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Introduction: Although medical imaging plays a crucial role in stroke

management, machine learning (ML) has been increasingly used in this field,

particularly in lesion segmentation. Despite advances in acquisition technologies

and segmentation architectures, one of the main challenges of subacute stroke

lesion segmentation in computed tomography (CT) imaging is image contrast.

Methods: To address this issue, we propose a method to assess the contrast

quality of an image dataset with a ML trained model for segmentation. This

method identifies the critical contrast level below which the medical-imaging

model fails to learn meaningful content from images. Contrast measurement

relies on the Fisher’s ratio, estimating how well the stroke lesion is contrasted

from the background. The critical contrast is found-thanks to the following three

methods: Performance, graphical, and clustering analysis. Defining this threshold

improves dataset design and accelerates training by excluding low-contrast

images.

Results: Application of this method to brain lesion segmentation in CT imaging

highlights a Fisher’s ratio threshold value of 0.05, and training validation of a new

model without these images confirms this with similar results with only 60% of

the training data, resulting in an almost 30% reduction in initial training time.

Moreover, themodel trainedwithout the low-contrast images performed equally

well with all images when tested on another database.

Discussion: This study opens discussion with clinicians concerning the

limitations, areas for improvement, and strategies for enhancing datasets and

training models. While the methodology was only applied to stroke lesion

segmentation in CT images, it has the potential to be adapted to other tasks.

KEYWORDS

deep learning, segmentation, quality control, contrast analysis, stroke, CT imaging

1 Introduction

With an estimated 12 million cases each year worldwide, stroke is the second leading

cause of death and a major cause of disability (1). Medical imaging is crucial not only for

diagnosing and guiding stroke therapy but also for monitoring patients after treatment.

The two main imaging modalities for stroke are Magnetic Resonance Imaging (MRI)

and Computed Tomography (CT). MRI provides a very accurate image contrast of the

brain and the lesion, the latter often provides a lighter or poor image contrast of the

brain and the lesion than the surrounding healthy tissue. However, MRI is expensive
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and requires more time than a CT scan to be performed and is not

always available in an emergency. Therefore, in the majority of the

cases, CT scan is opted despite its lower contrast; in this modality,

the lesion appears darker than the background. The advantage of

CT scan is that hemorrhagic transformations are extremely well

visible as a light spot in the dark lesion (2).

In recent years, machine learning (ML) has emerged as a

powerful tool for segmenting the area of the brain affected by

stroke. Despite methodological advances, the subject remains

topical, as evidenced by the Ischemic Stroke Lesion Segmentation

(ISLES) challenge, which took place annually from 2015 to 2018

and brought together teams from around the world in 2022 (3). As

in general medical segmentation, the state-of-the-art architecture

in stroke lesion segmentation is the U-Net architecture (4) and its

no-new-Net (nnU-Net) variation (5, 6). The nnU-Net, in particular,

has led to significant improvements and was the most widely used

model in the latest ISLES challenge (7). Reflecting the growing focus

on brain lesion segmentation, many alternative architectures have

been proposed, utilizing both two-dimensional (2D) and three-

dimensional (3D)models and a variety of deep learning techniques.

For instance, 3D neural network architectures have been explored

in a previous study (8), while other studies leverage multiple

imaging modalities (9). Additionally, for improved segmentation

accuracy, some studies adopt innovative approaches such as

generative adversarial networks (GANs) (10) or employ vision

transformers (VIT) (11).

Despite continuous advancements in stroke lesion

segmentation, applying ML techniques to CT images remains

a significant challenge. Due to the limited availability of large

annotated public CT datasets until 2023, majority of the existing

research has focused on MRI because of the difficulty that

represents this imaging modality. Those inherent difficulties of CT

imaging, such as lower contrast resolution compared to MRI, pose

unique obstacles for stroke lesion detection. As an example, in a

recent brain lesion segmentation challenge on joint segmentation

of CT scan or MRI lesions (12), the top-performing team achieved

a DSC of 0.67 on MRI, but only 0.20 on CT using the same acute

stoke patients’ tests. One critical factor is the timing of CT image

acquisition, as lesion visibility can change dramatically in the first

few hours and days after a stroke (13). Our focus on subacute CT

images acquired 24 h after the stroke addresses a crucial window

for stroke treatment, yet this phase remains underexplored in

current research.

A closer examination of existing CT stroke lesion segmentation

datasets reveals several additional challenges. Many datasets consist

only of follow-up images, and the populations studied often do

not reflect the diverse clinical characteristics of stroke patients.

Moreover, much of the research has concentrated on hemorrhagic

lesions (14, 15), which are easier to detect on CT due to their

hyperdense appearance. Other studies exhibit biases in lesion size;

for instance, in one study (16), the median lesion volume in the

training set was 48 ml (using follow-up images), while the median

lesion volume for MRI in the ISLES 2015 challenge was only 17 ml.

However, lesion contrast—rather than size alone—appears to be the

more significant challenge (17), as ischemic stroke lesions are often

poorly contrasted with surrounding healthy tissue in CT images,

making them difficult to distinguish.

Addressing these challenges requires specialized approaches for

CT analysis. Techniques, such as window setting, which adjusts

the Hounsfield unit (HU) ranges to enhance lesion visibility, have

shown potential for improving CT segmentation (18). However,

often, thesemethods fail when distinguishing ischemic lesions from

normal tissue, as their intensity ranges can overlap significantly.

Moreover, there is no consistent HU threshold that can reliably

differentiate between healthy tissue and various types of brain

lesions (19). To overcome these obstacles, innovative solutions are

needed that account for the unique characteristics of CT imaging

and the complexities of stroke lesion segmentation, particularly

for subacute ischemic lesions, where lesion contrast and visibility,

especially, are challenging.

The contrast issue is well-known among medical images

analysis and various techniques have been developed to improve

it, including morphological transformations (20) and super-

resolution (21). Segmentation algorithms have specifically targeted

low-contrast images with attention mechanisms on the objects of

interest (22–24) or their contours (25). Although, these methods

improve segmentation in specific scenarios, they are generally task-

specific and they lack generalizability across other medical imaging

challenges. Moreover, automatic quality assessment methods for

CT datasets primarily evaluate acquisition-related factors (26), such

as motion artifacts or field of view, or the quality of specific image

processing steps such as registration (27). However, they do not

address how the quality of a dataset impacts its suitability for

specific machine learning tasks, particularly segmentation.

We aimed to develop a method for assessing the quality of

CT datasets, specifically addressing the challenges posed by low

contrast in CT scans. Unlike existing methods, our approach

evaluates dataset quality in the context of a specific ML task.

Our goal is to determine the minimum contrast value required

for an ML model to successfully segment a stroke lesion on CT

images. By exploring the constraints of low-contrast data, we seek

to deepen the understanding of how contrast impacts segmentation

performance. To achieve this, we developed a methodology based

on performance, graphical, and clustering analysis that can be

applied to any medical segmentation task using deep learning

architectures. Our approach automates the quality control process,

enabling efficient training of segmentation models by ensuring that

only the most relevant data is used. This study provides a new tool

for assessing dataset quality and addresses one of themain obstacles

to CT segmentation of brain lesions.

2 Material and methods

2.1 Material

We used two independent databases, one for training the ML

model and other for testing, to guarantee the generalizability of

our results.

2.1.1 Training data: HIBISCUS-STROKE dataset
We included patients from the HIBISCUS-STROKE cohort.

The design andmethods of this cohort have been published in Debs

et al. (28). Briefly, stroke patients with an anterior circulation stroke

threated by thrombectomy underwent a baseline MRI and both CT

and MRI follow-up scans, respectively, 24 h and 6 days after the

treatment. This day-6MRI is segmented to have a final lesion mask.
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The work is based on the hypothesis that the lesion is stabilized

24 h after treatment, and so the segmentation obtained on fluid-

attenuated inversion recovery (FLAIRMRI) is used as reference for

the CT scan.

A total of 108 patients are included in the study. All patients

gave their informed consent and the imaging protocol was

approved by the regional ethics committee.

2.1.2 Test data: RELATE dataset and APIS dataset
RELATE is a monocentric prospective database of all

consecutive patients treated by intravenous thrombolysis and/or

thrombectomy, from the same center as for the HIBISCUS-

STROKE cohort. The patients were selected with additional

criteria compared to the HISBISCUS-STROKE dataset, specifically

considering stroke severity scores: Alberta Stroke Program Early

Computed Tomography Score (ASPECTS) <6 and National

Institutes of Health Stroke Scale (NIHSS) >7, resulting in the

inclusion of only more severe patients. In these RELATE patients,

the final stroke lesion was segmented on day 1 CT images, with

an additional selection based on the ability of the annotators to

accurately segment the images due to the difficulty that the manual

CT scans segmentation represents, as day-6 MRI is not part of

standard clinical practice. In total, 125 patients were included from

this dataset. Due to the selection bias resulting from the severity

scores and the ability of the annotators to accurately segment the

images, the fact that the reference does not come from the same

modality and that the RELATE dataset does not provide day-6MRI,

we could not fuse the two datasets, even though the images come

from the same center.

A Paired CT-MRI Dataset for Ischemic Stroke Segmentation

(APIS) Challenge, is the only stroke lesion segmentation challenge

based on CT images (12). The dataset includes CT images from

60 patients in the acute phase, along with corresponding lesion

masks derived from acute-phase ADC MRI scans. Since our work

focuses on subacute images, we did not merge this dataset with

ours. However, we still found it valuable to use the APIS dataset

for testing to assess how our models perform on a different set

of images.

2.1.3 Preprocessing
Before training and testing the models, some preprocessing

steps specific to stroke lesion segmentation task were performed:

(1) skull stripping with FMRIB Software Library (FSL), optimized

for CT images (29, 30); (2) non-linear registration of images onto

DWI MRI as a reference frame using ANTs (31); (3) separation

of 3D volumes into 2D slices, with only slices containing lesions

according to the reference being retained; (4) selection of slices

containing lesions with an area > 1cm2, as smaller lesions cannot

be reliably segmented on CT; (5) selective horizontal flipping to

place all lesions in the same hemisphere and provide a consistent

lesion position prior; and (6) resizing of images to 192 × 192

pixels. Steps 3 and 4 assume that a rough location of the lesion

is known from preliminary clinical examinations. Ultimately, the

108 patients included in the HIBISCUS-STROKE dataset represent

3,772 slices used for training the model. Treated the same way, the

patients in the RELATE database represent 4,327 samples, and the

APIS database contains 259 images, on which models are tested to

test their transferability.

2.2 Methods

Using the HIBISCUS-STROKE database, we identified the

minimal image contrast for an ML model to successfully segment

a subacute stroke lesion. The proposed method is summarized in

Figure 1 and detailed in the following subsections.

2.2.1 Contrast evaluation
The key element of our study is the evaluation of the contrast

of the stroke lesion in the CT images. We used Fisher’s ratio that is

well-adapted to evaluate the contrast between an object of interest

and the background. It is defined as follows:

F =
(µobject − µbackground)

2

σ 2
object

+ σ 2
background

where µobject represents the mean of the values within the object

of interest according to a ground truth, µbackground represents

the mean of the values in the background tissue, and σ 2
object

and σ 2
background

are the standard deviations squared in these

respective regions. The Fisher’s ratio assumes normally distributed

data within each group and approximately equal variances across

different groups.

2.2.2 Data augmentation
The training dataset underwent data augmentation (DA)

to balance the distribution based on CT image contrast. This

augmentation process occurs in two steps, each tailored to address

specific aspects of the image data.

Initially, the lesion pixel density were systematically reduced by

two HU, iteratively over three rounds, while preserving a border

row of pixels unchanged to prevent the emergence of artifacts.

This progressive reduction aims to create a smooth gradient within

the lesion and mitigate the appearance of outlines resulting from

drastic value modifications.

In a second step, applied selectively to slices exhibiting a higher

standard deviation of lesion intensity than the background, further

modifications were made to pixels falling below or above the

median of the lesion’s pixel values. Specifically, a modification of

two units was applied to these pixels to equalize the appearance of

inhomogeneous lesions. Subsequently, a selection process guided

by the Fisher’s ratio of the augmented images was employed,

ensuring that the contrast remains within the range observed in the

original dataset. Slices with overly low contrast were excluded, as

they were already well-represented in the dataset.

For a detailed outline of this heuristic process,

Supplementary Algorithm 1 provides a concise

pseudocode overview.
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FIGURE 1

Graphical representation of the methodology steps. The performance analysis are performed on results of models trained on raw dataset or dataset

with data augmentation.

2.2.3 Model training and testing
The U-Net (4) architecture was used to segment the stroke

lesions in the CT images. It consists of a contractive path with

3 ∗ 3 convolutional layers followed by a rectified linear unit (ReLU)

activation function (32) and a 2× max pooling operation. On the

other side, there is an expansive path including an upsampling of

the feature map, followed by a 2×2 convolution and concatenation

with the corresponding feature map from the contractive path

called skip connection, and two 3×3 convolutions, each followed by

a ReLU. The training was done with Adam optimizer (33) and the

sum of the Dice loss, based on the Dice coefficient, and the binary

cross-entropy:

L =
2× y× p

y+ p
− (y log(p)+ (1− y) log(1− p))

where y is the ground truth and p is the prediction made by the

model.

The U-net parameters were optimized by grid search,

which consists of training several models with different sets of

hyperparameters and selecting the one that performed best on

the validation data. The parameters of the optimizer were thus

set to β1 = 0.5 and β2 = 0.999 and the learning rate at lr =

0.0005. For the final models with both raw data and DA, a five-

folds cross validation was performed. A maximum of 200 epochs

were done and early-stopping was applied to the validation set to

avoid overfitting. Only around 30 epochs were needed to complete

model convergence. The final performances were computed from

the test set.

The models were tested on a separate group of patients,

who were not used during training. Only 5% of the patients

in the original dataset were selected for testing. This selection

process operates at patient level, preserving the independence

of the test set. Data augmentation (DA) was deployed on the

remaining 95% of patients, representing 3,527 training slices. With

DA, this number rose to 14,415 slices, while 245 slices were

reserved for testing without generating augmented data. The test

subset was deliberately balanced to ensure a fair representation

of slices across all contrast ranges, as shown in Figure 2. By

comparingmodels trained with and without data augmentation, we

checked whether uneven distribution influences poor performance

in specific contrast scenarios.

FIGURE 2

Distribution of Fisher’s ratio in HIBISCUS-STROKE test set. Patients

are selected, so the distribution is uniform in order to be able to

compare the performance between di�erent contrast ranges.

2.2.4 Evaluation metrics
Four evaluation metrics were used to assess segmentation

performance:

• Detection, determines if a lesion is present in a slice. It is

binary, where 0 denotes the model’s failure to segment a lesion

where one exists according to the reference, and 1 signifies

successful segmentation.

• Dice similarity coefficient (DSC), represents the superposition

of the segmentation made by the model and the reference:

DSC =
2× TP

FN + FP + 2× TP

where TP are the true positives, FN the false negatives, and

FP the false positives. Unsatisfactory results yield a DSC of

0. A value below 0.1 (10% overlap) is deemed unacceptable,

although this threshold may vary depending on the task.

• Hausdorff distance (HD) between the segmentation (A) and

the ground truth (B) is expressed as

HD = max(h(A,B), h(B,A)) where

h(A,B) = maxmin
a∈A,b∈B

||A− B||.

It calculates maximum distance, in pixels, between

segmentation and ground truth. With images of size

192 × 192 pixels and the brain typically occupying 70% of
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FIGURE 3

Distribution of Fisher’s (A) in the HIBISCUS-STROKE dataset which is highly imbalanced (B) in the RELATE dataset which is less imbalanced and with

higher maximum value.

the slice height, a threshold of 60 pixels was set to prevent

erroneous predictions in different brain regions (e.g., frontal

instead of occipital).

• Relative Absolute Area Difference (RAAD) calculated by

RAAD =
(TP + FP)− (TP + FN)

TP + FN
.

It compares segmentation area to ground truth, normalized

by the latter’s area. The optimal value is 0. The RAAD value

exceeding –0.5 or 0.5 indicates significant underestimation

or overestimation, respectively, rendering the segmentation

unsatisfactory.

Establishing satisfactory metric thresholds aided in identifying

initial contrast thresholds in model performance analysis before

proceeding with further evaluations.

2.2.5 Contrast threshold definition
To gain an initial estimate of the contrast threshold value,

we analyzed the model’s performance using the performance

thresholds outlined in Section 2.2.4, specifically in relation to

contrast. This approach allowed us to categorize the samples based

on their contrast, identifying those that perform well or poorly, and

enabling the initial determination of the critical Fisher’s ratio.

The first method for assessing the contrast threshold in relation

to the model’s performance involved graphical analysis using a

receiver operating characteristic (ROC) curve. This curve plots the

true positive rate (TPR) against the false positive rate (FPR), for

different thresholds of Fisher’s ratio. These two rates are calculated

as follows:

TPR =
TP

TP + FN
FPR =

FP

FP + TN
.

This approach involves calculating both TPR and FPR using

different test sets, while gradually tightening the contrast threshold.

By considering all slices, the TPRmight be lower compared to when

only images with good contrast are considered. In this type of plot,

a distinct “elbow” is typically observed in the upper left corner of

the curve, which denotes the best compromise between the TPR

and FPR, allowing us to detect the best contrast threshold, related

to this best compromise, can be identified at the point closest to this

elbow. This point ensures a sufficiently high TPRwhile maintaining

acceptable performance.

The second method relied on clustering analysis to identify

two distinct groups of slices with varying contrast based on their

segmentation performance. The aim is to separate slices that

are easy to segment from those that are more difficult. This

analysis uses two unsupervised clustering algorithms: the k-means

algorithm (34) and the hierarchical clustering algorithm (35). The

evaluation metrics (as presented in Section 2.2.4) and Fisher’s ratio

are used as features after being normalized between 0 and 1 for

the clustering algorithms. To determine if there are performance

differences correlated to contrast, the resulting centroids of each

cluster are compared. The first algorithm, the k-means algorithm,

is an iterative process where random cluster centers are assigned,

data points are allocated to the closest cluster based on distances,

new cluster centers are recalculated, and the process is repeated

until stabilization. To mitigate the impact of random initialization,

this is repeated 10 times. In contrast, the hierarchical clustering

algorithm initially treats each data point as a separate cluster and

progressively merges the closest clusters until only two clusters

remain. Both algorithms are tested with various distance metrics,

such as Euclidean distance (36), squared Euclidean distance (37),

Manhattan distance (36), Chebyshev distance (38), and Canberra

distance (36). The less variation there is between methods and

distances, the more confident the separation is. To determine the

best method and distance, two quality measures are used: the purity

and silhouette scores. The purity score indicates the percentage of

accurately classified objects according to a predefined Fisher’s ratio

value, while the silhouette score measures the difference between

the cohesion within clusters and the distance between clusters. A

higher silhouette score, closer to 1, indicates better performance.

Since the first method is supervised by a Fisher’s ratio threshold

and the second is unsupervised, we can assess their correlation.

If they are well-correlated, it would confirm the consistency of
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FIGURE 4

Examples of slices of di�erent lesion contrast with their reference (A) higher contrast (B) lower contrast showing the variability among the dataset

and the di�culty of segmentation of stroke lesion segmentation on CT scans.

the selected Fisher’s ratio threshold. Additionally, we can vary the

threshold used to calculate the purity score to find the value that

best correlates with the silhouette score.

2.2.6 Contrast threshold validation and model
transferability

To validate the contrast threshold found with graphical and

clustering methods, we trained a model removing the slices with a

Fisher’s ratio under this threshold and compared its performances

with the one trained with the whole dataset. If the performances are

steady even if some data is removed, it means that the removed data

did not bring informative knowledge concerning the segmentation

task, enabling us to conclude on the critical contrast threshold.

Furthermore, this allows for quantifying potential computational

cost reduction based on the extent of data removal during the

training phase.

Since we possess additional datasets for stroke lesion

segmentation via CT scan, it presents an opportunity to assess

the applicability of models trained in the preceding section on the

RELATE and APIS datasets. This evaluation aims to determine

whether these models can be directly transferred to another

database, despite being trained without low-contrast slices. If the

outcomes align closely, it reinforces the validity of the threshold,

indicating that low-contrast images do not contribute significant

information during training, even when the models are deployed

on a novel dataset.

3 Results

All the pipeline being explained, we can apply it to the

HIBISCUS-STROKE dataset to determine the contrast threshold

for stroke lesion segmentation on CT scan, to control the quality

of the dataset for this task with respect to the 2D U-Net model.

3.1 Image contrast in the two datasets

As reported in a previous study, we observed a Gaussian

distribution of HU values in CT data (39). We assessed

normality through histogram analysis and homogeneity via

variance comparisons using dispersion plots. This allowed us to

employ Fisher’s ratio to quantify lesion contrast in our images.

Fisher’s ratio is calculated for each slice after applying a threshold

to the HU of the scanner: pixels with values >80 were eliminated

to avoid including the skull, while pixels with values <15 were

also discarded or exclude cerebrospinal fluid and calcifications,

as had been similarly implemented in previous studies (40, 41).

Subsequently, the slices were normalized between 0 and 1. Given

that the lesion is the object of interest, the mean and standard

deviation values used in Fisher’s ratio calculations corresponded

to the HU of the lesion and the HU of the healthy tissue in the

ipsilateral hemisphere.

The distribution of Fisher’s ratio in the HIBISCUS-STROKE

dataset (Figure 3A) revealed a significant imbalance, with a

predominance of very low contrast slices, expectedly the most

challenging to segment. Examples of such slices are depicted in

Figure 4, highlighting the considerable contrast variability evident

in CT scans, underscoring the difficulty of the segmentation task.

Similarly, Fisher’s ratio was computed for the RELATE dataset,

resulting in the distribution depicted in Figure 3B.

3.2 Raw dataset vs. data augmentation

To examine how imbalances in lesion contrast within the

dataset affected model performance, we initially compared models

trained on raw data with those trained using DA. The Fisher’s

ratio distribution in the DA dataset is represented in Figure 5.

Results outlined in Table 1 indicate that DA consistently enhanced

all performance metrics.

A more detailed analysis, correlating performance metrics

with Fisher’s ratio (Figure 6), revealed that models trained with

DA consistently outperformed those trained solely on raw data.

Notably, this improvement was most pronounced for intermediate

contrast values, which aligned with the focus of our DA strategy.

Therefore, we decided to consider exclusively the models with DA

for the rest of the study.

3.3 Performance in relation to contrast

Figure 6 demonstrated a decline in lesion detection rate, DSC,

and HD for slices with a Fisher’s ratio below 0.05. Notably, 82%

of the undetected lesions in both models (with and without DA)
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FIGURE 5

Distribution of Fisher’s ratio in augmented HIBISCUS-STROKE

dataset in which the imbalance is reduced.

TABLE 1 Quantitative results of models trained with or without DA.

Detection
rate

DSC HD RAAD

Raw 94± 3 0.58± 0.02 21± 1 0.23± 0.12

DA 95± 1* 0.65± 0.03*** 19± 2** −0.06± 0.04***

One-tailed unpaired Mann–Whitney statistical test if a metric is significantly better for a

dataset than another (*** if p < 0.01, ** if p < 0.05, * if p < 0.09).

exhibited a Fisher’s ratio below 0.05. Similarly, when considering

a DSC threshold of 0.1 (as defined in Section 2.2.4), 77% of slices

with unsatisfactory DSC had a Fisher’s ratio below 0.05. When

examining the HD metric, this proportion increased to 100%.

Interpreting RAAD was more complex due to two thresholds

concerning underestimation and overestimation of the lesion.

When focusing on RAAD values below –0.05, 79% of the slices

demonstrated a contrast below the threshold, while overestimation

of the lesion area was less prevalent. Generally, the second case

(without DA) displayed fewer instances of overestimated slices, as

discussed in Section 3.2.

3.4 Graphical analysis

To assess performance at different contrast levels, we

employed ROC curve analysis, measuring false positive rate

(FPR) and true positive rate (TPR) using various contrast

thresholds. Figure 7 illustrates the resulting FPR and TPR, with

each point representing a distinct contrast threshold. It may

appear counterintuitive that the FPR increases with contrast, as

higher contrast is generally associated with easier segmentation.

However, Figure 7 reveals that the x-axis labels were significantly

compressed compared to the y-axis. It is important to note that

despite the increase, the FPR remained consistently below 1%

for all contrast levels. Moreover, as discussed in Section 3.3,

when contrast is very low, lesions tend to be underestimated,

which can lead to a lower FPR. Conversely, as the contrast

increases, the trend reverses, indicating a possible increase in

false positives.

When examining the axis scales, particular attention should be

given to the TPR. Our analysis showed that removing slices with

the lowest contrast has a greater impact on improving TPR during

the early stages of elimination. However, beyond a Fisher’s ratio of

0.05, further increases in TPR became less noticed. This threshold

provided the best balance, retaining a reasonable number of slices

while ensuring accurate lesion estimation. Focusing on the cropped

ROC curve shown in Figure 7 [following the AUCReshaping

method described in Bhat et al. (42)], we observed that the point

corresponding to the exclusion of slices with a Fisher’s ratio below

0.05 is closest to the top-left corner. This point represents the

optimal compromise between TPR and FPR in this range.

3.5 Clustering approach

To further corroborate the Fisher’s ratio threshold of 0.05,

we used unsupervised clustering methods to determine whether

distinct groups could be identified according to lesion contrast.

The quality scores of the clusters, defined in Section 2.2.5, are

presented in Table 2. According to the silhouette score, k-means

clustering with the Canberra distance yielded the best results. The

purity score, which is based on predefined clusters (slices with a

Fisher’s ratio below or above 0.05), also showed its highest value

with k-means using the Canberra distance. This provided an initial

validation of the clusters. The correlation between the silhouette

score and the purity score is 0.804, further confirming that a

Fisher’s ratio threshold of 0.05 effectively separated slices based

on performance metrics. When considering the variability among

the methods, the standard deviation across all purity scores was

0.5%, while it was 0.013 for the silhouette score, accounting for

∼0.7% of all possible values. These values indicated the successful

separation of data points into two clusters. To further validate the

threshold, we examined the correlation between the silhouette score

and the purity score across different contrast threshold values. The

variation in the R2 coefficient, as shown in Figure 8, demonstrated

that the best correlation is achieved with a threshold of 0.05.

After examining the clusters shown in Figure 9, it was apparent

that the separation based on the Fisher’s ratio of 0.05 was not

as distinct as anticipated. However, the centroids of the clusters

were clearly discernible. The Fisher’s ratio means for the two

clusters were 0.039 and 0.101, respectively. Nevertheless, there

were still some slices with low contrast that were classified

alongside well-segmented slices with high contrast. Fortunately,

when evaluating the DSC or the HD, these slices exhibited a

satisfactory segmentation outcome.

3.6 Validation

To validate the defined contrast threshold, we determined

whether the slices with low contrast provided useful information.

We trained a new model using the same parameters and dataset as

in Section 2.2.3, excluding any slices with a Fisher’s ratio below 0.05.

The hyperparameters were optimized with grid search as detailed in

Section 2.2.3. For this reduced dataset, with only 60% allocated for

training the parameters of the optimizer were set to β1 = 0.5 and
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FIGURE 6

Comparing models trained on raw and DA data for four metrics: performance is plotted against test set image contrast. One-tailed Wilcoxon tests

determine if DA-trained model outperforms raw-trained model (gray dotted line, right y-axis; * indicates p < 0.05 or > 0.95). There is no significant

di�erences between raw and DA for a specific range of contrast, meaning that the contraste imbalance does not penalize a specific range of

contrast. (A) Detection rate. (B) DSC. (C) HD. (D) RAAD.

FIGURE 7

ROC curve for lesion detection given contrast values. The color

scale corresponds to contrast values increasing in magnitude. The

top left point corresponds to a contrast of 0.05, which allows the

most significant gain in true positive rate.

β2 = 0.999, and the learning rate at lr = 0.001. We then compared

the results of the models trained with and without the low contrast

images on both the entire test dataset and a subset of the test dataset

that excluded low-contrast slices: results are presented in Table 3.

Excluding low-contrast slices from the training dataset had

little impact on model performance when tested on the full

TABLE 2 Clustering quality scores according to the di�erent methods

and metrics used.

Algorithm Metric Silhouette
score

Purity score
(%)

k-Means Euclidian 0.597 80.8

k-Means Squared euclidian 0.597 80.8

k-Means Manhattan 0.600 81.2

k-Means Chebyshev 0.552 79.6

k-Means Canberra 0.601 81.6

HC Euclidian 0.587 80.8

HC Squared euclidian 0.597 80.8

HC Canberra 0.603 80.8

Purity scores are based on a threshold of 0.05. Bold values indicate best scores.

test dataset, and marginally improved the DSC and HD when

tested on slices with a Fisher’s ratio > 0.05. These results

indicated that low-contrast slices (i.e., Fisher’s ratio < 0.05) did

not provide critical knowledge for segmentation. Thus, excluding

low-contrast slices could allow for a significant reduction in

computational time (from an average training time of 1 h
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and 50 min for the whole dataset to an average of 1 h and

20 min without the low contrast slices), without significant

performance costs.

3.7 Transferability of the models

To ensure the reliability of our methodology, we extended our

evaluation to both the RELATE and APIS datasets (see Section

2.1.2). Our goal was to investigate whether removing 40% of the

training data would impact the transferability of our models to

different datasets. We compared the performance of two models:

one trained on the entireHIBISCUS-STROKE dataset and the other

trained on the same dataset, excluding slices with a Fisher’s ratio

below 0.05.

FIGURE 8

Variation of R2 correlation coe�cient between the unsupervised

silhouette score and the supervised purity score over the clustering

methods (see Table 2) depending on the contrast threshold selected

to supervise the purity score. The best coe�cient is obtained with a

threshold at 0.05, showing that it is the best threshold.

Despite training the model without low-contrast slices on

a reduced training dataset (40% less data), its performance on

RELATE dataset was similar to the model trained on the complete

dataset, as indicated in Table 4. Notably, both models achieved

performance levels close to those shown in Table 3, even though

the ground truth data and patient distribution differed significantly.

These findings support the transferability of our model. Similarly,

when tested on the APIS dataset, themodels performed consistently

irrespective of whether they were trained with all the slices or

only those with higher contrast. However, it is important to note

that the results were substantially poorer on the APIS dataset,

as it contains acute-phase images, while our models were trained

on subacute images. The task is particularly challenging in this

context, as evidenced by the results from the APIS challenge, where

participating teams achieved a Dice score of only around 0.20 when

training on similar images.

4 Discussion

In this study, we have developed a systematic method to

assess how image contrast impacts the performance of a U-Net

trained for stroke lesion segmentation on CT images. To validate

our approach, we employed data augmentation techniques to

standardize the training data in terms of image contrast variations

and confirm that the unbalance of contrast across the dataset did

not impact the performance for specific Fisher’s ratio ranges. By

analyzing the training outcomes using ROC curves and clustering

techniques, we established a critical contrast threshold of 0.05.

Below this threshold, the images no longer contribute meaningful

information to themodel. To confirm this finding, we trained a new

model using a dataset that excluded low-contrast images, revealing

opportunities to improve computational resource management

during training.

Our study still presents certain limitations. CT imaging

obtained at 24 h may underestimate the final lesion but has been

routinely used in research studies as a surrogate of final stroke

lesion (43), our use of baseline data based on FLAIR MRI mitigates

biases in manual segmentation skills and ensures a representative

sample of hospital cases. Despite these limitations, our approach

FIGURE 9

Clusters (good contrast in red and low contrast in blue) with the k-means method and the Canberra distance. All slices are the light crosses, the

centroids of the clusters are the dark dots. Vertical dashed line represents Fisher’s ratio threshold. The 0.05 threshold is the best value to separate the

clusters created by the clustering method. (A) DSC. (B) HD. (C) RAAD.
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TABLE 3 Comparison of models trained with and without the slices with a Fisher’s ratio < 0.05.

Training contrast range Test contrast range Detection Dice HD RAAD

All (n = 14,415) All (n = 245) 95± 1 (*) 0.65± 0.03 19± 2 −0.06± 0.04

F>0.05 (n = 8,836) All (n = 245) 92± 3 0.65± 0.02 17± 1 −0.07± 0.03

All (n = 14,415) F>0.05 (n = 173) 100± 0 0.72± 0.04 11± 2 0.65± 0.33

F>0.05 (n = 8,836) F>0.05 (n = 173) 100± 0 0.73± 0.04 (*) 10± 2 0.68± 0.21

One-tailed paired Wilcoxon statistical test performed to verify if a model is significantly better than the other for the same test set (*** if p < 0.01, ** if p < 0.05, * if p < 0.09).

TABLE 4 Comparison of models trained with and without the slices with a Fisher’s ratio < 0.05 tested on RELATE and APIS datasets.

Dataset Training contrast range Detection Dice HD RAAD

RELATE All (n = 14,415) 98± 1 (*) 0.60± 0.01 (*) 22± 2 −0.17± 0.05 (**)

F>0.05 (n = 8,836) 97± 1 0.60± 0.01 20± 0.5 (*) −0.25± 0.02

APIS All (n = 14,415) 98± 2 0.10± 0.01 55± 6 (**) 12.3± 0.7

F>0.05 (n = 8,836) 99± 1 (*) 0.09± 0.01 70± 10 15.4± 7.6

One-tailed paired Mann–Whitney statistical test performed to verify if a model is significantly better than the other for the same test set (*** if p < 0.01, ** if p < 0.05, * if p < 0.09).

demonstrated its effectiveness in stroke lesion segmentation on CT

images. By implementing a contrast threshold of 0.05, we were able

to remove ∼40% of the training dataset while achieving nearly

equivalent results compared to using the full dataset, even with

low-contrast slices retained in the test set.

Although our methodology primarily focused on brain lesion

segmentation, it can be adapted to other image segmentation

tasks by identifying contrasts that yield the most efficient

automatic segmentation. Indeed, experiments presented in

the Supplementary material demonstrate improvements in

performance with increased contrast for both stroke lesion

segmentation using FLAIR MRI (Supplementary Section 2)

and brain tumor segmentation using T1-weighted MRI

(Supplementary Section 3). These findings suggest that it may be

possible to define a contrast threshold to optimize computational

efficiency by selecting only the most informative images for

training. However, it is important to note that task-specific

thresholds may need to be identified, as Fisher’s ratio threshold of

0.05 is likely specific to stroke lesions on CT. To do so, some of the

steps in the pipeline may need adaptation as the data augmentation

considering the modality which can have different characteristics,

considering the ranges of pixel values in the images and whether

the object of interest appears hyper or hypodense among the rest

of the tissue.

In our study, we used Fisher’s ratio as a contrast measure, taking

advantage of the presence of lesion reference and the adherence

of the image modality (CT) to the Gaussian assumption and

equal variances between the lesion and background. Depending

on the algorithm and image modality, alternative metrics for

assessing image contrast may be relevant. Furthermore, Fisher’s

ratio can be adjusted for other tasks by redefining what constitutes

the background relative to the object of interest. For multiclass

segmentation, the correlation between contrast levels of different

regions may be considered. Future studies could investigate the

impact of different preprocessing techniques on critical contrast

and training performance.

The definition of this threshold can serve as an initial

foundation to initiate discussions with clinicians, allowing them

to gain insights into the complexity of the segmentation task and

its implications. By distinguishing between informative and less

informative contrast levels, clinicians gain a clearer understanding

of how model performance varies across different image contrasts.

This enhances their confidence in the model’s segmentations,

especially in high-contrast scenarios where performance remains

robust beyond the threshold. Our pipeline automates the creation

of a quality dataset, saving clinicians valuable time that they

would normally spend on quality control. A more refined dataset

not only improves confidence in model results but also model

learning efficiency. Indeed, clinician feedback can be integrated

into the validation stage, enabling continuous monitoring and

refinement of the model’s performance. Moreover, the definition

of this contrast indicates that, when creating a new dataset,

the focus can be placed on segmenting better-contrasted images

without compromising the model’s quality and not loosing time

segmenting poorly-contrasted and difficult images. Ultimately,

accurate segmentation on CT scans during the subacute phase

will help assess the response to acute phase treatment, personalize

management in the subacute phase, and refine prognostication.

Furthermore, the identification of a contrast threshold opens

avenues for improving overall model performance. Techniques

such as curriculum learning (44) can be explored. This approach

involves progressively presenting training data to the model based

on their difficulty levels, which, in this context, could be determined

by contrast variations.

5 Conclusion

In this study, we proposed an innovative methodology to

evaluate the dataset quality in terms of contrast and its impact

on stroke lesion segmentation with deep learning algorithms

applied to CT images. We identified low-contrast images and

excluded them from the training set through data analysis

and visualization techniques. This approach significantly reduced

computation time (by 30%) and resource requirements while

maintaining segmentation performance for the remaining images.
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These experiments underscore the critical role of lesion contrast in

training effective deep learningmodels for automatic segmentation,

particularly with CT images. This work opens a dialogue with

clinicians to explore the limitations, areas for improvement,

and strategies for creating better datasets and training models.

Although our methodology was specifically applied to stroke

lesion segmentation in CT images, it could be adapted to other

segmentation tasks by leveraging similar strategies and criteria.
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