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Introduction: Early prognosis prediction of acute ischemic stroke (AIS) can 
support clinicians in choosing personalized treatment plans. The aim of this 
study is to develop a machine learning (ML) model that uses multiple post-
labeling delay times (multi-PLD) arterial spin labeling (ASL) radiomics features to 
achieve early and precise prediction of AIS prognosis.

Methods: This study enrolled 102 AIS patients admitted between December 2020 
and September 2024. Clinical data, such as age and baseline National Institutes 
of Health Stroke Scale (NIHSS) score, were collected. Radiomics features were 
extracted from cerebral blood flow (CBF) images acquired through multi-
PLD ASL. Features were selected using least absolute shrinkage and selection 
operator regression, and three models were developed: a clinical model, a 
CBF radiomics model, and a combined model, employing eight ML algorithms. 
Model performance was assessed using receiver operating characteristic curves 
and decision curve analysis (DCA). Shapley Additive exPlanations was applied to 
interpret feature contributions.

Results: The combined model of extreme gradient boosting demonstrated 
superior predictive performance, achieving an area under the curve (AUC) 
of 0.876. Statistical analysis using the DeLong test revealed its significant 
outperformance compared to both the clinical model (AUC = 0.658, p < 0.001) 
and the CBF radiomics model (AUC = 0.755, p = 0.002). The robustness of 
all models was confirmed through permutation testing. Furthermore, DCA 
underscored the clinical utility of the combined model. The prognostic 
prediction of AIS was notably influenced by the baseline NIHSS score, age, as 
well as texture and shape features of CBF.

Conclusion: The integration of clinical data and multi-PLD ASL radiomics 
features in a model offers a secure and dependable approach for predicting the 
prognosis of AIS, particularly beneficial for patients with contraindications to 
contrast agents. This model aids clinicians in devising individualized treatment 
plans, ultimately enhancing patient prognosis.
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1 Introduction

Stroke is defined by a range of clinical syndromes featuring focal 
neurological impairments triggered by cerebrovascular occurrences, 
standing as the third leading contributor to mortality and disability 
worldwide (1, 2). Acute ischemic stroke (AIS) is the predominant type 
of stroke, accounting for approximately 87% of all cases (3). A negative 
prognosis confronts approximately one-third of patients with AIS, 
causing a marked deterioration in their quality of life and imposing a 
significant financial burden on society (4). The mortality and 
incidence rates of AIS have decreased in recent years due to 
advancements in medical technology. Nevertheless, the increasing 
global aging population could compound the existing burden (5). 
Therefore, it is crucial for clinicians to promptly and precisely evaluate 
the prognosis of AIS to tailor individualized treatment approaches.

AIS occurs when arteries become obstructed in certain regions, 
causing brain tissue to death due to inadequate oxygen and glucose 
delivery (6). The survival of brain tissue and functional recovery, as 
well as the prognosis of AIS, are directly influenced by cerebral blood 
flow (CBF) in the infarcted area (7). The evaluation of CBF is 
predominantly conducted through imaging modalities, such as 
dynamic susceptibility contrast perfusion-weighted imaging (DSC-
PWI) and computed tomography perfusion (CTP) (8). However, the 
use of gadolinium or iodine contrast agents is limited by allergic 
reactions and potential renal function impairment, which restricts 
their widespread clinical application (9). Arterial spin labeling (ASL) 
is a magnetic resonance imaging (MRI) technique that quantifies CBF 
by applying a pulse signal to water molecules in arterial blood, serving 
as an endogenous contrast agent (10). Compared to traditional imaging 
techniques, ASL eliminates the need for exogenous contrast agents and 
provides several notable advantages, such as repeated usability within 
a short timeframe, non-radiative properties, and reduced examination 
costs (11). In recent years, there has been a growing utilization of ASL 
imaging for evaluating blood perfusion in AIS (12, 13).

Post-labeling delay (PLD) is a critical parameter in ASL technology, 
representing the time between the application of the labeling pulse and 
the acquisition of the signal (14). However, variations in arterial transit 
time (ATT) across brain tissues lead to a certain degree of 
underestimation of CBF in single-PLD ASL technology (15). To 
address this limitation, multi-PLD ASL technology encodes multiple 
PLDs within a single scan, allowing for the measurement of ATT in 
brain tissue and the correction of CBF for ATT (12). This effectively 
addresses the problem of underestimating CBF due to single-PLD 
scanning (16). In areas of infarction characterized by reduced blood 
flow, it is essential to make this correction to prevent underestimation 

of perfusion (17). Multi-PLD ASL has shown robust agreement with 
CBF measurements acquired through DSC-PWI or CTP (18–20).

Mihoko et al. employed multi-PLD ASL technology to determine 
the correlation between CBF and the initial severity of AIS (21). 
Furthermore, Li et al. discovered that the Alberta Stroke Program 
Early CT Score, determined through multi-PLD ASL, serves as a 
standalone prognostic indicator in AIS (22). Consequently, multi-PLD 
ASL shows promise as an alternative method for assessing the severity 
and prognosis of AIS. However, the quantification of CBF in the 
aforementioned studies offers a restricted evaluation of perfusion 
status and overlooks the heterogeneity present within the lesion.

Radiomics enables the rapid, objective, and high-throughput 
extraction of numerous features from biomedical images (23). This 
process reflects subtle changes that are challenging to detect visually, 
thereby offering a more comprehensive array of biological information 
(24). Guo et  al. uncovered a significant correlation between the 
dynamic radiomics features of DSC-PWI in the infarcted region and 
the clinical prognosis of AIS patients at 90 days (25). However, 
research focusing on the ASL radiomics features of AIS patients 
remains limited. Therefore, we  hypothesize that CBF radiomics 
features based on multi-PLD-ASL have significant value in the 
prognostic assessment of AIS patients.

In this study, our aim is to utilize machine learning (ML) 
techniques to construct multi-PLD ASL radiomics models for 
predicting the prognosis of AIS. Moreover, relevant clinical risk 
factors will be  incorporated to improve predictive precision and 
determine the optimal prognostic model.

2 Materials and methods

2.1 Patients

A cohort of 102 patients with AIS (45.10% female; mean [SD] age, 
67.98 [12.49] years) was recruited at the Third People’s Hospital of 
Yancheng between December 2020 and September 2024. The 
screening procedures and research analysis are depicted in Figure 1.

The inclusion criteria were: (1) a confirmed diagnosis of AIS 
according to the guidelines (26); (2) the ability to cooperate with brain 
MRI scans within 24–72 h after symptom onset; (3) a modified Rankin 
Scale (mRS) score of 0 before symptom onset; and (4) individuals aged 
18 or older.

The exclusion criteria were: (1) posterior circulation infarction; 
(2) intracranial occupying lesions such as tumors or arachnoid cysts; 
(3) significant MRI artifacts; (4) evidence of hemorrhagic 
transformation; and (5) patients with severe diseases in other systems.

2.2 Clinical assessment

Demographic and clinical data were gathered for all participants, 
including age, gender, onset to therapy time, baseline National 
Institutes of Health Stroke Scale (NIHSS) score, treatment strategies, 
atrial fibrillation, hypertension, diabetes mellitus, hyperlipidemia, 
coronary heart disease, smoking history, alcohol abuse and history of 
stroke. To aid in the modeling process, the continuous variables in the 
dataset were standardized to mitigate disparities in data distribution. 
The mRS score was assessed through a telephone follow-up at 90 days 

Abbreviations: AIS, acute ischemic stroke; CBF, cerebral blood flow; DSC-PWI, 
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tomography perfusion; ASL, arterial spin labeling; MRI, magnetic resonance 
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mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; 

DWI, diffusion weighted imaging; ROI, region of interest; ICC, interclass correlation 

coefficient; XGBoost, extreme gradient boosting; LOOCV, leave-one-out cross-

validation; LASSO, least absolute shrinkage and selection operator; ROC, receiver 
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post-onset, classifying prognosis as either good (mRS score ≤ 2) or 
poor (mRS score > 2).

2.3 MRI acquisition

All participants underwent head MRI scans (3.0T, GE Discovery 
750 W, USA), including diffusion weighted imaging (DWI) and 
multi-PLD ASL sequences within 24–72 h after symptom onset. 
Multi-PLD ASL employs a three-dimensional pseudo-continuous 
scanning method, with the following specific parameters: echo time: 
5978 ms; repetition time: 11.5 ms; field of view: 22 × 22 cm; slice 
thickness: 4.5 mm; slice number: 106; resolution: 4.67 mm * 4.67 mm; 
NEX: 1; PLDs: 1.0 s, 1.22 s, 1.48 s, 1.78 s, 2.1 s, 2.63 s, 3.32 s; scan 
duration: 6 min 2 s. The ATT-corrected CBF image is obtained by 
averaging the individual CBF images calculated for each PLD directly 
on the MRI scanner.

2.4 Lesion segmentation and radiomics 
feature extraction

To improve the image quality, N4 bias field correction was applied 
to the obtained CBF images to minimize the impact of magnetic field 
inhomogeneity. Subsequently, the DWI images were used as a template 
to conduct image registration with the CBF images. Two radiologists 
independently delineated the infarct area slice-by-slice on DWI 
images using ITK-SNAP1 to define the region of interest (ROI). The 

1 http://www.itk-snap.org, version 4.0.

ROI was then transferred to the corresponding registered CBF images. 
PyRadiomics software (version: 3.1.0) was utilized to extract 1,032 
features from the CBF image ROI. The intraclass correlation coefficient 
(ICC) was computed to evaluate the consistency of the extracted 
features. Features with an ICC exceeding 0.75 were deemed highly 
consistent, standardized, and incorporated into the model 
development process.

2.5 Model building and evaluation

Eight different ML methods were employed to build models, 
including logistic regression, support vector machine, random forest, 
k-nearest neighbors, naive Bayes, extreme gradient boosting 
(XGBoost), light gradient boosting machine and deep neural 
networks. Given the limited sample size included in this study, leave-
one-out cross-validation (LOOCV) was employed instead of 
partitioning the subjects into training and testing sets. This method 
involves utilizing (N-1) samples for training across N iterations, while 
reserving one sample as the test set in each iteration. This strategy 
aims to enhance data utilization and increase accuracy levels (27). In 
each training cycle, the least absolute shrinkage and selection operator 
(LASSO) regression was used to select features with non-zero 
coefficients through 10-fold cross-validation.

Class-weighted loss functions were utilized in model training to 
address the effects of class imbalance. In order to reduce bias toward 
the majority class (good prognosis), the minority class (poor 
prognosis) was assigned higher weights to amplify its influence on the 
loss function. Grid search was utilized for hyperparameter tuning 
across all models. This approach systematically investigated various 
combinations of model-specific hyperparameters (e.g., the penalty 
parameter C for logistic regression, the kernel type and gamma for 

FIGURE 1

Study enrollment process. AIS, acute ischemic stroke; MRI, magnetic resonance imaging; mRS, modified Rankin Scale.
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support vector machine, the number of estimators and maximum 
depth for random forest, XGBoost, and light gradient boosting 
machine) to determine the optimal configuration for each method. 
The optimal hyperparameters were chosen according to performance 
metrics obtained from cross-validation.

We constructed CBF radiomics models using radiomics features 
and clinical models using clinical data. Furthermore, combined 
models were established by integrating radiomics features and clinical 
data. Receiver operating characteristic (ROC) curves were generated 
for all models to evaluate performance based on the area under the 
curve (AUC), sensitivity, specificity, accuracy, and F1 score. The 
model’s performance on the minority class (poor prognosis) was also 
examined through the evaluation of precision, recall, F1-score, and 
the area under the precision-recall AUC (PR-AUC). Additionally, the 
robustness of the models was validated through 5,000 permutation 
tests. The DeLong test was utilized to statistically compare the 
predictive performance of the models. Decision curve analysis 
(DCA) was performed to assess the potential clinical net benefits of 
the models. Finally, feature importance was determined within the 
models using SHapley Additive exPlanations (SHAP).

2.6 Statistical analysis

Statistical analysis was conducted using SPSS software (Version 
26.0, IBM, Armonk, NY, USA). Clinical data were evaluated for 
normality and homogeneity of variance. Data following a normal 
distribution were expressed as mean ± standard deviation. In cases 
where the data showed a non-normal distribution, the descriptive 
measure employed was the median (first quartile, third quartile). 
Continuous variables were analyzed using the independent samples 
t-test or the Mann–Whitney U test, whereas categorical variables 
were analyzed with the chi-square test. Statistical significance was 
defined as p < 0.05.

A statistical power analysis was conducted to assess the adequacy 
of the sample size in supporting the study’s conclusions. The analysis 
was based on the observed AUC values and a null hypothesis AUC of 
0.5 (random classification).

Python (version 3.11)2 was used for image processing and model 
construction. The ‘sklearn’ package was used to perform LASSO 
regression analysis for feature selection. The ‘matplotlib’ package was 
used to generate ROC and DCA curves. The ‘SHAP’ package was 
implemented to calculate SHAP values for the features.

3 Results

3.1 Demographic characteristics of patients

The demographic and clinical data of the included AIS patients 
are detailed in Table 1. Among all patients, 78 exhibited a good 
prognosis, while 24 had a poor prognosis. In comparison to patients 
with a good prognosis, those with a poor prognosis were older 
(p = 0.025) and displayed a higher baseline NIHSS score (p < 0.001). 
No significant differences were observed between the two groups in 
terms of gender, onset to therapy time, treatment strategies, atrial 
fibrillation, hypertension, diabetes mellitus, hyperlipidemia, 
coronary heart disease, smoking history, alcohol abuse, or history 
of stroke.

3.2 Model building and performance

Out of the eight ML methods, the model constructed with the 
XGBoost algorithm exhibited superior performance. The 

2 https://www.python.org

TABLE 1 Demographic and clinical characteristics of the good and poor prognosis groups.

Characteristics Good (n = 78) Poor (n = 24) t/Z/χ2 p value

Age, yeara 66 ± 12 73 ± 13 −2.283 0.025*

Female, n (%) 33 (42.31) 13 (54.17) 1.042 0.307

Onset to therapy time, houra 13.42 ± 14.90 13.23 ± 13.89 0.055 0.956

Baseline NIHSS scoreb 3 (1, 6) 8 (4, 12) 4.505 <0.001*

Reperfusion therapy, n (%) 18 (23.08) 6 (25.00) 0.038 0.846

Atrial fibrillation, n (%) 12 (15.38) 5 (20.83) 0.392 0.531

Hypertension, n (%) 58 (74.36) 18 (75.00) 0.004 0.950

Diabetes mellitus, n (%) 22 (28.21) 6 (25.00) 0.095 0.758

Hyperlipidemia, n (%) 16 (20.51) 5 (20.83) 0.001 0.973

Coronary heart disease, n (%) 3 (3.85) 2 (8.33) 0.793 0.373

Smoking history, n (%) 19 (24.36) 4 (16.67) 0.622 0.430

Alcohol abuse, n (%) 13 (16.67) 3 (12.50) 0.241 0.624

History of stroke, n (%) 10 (12.82) 7 (29.17) 3.531 0.060

n, number of cases.
a(−x ± s).
b[M (Q1, Q3)].
NIHSS, National Institutes of Health Stroke Scale. The marked with “*” is statistically significant (p < 0.05).
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hyperparameters for XGBoost were configured with a maximum 
depth of 6, a learning rate of 0.3, 100 estimators, a subsample of 1, and 
column sampling by tree set to 1. Figure 2 and Table 2 display the 
ROC curves and key diagnostic performance metrics for each 
XGBoost models. The results of the models created using the 
remaining seven ML algorithms are elucidated in the 
Supplementary material.

Among the XGBoost models, the combined model demonstrated 
superior performance, attaining an AUC of 0.876 (95% CI, 0.768–
0.960), indicating its significant capability in discriminating between 
good and poor prognoses. In comparison, the AUC for the clinical 
model was 0.658 (95% CI, 0.547–0.755), while the AUC of the CBF 
radiomics model was 0.755 (95% CI, 0.635–0.869). The DeLong test 
demonstrated that the combined model exhibited markedly better 
predictive performance compared to both the clinical model 
(p < 0.001) and the CBF radiomics model (p = 0.002). Furthermore, 
there was no statistically significant difference between the clinical 
model and the CBF radiomics model (p = 0.222). During the 5,000 
permutation tests, it is noteworthy that all models exhibited a 
relatively high level of robustness. In Figure 3, the DCA for all models 
reveals that the combined model exhibits superior net benefit 
compared to both the clinical model and the CBF radiomics model 
across a broad spectrum of threshold probabilities, ranging from 
0.1 to 0.9.

Based on the observed AUC of the combined model 
(AUC = 0.876) and a null hypothesis AUC of 0.5, a statistical power 
analysis resulted in a standard error of 0.034 and a Z-value of 10.970 
(p < 0.05), demonstrating that the current dataset possesses adequate 
power (>80%) to validate the observed AUC. Furthermore, the 
combined model achieved a precision of 0.79, recall of 0.83, PR-AUC 
of 0.85, and F1-score of 0.81 for the minority group, indicating its 
ability to accurately identify cases with poor prognosis.

3.3 Model interpretability

As illustrated in Figure 4, we used the SHAP values from the best-
performing XGBoost combined model to identify the important 
variables for predicting AIS prognosis. Positive SHAP values were 
linked to an elevated risk of poor prognosis, while negative SHAP 
values were indicative of a greater chance of poor prognosis. Notably, 
the baseline NIHSS score and age played significant roles in predicting 
the prognosis of AIS. Additionally, several texture and shape features 
derived from the CBF images also contributed significantly to the 
predictive performance of the model.

4 Discussion

This study proposes a novel approach that integrates multi-PLD 
ASL radiomics features with clinical variables for predicting AIS 
prognosis. Among the models developed, the XGBoost algorithm 
exhibited the highest AUC value of 0.876, underscoring its predictive 
accuracy for AIS prognosis. It can assist clinicians in early prognostic 
assessment and the implementation of personalized treatment plans, 
ultimately aiming to reduce the incidence of poor prognosis.

The fundamental aspect of AIS involves tissue necrosis caused by 
embolism in the supplying artery. CBF serves as a direct reflection of 
the hemodynamic condition within the infarcted region, making it a 
pivotal indicator of brain tissue injury and a key role in evaluating 
neurological rehabilitation (28). In contrast to conventional 
DSC-PWI, multi-PLD ASL technology produces CBF images without 
the need for contrast agents (29). Moreover, radiomics techniques 
enable the extraction of multidimensional features from medical 
images, providing a more thorough assessment of the heterogeneity 
of blood perfusion within lesions in comparison to visual evaluation 
or basic CBF quantification (30). Guo et al. developed ten ML models 
based on the dynamic radiomics features of DSC-PWI in the infarcted 
area to predict the prognosis of AIS, achieving a maximum AUC of 
0.882 (25). However, there is a scarcity of studies investigating the 
correlation between the radiomics features of CBF in the infarcted 
region and the prognosis of AIS. Therefore, we aimed to develop a 
CBF radiomics model for AIS prognosis prediction based on 
multi-PLD ASL imaging. Our model attained a maximum AUC of 
0.755 in the results, indicating the viability of utilizing multi-PLD ASL 
technology for predicting neurological recovery in AIS patients. After 
including age and baseline NIHSS score, the model achieves an AUC 
of 0.876, which aligns closely with the findings of Guo et al.’s model 
(25). Therefore, this method presents a safer and more reproducible 
avenue for prognostic prediction in AIS patients, particularly for those 
with contraindications to contrast agents. Moreover, the absence of 
contrast agents renders ASL a more economical method.

When examining the demographic and clinical profiles of AIS 
patients, it was observed that those with poorer prognoses were 
characterized by advanced age and a higher baseline NIHSS score. The 
development of a predictive model utilizing demographic and clinical 
factors yielded limited performance, as indicated by an AUC of 0.658, 
which falls below that of the CBF radiomics model. While the DeLong 
test did not indicate a statistically significant distinction between the 
two models, the test’s power may have been constrained by the small 
sample size (31). Consequently, there is justification to argue for the 

FIGURE 2

ROC curve of the XGBoost models in predicting prognosis of acute 
ischemic stroke. ROC, receiver operating characteristic; XGBoost, 
extreme gradient boosting; AUC, area under the curve; CBF, cerebral 
blood flow.
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superiority of the CBF radiomics model compared to the clinical 
model. During the acute phase of AIS, the CBF radiomics model may 
function as an alternative to the clinical model for prognostic 
prediction, especially beneficial for patients with insufficient 
clinical data.

The combined model, which integrates clinical data with CBF 
radiomics features, achieved an AUC of 0.876. The DeLong test 
demonstrated that the combined model significantly outperformed 
both the clinical model and the CBF radiomics model. This finding 
implies that clinical data provide only partial insight into prognosis. 
In contrast, CBF radiomics features provide distinct information on 
alterations in cerebral blood perfusion status that clinical data alone 
cannot encompass. This discovery is in line with results from various 
studies, underscoring the essential role of the complementarity of 
multimodal information in radiomics research (32). Additionally, the 
DCA demonstrated that the combined model yielded a higher net 
benefit across a wide range of threshold probabilities. This suggests 
that the model has the potential for application in clinical practice, 
with the only requirement being the extraction of relevant clinical 
and imaging data from electronic medical records and imaging 
systems. It can assist clinicians in delivering consistent prognostic 
evaluations in diverse clinical scenarios, enhancing the management 

of AIS by facilitating prompt interventions and optimizing 
resource distribution.

In order to determine the factors influencing the prognosis of 
AIS, we  conducted SHAP analysis to assess the individual 
contribution of each feature to the predictive accuracy of the 
combined model. The baseline NIHSS score and age emerged as the 
most significant predictors among the clinical variables, aligning 
with prior studies (33–35). The baseline NIHSS score reflects stroke 
severity, correlating strongly with infarct size and functional 
outcomes in AIS patients (36). Advanced age, characterized by 
diminished neural plasticity and a higher prevalence of 
comorbidities, is a firmly established risk factor for poor outcomes 
in AIS (37, 38). Texture features and shape features derived from 
multi-PLD ASL CBF were identified as important contributors to the 
model. Among the texture features, the gray level run length matrix 
made the greatest contribution, quantifying gray intensity patterns 
and their spatial relationships within the ischemic area (39). 
Ischemic regions often exhibit varying degrees of blood flow 
reduction and tissue damage, and texture features can capture these 
variations, distinguishing areas of hypoperfusion, penumbra, and 
infarct core. Moreover, alterations in tissue density induced by 
cytotoxic and vasogenic edema may manifest in texture 

TABLE 2 The performance of XGBoost models in predicting prognosis of AIS patients.

Models AUC (95% CI) Sensitivity Specificity Accuracy F1 score Permutation test

Clinic 0.658 (0.547–0.755) 1 0.449 0.578 0.527 0.012*

CBF radiomics 0.755 (0.635–0.869) 0.625 0.808 0.765 0.556 0.002*

Combined 0.876 (0.768–0.960) 0.792 0.897 0.873 0.745 <0.001*

XGBoost, extreme gradient boosting; AIS, acute ischemic stroke; CBF, cerebral blood flow; AUC, area under the curve; CI, confidence interval. The marked with “*” is statistically significant 
(p < 0.05).

FIGURE 3

Clinical decision curve analysis of the XGBoost models. XGBoost, extreme gradient boosting; CBF, cerebral blood flow.
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characteristics, elucidating the advancement of secondary damage 
(40). Additionally, microstructural disruptions, such as the loss of 
neural integrity or capillary breakdown, may manifest as increased 
texture irregularities in radiomics analysis (41). Shape features 
provide evidence linking lesion geometry to the underlying vascular 
anatomy and collateral perfusion (42). Larger or irregularly shaped 
lesions may indicate more extensive vascular occlusion or failure of 
collateral circulation, both of which are associated with poor 
prognosis (43, 44). Moreover, regions with poor perfusion are more 
prone to displaying irregular lesion morphologies (45). These 
findings highlight the capability of CBF radiomics features to reflect 
the extent and heterogeneity of tissue damage, demonstrating their 
relevance to clinical prognosis of AIS.

This study must acknowledge several limitations. Firstly, the small 
sample size may restrict the generalizability of the results. Despite 
utilizing LOOCV and permutation tests to mitigate this issue, larger 
multi-center datasets are essential to confirm the model and broaden 
its external applicability. Secondly, the exclusion of posterior 
circulation infarction cases restricted the model’s generalizability. 
Future research should incorporate posterior circulation cases into 
larger datasets to construct subtype-specific models. Thirdly, despite 
efforts to ensure consistency through ICC analysis, manual delineation 
of infarcted areas may lead to observer variability (46). Future research 
should explore automated or semi-automated segmentation methods 
to reduce subjectivity and improve reproducibility. Fourthly, this study 
focused exclusively on the multi-PLD ASL sequence. Future studies 
should explore integrating multimodal imaging techniques, such as 

quantitative susceptibility mapping and diffusion-prepared ASL, to 
better understand AIS progression by delineating the ischemic 
penumbra and assessing blood–brain barrier integrity (47–50). 
Finally, future studies could integrate radiomics features with 
network-based approaches, which have proven valuable in 
neuropsychiatric disorders, to better understand how ischemic lesions 
disrupt brain networks and influence prognosis of AIS (51–53).

5 Conclusion

In this study, we established new prognostic prediction models 
for AIS utilizing multi-PLD ASL technology. The results indicate 
that the combined model, which integrates clinical data and CBF 
radiomics features, accurately predicts AIS prognosis. This model 
has the potential to assist clinicians in identifying individualized 
treatment approaches to improve patient prognosis. This strategy 
presents a feasible alternative for assessing the prognosis of AIS, 
especially in individuals for whom the use of contrast agents 
is contraindicated.
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