conditions (15). In recent years, MRI has been 
widely used in the study of the olfactory pathway (12, 16, 17), 
especially in analysing structural and functional changes in the OC 
and OB. MRI can clearly depict multiple indicators of such changes, 
such as the opacity of the OC, the volume and shape of the OB, and 
abnormal signals in OB (12, 18). To date, however, few studies have 
compared the MRI findings in patients with LCOD and NCPVOD 
(19). Therefore, this study aims to compare the MRI findings of the 
OC and OB between these groups of patients to better understand the 
differences in their pathological mechanisms and explore potential 
clinical treatment targets.

2 Materials and methods

2.1 Study population

This was a retrospective study of patients with olfactory 
dysfunction who visited the Center for Smell and Taste Disorders in 
the Department of Otorhinolaryngology, Head and Neck Surgery at 
China-Japan Friendship Hospital from February 2023 to July 2024. 
The patients were divided into two groups: the LCOD group and the 
NCPVOD group. The study protocol was approved by the Institutional 
Review Board of the China-Japan Friendship Hospital 
(No.2022-KY-196), and all patients provided written informed 
consent. The procedures were developed in accordance with the 
Helsinki Declaration of 1975 and its 1983 revision.

The inclusion criteria for the LCOD group were as follows: prior 
infection with SARS-CoV-2, COVID-19 positivity was determined 
based solely on RT-PCR results; postinfection development of 
symptoms of olfactory dysfunction; disease duration of more than 

4 weeks, i.e., the onset of symptoms of olfactory dysfunction persisted 
for more than 4 weeks (20); and ability to undergo olfactory pathway 
MRI and other clinical assessments. The exclusion criteria for the 
LCOD group were a history of long-term olfactory dysfunction; a 
history of head trauma; severe COVID-19; pregnancy; and lactation.

The inclusion criteria for the NCPVOD group were as follows: 
upper respiratory tract infection symptoms, negative COVID-19 
antigen or antibody tests, or positive tests for other viral infections 
(e.g., influenza A/B, respiratory syncytial virus, etc.); postinfection 
development of olfactory dysfunction symptoms; and ability to 
undergo olfactory pathway MRI and other clinical assessments. The 
exclusion criteria for the NCPVOD group were identical to those of 
the LCOD group.

2.2 Olfactory psychophysical test

Olfactory function was assessed with the Sniffin’ Sticks Test (21, 
22), a psychophysical test conducted with odour-filled felt-tip pens. 
The pen tip was placed 2 cm below a single or both nostrils.

The test consists of three components: Odour threshold (T): 
Evaluates the lowest concentration of odour detectable by the patient; 
Odour Discrimination (D): Assesses the patient’s ability to distinguish 
among different odours; and Odour Identification (I): Measures the 
patient’s ability to correctly identify specific odours.

Each component is scored on a scale of 1 to 16, and the total score 
of the three tests is referred to as the threshold, discrimination, and 
identification (TDI) score. The TDI score was used to categorize the 
olfactory function of the patients as follows: normosmia (normal 
olfaction): TDI score ≥ 30.5; hyposmia (reduced olfaction): TDI score 
between 16.5 and 30.5; and anosmia (absence of olfaction): TDI 
score < 16.5.

2.3 Olfactory visual analogue scale

In this study, the olfactory function of the patients was also 
subjectively assessed with a visual analogue scale (VAS). The VAS 
consists of a 10 cm long horizontal line, with the ends labelled as 
follows: 0 points, representing complete loss of smell, and 10 points, 
representing the best olfactory function. Patients were asked to mark 
a point on the line corresponding to their perception of their olfactory 
function. A lower score indicates worse olfactory function.

This scale provides a simple and intuitive method to measure a 
patient’s subjective perception of olfactory function and is commonly 
used in olfactory research to capture patient-reported outcomes (23).

2.4 Olfactory pathway MRI evaluation 
indicators

2.4.1 Scanning technique
MRI scans were performed within 7 days of the olfactory 

psychophysical test to minimize variability. All patients underwent 
MRI examination of the olfactory pathway with a 3 T scanner 
(Discovery MR750 scanner, GE Medical Systems, United  States) 
equipped with an 8-channel phase-array head coil. A standardized 
structural MRI protocol was used for all subjects, targeting the left and 

https://doi.org/10.3389/fneur.2024.1535699
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1535699

Frontiers in Neurology 03 frontiersin.org

right OB and covering the anteromedial cranial base with a coronal 
T2-weighted fast spin–echo sequence with the following parameters: 
TR/TE = 6660/145 ms; slice thickness = 2.5 mm; matrix 
size = 320 × 320; 22 slices; flip angle = 142°; average = 3; in-plane 
resolution = 0.2 × 0.2 mm, and no interslice gap.

2.4.2 MRI evaluation indicators
Measurements were independently performed by two operators, 

and discrepancies were resolved by consensus to reduce bias.

2.4.2.1 OC opacity score
The OC, located in the upper part of the nasal cavity, was 

evaluated on coronal T2-weighted images. The OC consists of the 
lateral wall (the lateral wall of the nasal cavity above the middle 
turbinate), the superior wall (cribriform plate), and the medial wall 
(the upper part of the nasal septum). The opacity of the OC was 
assessed with the Lund–Mackay (24) scoring system: 0: normal, open 
OC; 1: partially occluded OC; 2: completely occluded OC. Each side 
was scored separately, and the total score ranged from 0 to 4.

2.4.2.2 OB morphology
According to the protocol by Yan et al. (25), the OB morphology 

in the posterior tangent through the eyeballs (PPTE) layer was 
classified into convex types (olivary, circular, and plano-convex) and 
nonconvex types (banana-shaped, irregular, planar, and scattered). 
Yan et  al. (25) shows differences in olfactory function between 
olfactory bulbs of different morphologies.

2.4.2.3 Abnormal signals in the OBs
On coronal T2-weighted images, the OB signal intensity was 

evaluated with reference to the signal from the contralateral straight 
gyrus. Abnormal signals in the OB included hyperintensities and 
hypointensities (12, 26). Abnormal signals of the OB include hypo- 
and hyperenhanced signals. Low signals are often considered to 

reflect a haemorrhagic focus (26), while abnormal enhancement has 
been proposed to be  due to inflammation of the OBs (27). The 
extent of the abnormal signal across different OB layers was scored 
as follows: 0: normal signal, no abnormality in any layers; 1: 
abnormal signal present in ≤1/2 of all layers; 2: abnormal signal 
present in >1/2 but not all layers; 3: abnormal signal present in 
all layers.

2.4.2.4 OB volume
The OB volume was measured with the manual segmentation 

method (MS). In Annet Viewer software, the contours of the left and 
right OB were outlined on consecutive coronal T2-weighted 
imaging slices. The total volume was calculated by summing the 
areas of all slices and multiplying by the slice thickness (28). 
According to Hummel et al., the normal OB volume in adults is 
≥58 mm3 (29), with smaller values indicating OB atrophy. 
Significant correlations between OB volumes in relation to olfactory 
function (29).

Due to the lack of established spatial measurements in existing 
olfactory studies. Therefore, we introduced the new parameters of OB 
to orbital gyrus and rectus gyrus distances as well as OB to optic nerve 
distance as part of our exploratory analyses to better understand the 
anatomical relationships and potential structural changes in the 
olfactory pathway. Attempts to explore the possibility that spatial 
variations in the relationship of the OB to surrounding structures 
reflect differences in the anatomical integrity and functional integrity 
of the olfactory pathway.

2.4.2.5 OB to orbital gyrus and rectus gyrus distances
These relatively new measurement criteria were obtained from the 

coronal T2-weighted imaging slice containing the PPTE. Specifically, 
the shortest distances between the OB and orbital gyrus (OG) and 
between the OB and rectus gyrus (RG) were measured on this slice 
(Figure 1).

FIGURE 1

OB to orbital gyrus, rectus gyrus and optic nerve distance measurements. White dotted lines: tangents to the surfaces of the orbital gyrus (OG), rectus 
gyrus (RG) and olfactory bulbs (OBs), line connecting the bilateral optic nerves, and tangent to the lower ends of the bilateral OBs; blue solid line: 
distance between the OB line and the optic nerve line; yellow solid line: distance between the OB and the RG; red solid line: distance between the OB 
and the OG.
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2.4.2.6 Position of the OB relative to the optic nerve
This is another novel measurement. On the same coronal slice 

(PPTE), the position of the OB relative to the optic nerve was 
measured. First, separate lines were drawn connecting the two 
optic nerves and the two OBs. A perpendicular line was then 
drawn from the OB line to the optic nerve line, the length of 
which represents the relative position. If the bilateral OBs were 
not at the same level, the closer OB was used as the reference 
(Figure 1).

2.4.2.7 Olfactory sulcus depth
The olfactory sulcus depth was measured on the PPTE slice by 

drawing a line connecting the surfaces of the orbital gyrus and the 
rectus gyrus. The shortest distance from the deepest point of the 
olfactory sulcus to this line was recorded as the olfactory sulcus depth 
(30). In accordance with Kandemirli et al. (12), a baseline value of 
7.5 mm was used, with values <7.5 mm considered shallow. Previous 
studies (31) have found a positive correlation between olfactory 
groove depth and olfactory function.

2.5 Statistical analysis

For continuous variables, data are presented as the 
mean ± standard deviation (x ± s) if they followed a normal 
distribution or as the median (interquartile range) if they did not 
follow a normal distribution. Independent t-tests was used to 
compare normally distributed quantitative variables between 2 
groups. The Mann–Whitney U test was used when comparing 
skewed variables between groups. While categorical variables were 
compared using chi-square tests. Using ANOVA to calculate the 
side x group interaction effect for the olfactory sulcus depth, OB 
to RG distance and OB to OG distance. Correlation analyses 
between olfactory VAS scores and total TDI scores and OC opacity 
scores, olfactory sulcus depth, OB volume, and other relevant data 
were performed with Spearman’s correlation analysis. All the 
statistical analyses were conducted in SPSS version 25.0 (IBM 
SPSS Statistics) software, with p values <0.05 considered to 
indicate statistical significance.

3 Results

3.1 Demographic data

A total of 35 LCOD patients and 35 NCPVOD patients were 
included in the study following application of the inclusion and 
exclusion criteria. The demographic data of the two groups are shown 
in Table 1. No significant differences in sex, age, or disease duration 
were noted between the two groups.

3.2 TDI and VAS scores

There were no significant differences in the total TDI, the T, D, or 
I or the VAS scores between the two groups (Table 1). In the LCOD 
group, 26 patients exhibited hyposmia (TDI scores between 16.5 and 
30.5), and 9 patients showed anosmia (TDI scores <16.5). In the 
NCPVOD group, 21 patients exhibited hyposmia, and 14 patients 
showed anosmia.

3.3 OC opacity score

The OC opacity score was significantly higher in LCOD patients 
than in NCPVOD patients (2 (1, 2) vs. 1 (0, 2), p < 0.001; Table 2). 
Increased opacity was indicative of inflammation. The percentage of 
patients with OC opacity was 79.4% in the LCOD group and 65.8% 
in the NCPVOD group, but this difference was not significant 
(p > 0.05).

3.4 OB morphology

A total of 17 (48.6%) had convex OBs in the LCOD group versus 
23 (65.7%) in the NCPVOD group. The classification of OB 
morphology in both groups is shown in Table 3, which reveals no 
significant differences between them. Furthermore, the distributions 
of OB morphology were not correlated with the total TDI score, VAS 
score, or disease duration.

TABLE 1 Demographic data, TDI scores and VAS scores for LCOD and NCPVOD patients.

LCOD (n = 35) NCPVOD (n = 35) df Effect size t/χ2/Z p

Sex 1 0.086 χ2 = 0.521 0.631

Female 21 (53.8%) 18 (46.2%)

Male 14 (45.2%) 17 (54.8%)

Age 35.86 ± 11.01 39.89 ± 10.67 68 0.185 t = −1.554 0.125

Disease duration (month) 5 (2, 7) 2 (1.5, 6) 68 0.175 Z = -1.465 0.143

Sniffin’ Sticks test

TDI 21 (14.25, 28) 22.5 (7, 28) 68 0.169 Z = -0.141 0.888

T 4 (1, 5) 2 (0, 4) 68 0.162 Z = -1.355 0.175

D 8 (5, 8) 9 (0, 11) 68 0.021 Z = -0.177 0.859

I 9 (7, 9) 10 (3, 13) 68 0.023 Z = -0.189 0.850

VAS 3 (1.5, 5) 3 (0.75, 5.625) 68 0.035 Z = -0.290 0.637
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3.5 Abnormal signal in the OB

Among LCOD patients, 22.9, 45.7, and 28.6% had 
normal signal intensity, hyperintense signals (Figure  2A), and 
hypointense signals (Figure  2B), respectively, while among 
NCPVOD patients, these proportions were 37.1, 11.4, and 48.6%, 

respectively. There were no significant differences in the 
proportions of abnormal signals between the two groups. When 
grouped by OB signal scores (Table  3), between different 
abnormal OB signal scores group demonstrated no significant 
differences in the total TDI score, VAS score, or disease duration 
(p > 0.05).

TABLE 2 Comparison of the OC Opacity Scores of LCOD and NCPVOD.

LCOD (n = 35) NCPVOD (n = 35) df Effect size χ2 p

Right OC 2 0.347 χ2 = 8.407 0.015

0 10 (28.6%) 21 (60.0%)

1 23 (68.6%) 12 (34.3%)

2 1 (2.9%) 2 (5.7%)

Left OC 2 0.274 χ2 = 5.237 0.073

0 7 (20.0%) 14 (40.0%)

1 27 (77.1%) 18 (51.4%)

2 1 (2.9%) 3 (8.6%)

Bilateral OCs 4 0.536 χ2 = 20.093 <0.001

0 8 (22.9%) 12 (34.2%)

1 3 (8.6%) 14 (40%)

2 23 (65.7%) 6 (17.1%)

3 0 (0%) 1 (2.9%)

4 1 (2.9%) 2 (5.7%)

OC, Olfactory cleft.

TABLE 3 Comparison of OB morphology and internal signals between the LCOD and NCPVOD groups.

LCOD (n = 35) NCPVOD 
(n = 35)

df Effect size χ2 p

OB morphology

Convex 17 (48.6%) 23 (65.7%) 1 0.173 χ2 = 2.100 p* = 0.147

Olive-shaped 4 (11.4%) 12 (34.3%) 5 0.333 χ2 = 7.776 p** = 0.138

Circular 4 (11.4%) 6 (17.1%)

Plano-convex 9 (25.7%) 4 (11.4%)

Nonconvex 18 (51.4%) 12 (34.3%)

Banana-shaped 11 (31.4%) 9 (25.7%)

Irregular 0 0

Plane-shaped 6 (17.1%) 4 (11.4%)

Scattered 1 (2.9%) 0

OB signal 3 0.236 χ2 = 3.889 0.274

Normal 8 (22.9%) 13 (37.1%)

hypointense 10 (28.6%) 4 (11.4%)

hyperintense 16 (45.7%) 17 (48.6%)

Unclear 1 (2.9%) 1 (2.9%)

OB signal score 3 0.285 χ2 = 5.679 0.128

0 8 (22.9%) 14 (37.1%)

1 6 (17.1%) 10 (28.6%)

2 10 (28.6%) 8 (22.9%)

3 11 (31.4%) 4 (11.4%)

OB, Olfactory bulb; p* p represents the significance of convex and non-convex between the two groups; p** represents the significance of detailed types between the two groups.
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3.6 OB volume

Using 58 mm3 (29) as the threshold value for normal bilateral OBs, 
the proportions of patients with LCOD and NCPVOD with at least one 
side of the olfactory bulb volume below normal were 24 patients (68.6%) 
and 27 patients (77.1%), respectively, and the difference was not 
significant. The OB volume in the LCOD group was 51.28 ± 21.11 mm3 
(left) and 50.84 ± 21.14 mm3 (right); Among the NCPVOD patients, the 
left and right OB volumes were 50.87 ± 12.48 mm3 and 
49.84 ± 13.22 mm3, respectively (Figure 3). There were no significant 
differences in the OB volume or the percentage of patients with reduced 
volumes between the two groups (p > 0.05).

3.7 OB to rectus gyrus distance, OB to 
orbital gyrus distance, and relative position 
of the OBs to the optic nerve

There were no significant differences in the OB to orbital gyrus or 
rectus gyrus distances between the two groups (p > 0.05; Table 4). 
There was no significant interaction effect of side and group 
(p = 0.985;p = 0.683; Table 5).

The distance between the OB and optic nerve was 0 mm (0.00, 
0.98) in the LCOD group and 0 mm (0.00, 0.93) in the NCPVOD 
group, and the difference between the groups was not significant 
(p > 0.05; Table 4). In 42 patients (60.0%), the bilateral OBs and optic 
nerves were on the same horizontal plane.

3.8 Olfactory sulcus depth

The olfactory sulcus (OS) depth in LCOD patients was 
8.48 ± 1.59 mm (left) and 9.14 ± 2.00 mm (right), whereas in 
NCPVOD patients, they were 7.93 ± 1.54 mm and 8.39 ± 1.73 mm, 

respectively. There was no significant interaction effect of side and 
group (p = 0.727). There was a significant main effect between the tow 
groups (p = 0.027; Table 5). There was a significant difference in the 
right olfactory sulcus depth between the two groups (p = 0.026), but 
not in the left sulcus depth. Overall, the right olfactory sulcus depth 
was greater than the left olfactory sulcus depth (p = 0.003).

3.9 Correlations between MRI findings and 
TDI and VAS scores

The total TDI score was positively correlated with the bilateral 
OB volumes (left: r = 0.33, p = 0.006; right: r = 0.31, p = 0.009). The 
olfactory VAS score was also positively correlated with the bilateral 
OB volumes (left: r = 0.39, p = 0.001; right: r = 0.35, p = 0.003). Using 

FIGURE 2

Abnormal signals in the olfactory bulbs. (A) Arrow points to a localized high-signal area in the olfactory bulb; (B) arrow points to multiple low-signal 
areas in the olfactory bulb.

FIGURE 3

Olfactory bulb volume. Right (R) and left (L) olfactory bulb volumes in 
the LCOD and NCPVOD groups.
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58 mm3 (29) as the critical threshold for OB volume, there was a 
significant difference in the total TDI score between the groups 
(pleft<0.001; pright = 0.013). OB volume was negatively correlated with 
age (left: r = −0.25, p = 0.033; right: r = −0.29, p = 0.015; Figure 4).

A positive correlation was found between the distance from the 
right OB to the orbital gyrus and the T score (r = 0.266, p = 0.026), but 
no correlation was detected between the OB to optic nerve distance 
or the OB to orbital gyrus or rectus gyrus distance and the TDI score, 
age, or disease duration. Moreover, there was no correlation between 
any of these distances and the TDI or VAS score (p > 0.05).

The right olfactory sulcus depth was negatively correlated with age 
(r = −0.25, p = 0.04). There was no significant correlation between the 
TDI score and left or right olfactory sulcus depth (Figure 4).

4 Discussion

This study systematically compared the MR imaging indices of the 
olfactory pathway, with a focus on the OC and OB, in LCOD and 

NCPVOD patients. OC opacification was detected on MRI in 80.0% 
of LCOD patients, and their OC opacification scores were higher than 
those of NCPVOD patients, which was the main finding of the present 
study. This suggesting that OC inflammation may be  a central 
mechanism of COVID-19-related olfactory dysfunction.

Higher OC opacity scores in LCOD patients align with prior 
studies linking OC inflammation to conductive olfactory dysfunction 
(18, 32). Viral invasion of the OC causes secondary inflammatory 
changes leading to mucosal oedema and subsequent narrowing of the 
OC, resulting in odour obstruction and difficulty in reaching the 
olfactory sulcus (33), leading to conductive olfactory impairment. 
Moreover, the SARS-CoV-2 virus mobilizes a local immune response 
and activates inflammatory pathways, functionally affecting olfactory 
sensory neurons and other olfactory cells through the release of 
specific cytokines and chemokines in the olfactory mucosa (34) and 
causing olfactory sensory neuron death (35) and sensory olfactory 
damage. These two factors may be the main mechanisms by which 
COVID-19 causes olfactory impairment.

In both LCOD and NCPVOD groups, OB volume reduction was 
commonly observed. Although no significant differences were found 
in OB volume between the two groups, this aligns with recent findings 
indicating minimal OB volume difference in COVID-19 patients 
compared to controls (36). Previous studies have reported OB atrophy 
in individuals with olfactory dysfunction (37–39), and autopsy data 
provided by Chetrit et al. (40) have confirmed the impaired central 
olfactory site in COVID-19 patients. These findings are consistent 
with our current observations, but the present study uniquely 
demonstrated a positive association between OB volume and olfactory 
function in patients with olfactory dysfunction after viral infection, 
providing evidence that OB volume may serve as a potential biomarker 
for olfactory recovery.

In this study, abnormal signals of the OBs were observed in 74.3 
and 60% of patients with LCOD and NCPVOD, respectively. OB 
signal intensity changes, as reported in longitudinal studies of 
COVID-19 anosmia, suggest transient inflammation that may resolve 
as smell recovers, indicating a reversible inflammatory process (40). 
Altunisik et al. (38) reported that significant alterations in olfactory 
bulb signaling were found in patients with olfactory disorders 
compared to healthy individuals. However, no significant abnormal 
signal alterations were found in patients with COVID-19 anosmia 

TABLE 4 Comparison of OB to RG distance, OB to OG distance, and relative position of OB to optic nerve in LCOD and NCPVOD.

COVID NCPVOD df Effect size t/Z p

OS depth (mm)

L 8.48 ± 1.59 7.93 ± 1.54 68 0.175 t = 1.466 0.147

R 9.30 (8.16,10.44) 8.52 (7.28,9.61) 68 0.201 Z = 1.687 0.026

OB to RG distance (mm)

L 2.83 ± 1.75 3.57 ± 1.73 68 0.220 t = −1.785 0.079

R 2.82 ± 1.51 3.55 ± 1.76 68 0.211 t = −1.866 0.066

OB to OG distance (mm)

L 5.44 ± 1.80 5.64 ± 1.71 68 0.058 t = 0.482 0.631

R 5.43 ± 1.42 5.39 ± 1.97 68 0.011 t = 0.093 0.926

OB to ONRP (mm) 0 (0.00, 0.98) 0 (0.00, 0.93) 68 0.037 Z = 0.307 0.312

OS, Olfactory sulcus; OB, Olfactory bulb; RG, Rectus gyrus; OG, Orbital gyrus; ONRP, Optic nerve relative position.

TABLE 5 ANOVA results for olfactory sulcus depth, OB to RG distance 
and OB to OG distance.

SS df Ms F p η2

OS depth

Side × group 0.364 1 0.364 0.123 0.727 0.001

Group 14.827 1 14.827 4.996 0.027 0.035

Side 11.043 1 11.043 3.721 0.056 0.027

OB to RG distance

Side × group 0.001 1 0.001 0.000 0.985 0.000

Group 19.063 1 19.063 6.651 0.011 0.047

Side 0.005 1 0.005 0.002 0.967 0.000

OB to OG distance

Side × group 0.505 1 0.505 0.168 0.683 0.001

Group 0.235 1 0.235 0.078 0.781 0.001

Side 0.662 1 0.662 0.220 0.640 0.002

OS, Olfactory sulcus; OB, Olfactory bulb; RG, Rectus gyrus; OG, Orbital gyrus.
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after normalization of the olfactory bulb signals to measure processing 
in another study (37).

We observed a greater right OS depth in LCOD patients, 
potentially reflecting a lateralized structural alteration associated with 
COVID-19. In functional olfactory imaging studies, it has been shown 
that the right olfactory centre has a higher level of activation in right-
handed people than the left olfactory centre (41). Further studies by 
Zang et al. (42) have shown that handedness has no significant effect 
on olfactory sulcus depth, however, that the right sulcus is significantly 
greater than the left sulcus and that the olfactory system has right-sided 
laterality. The depth of the right olfactory sulcus has been shown to 
be correlated with olfactory function scores in one study (12). As the 
right olfactory system is more sensitive to changes than the left 
olfactory system, the difference in the depth of the right olfactory 
sulcus was significant between LCOD and NCPVOD patients, perhaps 
suggesting that COVID-19 has a unique effect on the structural 
integrity of the olfactory pathway.

A novel aspect of this study was the introduction of the spatial 
relationships between the OB, orbital gyrus, rectus gyrus, and optic 
nerve. Although these new parameters did not significantly differ 
between the two OD groups, the correlation between the OB to orbital 
gyrus distance and the olfactory threshold score (r = 0.266, p = 0.026) 
suggests a potential direction for future research. These spatial 
measurements can help elucidate the anatomical basis of olfactory 
function and may serve as potential predictive tools.

This study has several limitations. First, a healthy control group 
was not included, limiting direct comparisons with unaffected 
individuals. Although we referenced established MRI data for healthy 
populations, future research with a control group could validate and 
expand upon our findings. Additionally, the study’s relatively small 
sample size may reduce the generalizability of our results, especially 
given the variability in COVID-19 disease severity and duration 
among patients. Another limitation is the reliance on cross-sectional 
MRI assessments; longitudinal imaging could offer insights into the 
progression and potential reversibility of observed olfactory structural 
changes over time. Due to the manual segmentation method, the 
results may introduce operator bias. We measured as little bias as 
possible by using two operators, but in the future there is hope that 
this manual error will be  reduced by automated identification 
techniques. OB volume was not normalized to total intracranial 
volume (TIV), which may introduce variability based on individual 
brain sizes. Future studies consider incorporating OB volumes 
normalized to TIV to enhance the robustness of the findings.

Our findings underscore the role of OC inflammation in 
LCOD. Existing studies, including Pendolino et al. (43) and Saussez 
et al. (44, 45) report mixed efficacy of corticosteroids for COVID-19-
related olfactory dysfunction. Although anti-inflammatory 
treatments play a role in the recovery of olfactory impairment, further 
studies are needed to investigate the best treatment options and safety. 
Future research should investigate the efficacy of targeted treatments 

FIGURE 4

Correlations between MRI findings and TDI and VAS scores. OBV L: left olfactory bulb volume; OBV R: right olfactory bulb volume; OS L: left olfactory 
sulcus depth; OS R: right olfactory sulcus depth; OB to RG L: left olfactory bulb to rectus gyrus distance; OB to RG R: right olfactory bulb to rectus 
gyrus distance; OB to OG L: left olfactory bulb to orbital gyrus distance; OB to OG R: right olfactory bulb to orbital gyrus distance; * indicates a 
significant correlation at the 0.05 level; ** indicates a significant correlation at the 0.01 level.
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that focus on reducing OC inflammation, as this may help restore 
olfactory function more effectively. Additionally, OB atrophy as a 
common outcome in viral-induced olfactory dysfunction. This study’s 
results are consistent with recent imaging studies, affirming the need 
for targeted diagnostic approaches for prolonged COVID-19 
anosmia, MRI-based assessments of OB and OC abnormalities may 
serve as valuable diagnostic and prognostic tools for identifying 
patients likely to benefit from early intervention and monitoring 
recovery progression.
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