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Objective: This study aims to elucidate the potential impact of basal metabolic 
rate on ischemic stroke at the genetic prediction level through a two-sample 
Mendelian randomization analysis.

Methods: Using summary data from genome-wide association studies, 
we obtained information on basal metabolic rate and ischemic stroke from a 
large-scale genome-wide association study. MR analysis used inverse variance 
weighting, weighted median, MR-Egger, simple mode, and weighted estimation. 
Sensitivity analyses, including the MR-Egger method, MR-PRESSO, Cochran’s 
Q-test, and leave-one-out assessment, were performed to assess the reliability 
of the results.

Results: Genetic susceptibility to basal metabolic rate was significantly 
associated with ischemic stroke in multiple models, including the inverse 
variance weighting model (OR, 1.108 [95% CI: 1.005–1.221]; p = 0.0392), the 
weighted median method (OR, 1.179 [95% CI: 1.020–1.363]; p = 0.0263), and 
MR-Egger (OR, 1.291 [95% CI: 1.002–1.663]; p = 0.0491). These results indicate 
a positive causal relationship between basal metabolic rate and ischemic 
stroke. The MR-Egger intercept and Cochran’s Q-test indicated the absence of 
heterogeneity and horizontal pleiotropy in the analyses of basal metabolic rate 
and ischemic stroke.

Conclusion: The MR analysis suggests a positive correlation between basal 
metabolic rate and ischemic stroke.
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1 Introduction

Ischemic stroke (IS) accounts for the majority of stroke cases, representing 87% of all 
occurrences (1). The narrow therapeutic window, the risk of complications, and limited 
treatment efficacy impose significant constraints, resulting in only a small proportion of 
patients receiving treatment (2). Therefore, it is particularly important to focus on preventing 
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potential risk factors for IS and reducing its incidence in the 
early stages.

Basal Metabolic Rate (BMR) is a critical indicator of the minimum 
metabolic activity necessary to sustain life, and also a significant 
component of total energy expenditure. An individual’s BMR is 
primarily influenced by factors such as age, genetic makeup, body 
weight, environmental temperature, and overall health status (3). High 
blood pressure is a well-established risk factor for IS, and recent studies 
have demonstrated that an increase in BMR can lead to elevated blood 
pressure (4). Furthermore, IS is closely linked to brain energy 
metabolism (5). Disruption of the brain’s energy metabolism process can 
exacerbate the condition. Current Mendelian randomization (MR) 
studies on BMR primarily focus on its causal relationship with 
cardiovascular diseases and its association with inflammatory markers. 
Furthermore, a cross-sectional study (6) on stroke patients indicated that 
individuals with IS had higher BMR levels, though it did not elucidate 
the causal relationship. Therefore, based on the aforementioned 
evidence, we raise the question: Is there a causal relationship between 
BMR and IS?

Understanding the interaction between BMR and IS is essential 
for revealing the underlying mechanisms. This study not only provides 
a new perspective for predicting the occurrence of IS but may also 
offer scientific evidence to reduce its incidence and improve disease 
management. However, clarifying the causal relationship is 
challenging due to the intricate interactions among physiological 
factors. Although randomized controlled trials (RCTs) are considered 
the gold standard for causal inference, they are complex in design and 
resource-intensive. Traditional observational studies (7), however, are 
susceptible to reverse causality, confounding factors, and sample size 
limitations. In contrast, MR effectively addresses these limitations by 
leveraging data from genome-wide association studies (GWAS) and 
using single nucleotide polymorphisms (SNPs) as instrumental 
variables, offering a more reliable approach to uncovering causal 
relationships between exposures and clinical outcomes (8).

2 Materials and methods

2.1 Study design

Mendelian randomization (MR) studies must satisfy three core 
assumptions: (1) the instrumental variables (IVs) must be strongly 
associated with the exposure. (2) The IVs must be independent of any 
confounding factors. (3) The IVs must affect the outcome only 
through the exposure, with no direct effect on the outcome beyond 
the exposure (9). This study uses BMR as the exposure variable and IS 
as the outcome variable. We perform a two-sample MR analysis to 
investigate the causal relationship between BMR and IS. The specific 
research methodology is shown in Figure 1.

2.2 Data source

The data for BMR and IS were obtained from the GWAS database.1 
The GWAS dataset for BMR (GWAS ID: ebi-a-GCST90029025) was 
obtained from the UK Biobank by Po-Ru Loh and colleagues using the 
BOLT-LMM Bayesian mixed model association method, which 
resulted in a cohort analysis of 534,045 participants and identified 
11,973,469 SNPs (10). Similarly, the GWAS dataset for IS (GWAS ID: 
ebi-a-GCST90018864) included 484,121 participants (11,929 cases 
and 472,192 controls) and 9,587,836 SNPs (11). Both datasets focused 
on European populations to minimize biases from racial differences 
and are publicly available in the IEU GWAS database. Therefore, no 
additional ethical approvals are required. Further details on these data 
can be found in Supplementary Table 1.

2.3 Selection of instrumental variables

To satisfy assumption 2, we selected instrumental variables for 
BMR based on genome-wide significance (p < 5e−8). Using the clump 
function from the TwoSampleMR package in R (version 4.3.3), 
we performed linkage disequilibrium analysis (r2 < 0.001, window size 
>10,000 kb) to ensure the independence of the instrumental variables. 
Subsequently, we excluded SNPs with intermediate allele frequencies, 
palindromic SNPs, and incompatible SNPs from the selection.

To eliminate potential confounding SNPs associated with the 
outcome variable, we  used the PhenoScanner database.2 Previous 
studies have identified risk factors causally associated with IS, 
including blood lipids (12), blood pressure (13), and type 2 diabetes 
(14). In this study, these risk factors are regarded as potential 
confounders. Therefore, we excluded SNPs associated with blood lipid 
levels, blood pressure (including both diastolic and systolic pressure), 
and type 2 diabetes. Finally, to ensure the robustness of our analysis, 
we applied a stringent threshold for statistical strength, setting F > 10 
as the criterion for strong associations to minimize the potential for 
weak instrument bias. If F < 10, the corresponding SNP should 
be  excluded (15). The formula for calculating the F-statistic is 
presented below:

 

2

2
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1
N K R

K R
− −

= ×
−

In this context, R2 represents the proportion of variance in BMR 
explained by the SNP, indicating the extent to which the instrumental 
variable accounts for the exposure (16). N represents the sample size 
of the GWAS, and K denotes the number of instrumental variables.

The selection of IVs in this study adhered to a rigorous step-by-
step process based on the outlined methodology. Initially, we used the 
“TwoSampleMR” package in R to select 598 SNPs for the analysis of 
IS. Subsequently, 28 palindromic SNPs were excluded from the 
analysis. Additionally, 48 SNPs were excluded due to their association 
with potential confounding factors related to IS. Following this, 

1 http://gwas-api.mrcieu.ac.uk/

2 http://www.phenoscanner.medschl.cam.ac.uk/
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we  applied the MR-PRESSO method, which excluded 234 outlier 
SNPs (Supplementary Table 2). The remaining 288 SNPs were then 
subjected to F-statistic calculation. The F-statistics for these 288 SNPs 
ranged from 11.408 to 290.562, with all values exceeding 10, indicating 
that the potential for weak instrument bias was minimized. The 
combined R2 value for these 288 SNPs was 2.03%, demonstrating their 
robustness. Consequently, these 288 SNPs were ultimately included in 
our study (Supplementary Table 3).

2.4 Statistical analysis

In this study, we aim to establish the causal relationship between 
BMR and IS using several methodologies, including the Inverse-
Variance Weighted (IVW) method, the Weighted Median (WME) 
method, the MR-Egger method, the weighted method, and the simple 
model. The core concept of the IVW method is to combine the effects 
of multiple genetic instrumental variables on exposure and outcome, 
with weights inversely proportional to the estimated variance (17). 
This weighting approach aims to provide more accurate and reliable 
results by giving greater weight to instrumental variables with lower 
standard errors. This method enhances the robustness of the 
estimation process by reducing the impact of random errors. 
Pleiotropy occurs when a genetic variant affects multiple phenotypes 
or biological pathways (18).

In MR studies, pleiotropy in IVs can lead to biased estimates of 
the causal relationship between exposure and outcome. The MR-Egger 
regression method is designed to address pleiotropy in instrumental 
variables, offering a method to detect and correct for bias caused by 
directional pleiotropy. When assumption 3 of Mendelian 
randomization is violated, MR-Egger regression is necessary to 
produce a robust estimate of the causal relationship between exposure 
and outcome (19). Heterogeneity refers to significant variation in 
effect estimates among different instrumental variables, which may 

indicate pleiotropy or other underlying issues. To detect such 
heterogeneity, we applied the IVW method and MR-Egger regression 
to identify SNPs with heterogeneity, followed by Cochran’s Q statistic 
to quantify the heterogeneity (20). Subsequently, we  performed 
sensitivity analyses, such as leave-one-out analysis, to determine 
whether any individual SNPs significantly influence the primary 
causal relationship (21). Additionally, when horizontal pleiotropy is 
below 50%, the MR-PRESSO method is recommended, incorporating 
the MR-PRESSO global test to detect horizontal pleiotropy. The 
MR-PRESSO outlier test excludes outlier SNPs and estimates 
corrected results (18).

The “Two Sample MR” R package was used for all two-sample MR 
analyses and associated sensitivity tests. The MR-PRESSO analysis was 
performed using the R package “MR-PRESSO.” Statistical analyses 
were conducted in R (version 4.3.3), with a significance threshold set 
at p < 0.05 to determine statistical significance.

3 Result

3.1 MR analysis: influence of the BMR on IS

We used the IVW method to analyze the relationship between 
BMR and IS, revealing a potential positive genetic correlation between 
BMR and the risk of IS (odds ratio [OR], 1.090 [95% CI: 1.004–1.182]; 
p = 0.0396). The WME yielded similar results (OR, 1.151 [95% CI: 
1.018–1.301]; p = 0.0244). Nonetheless, upon employing the MR-Egger 
method for analysis, we  did not observe a statistically significant 
association between BMR and IS (OR, 1.139 [95% CI: 0.915–1.418]; 
p = 0.2454) (Supplementary Table 4; Figure 2). After removing 234 
outlier SNPs, the MR-Egger intercept showed no evidence of directional 
pleiotropy (Egger intercept = −0.002, p = 0.2010). The MR-PRESSO 
global test rigorously scrutinized horizontal pleiotropy (p < 0.05), 
providing evidence of no statistically significant directional horizontal 

FIGURE 1

Schematic representation of the MR study.
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pleiotropy in our analysis (Supplementary Table 5). We conducted 
Cochran’s Q test both before and after removing outliers. Before outlier 
removal, the results indicated significant heterogeneity (MR-Egger: Q 
value = 598.632, p = 0.009; IVW: Q value = 598.842, p = 0.010) 
(Supplementary Table 6). Although we observed some heterogeneity 
in our analysis, the impact on our results was minimal due to the use 
of a random effects model. After the removal of outliers, our analysis 
showed no substantial heterogeneity (MR-Egger: Q value = 311.501, 
p = 0.144; IVW: Q value = 313.293, p = 0.1370) (Supplementary Table 6). 
Finally, we conducted IVW analysis (OR, 1.108 [95% CI: 1.005–1.221]; 
p = 0.0392), WME (OR, 1.179 [95% CI: 1.020–1.363]; p = 0.0263), and 
MR-Egger (OR, 1.291 [95% CI: 1.002–1.663]; p = 0.0491) on the final 
set of 288 SNPs (Supplementary Table 4; Figure 2). All results were 
statistically significant. The findings from the MR-Egger and weighted 
median sensitivity analyses supported the conclusions drawn from the 
IVW analyses, further reinforcing the consistency of the results. Scatter 
plots and funnel plots are provided in the supplementary figures 
(Supplementary Figures 1, 2). Additionally, our thorough examination 
using the leave-one-out analysis (Supplementary Figure 3) failed to 
detect any specific SNPs that significantly altered the overall 
relationship between BMR and IS. Thus, based on this comprehensive 
assessment, we confidently assert that BMR exerts a positive causal 
influence on IS.

3.2 Reverse MR analysis

In this study, we also conducted a reverse MR analysis to assess 
the causal impact of IS on BMR. The data sources for this analysis 
were consistent with those mentioned earlier. We initially selected 
instrumental variables associated with IS, resulting in 14 SNPs 
(Supplementary Table 7). After performing the MR analysis, we found 

no significant causal effect of IS on BMR in IVW analysis (OR, 1.004 
[95% CI: 0.9708–1.0380]; p = 0.8224) (Supplementary Table 8).

4 Discussion

We conducted MR analysis, and the final results indicated a 
positive effect of BMR on IS. We also performed various sensitivity 
analyses to ensure the robustness of our findings. This study found a 
significant association between BMR and the risk of IS, consistent 
with previous findings, and further established the causal relationship 
between BMR and IS. Previous studies have mainly focused on 
specific populations or short-term analyses, whereas this study 
strengthens the evidence by validating the robustness of this 
relationship using large samples and long-term data. However, these 
results may be influenced by certain confounding factors.

The first potential factor is that an increase in BMR indicates a 
higher energy demand from the body, including respiratory 
metabolism, organ function, neural activity, and muscle activity (22, 
23). Energy production is closely related to mitochondria, the 
organelles primarily responsible for adenosine triphosphate (ATP) 
production. When BMR increases, energy demands rise, leading to a 
significant increase in mitochondrial workload, which may elevate 
the risk of mitochondrial dysfunction (24, 25). Furthermore, research 
has indicated a positive correlation between resting metabolic rate 
(RMR) and various aspects of mitochondrial function, including 
small molecule transport across mitochondrial membranes, as well 
as inner and outer membrane transport and mitochondrial transfer 
(26). RMR and BMR are closely related, as both describe energy 
expenditure during rest. Although they differ, they often have similar 
values and are generally considered equivalent in the study (27, 28). 
This correlation between BMR and mitochondrial transport suggests 

FIGURE 2

Forest plots of Mendelian randomization analyses of the causal effects of BMR on IS before and after MR-PRESSO. (A) Forest plots of Mendelian 
randomization analyses of the causal effects of BMR on IS at before MR-PRESSO. (B) Forest plots of Mendelian randomization analyses of the causal 
effects of BMR on IS after MR-PRESSO.
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that an excessively high BMR may lead to an increase in 
mitochondrial transport rates, potentially causing decompensation. 
This decompensation may result in an imbalance in the internal 
mitochondrial environment, such as disturbances in cellular calcium 
ion flux, which may disrupt mitochondrial function (29, 30), 
indirectly indicating that a high BMR may lead to 
mitochondrial dysfunction.

Mitochondrial dysfunction can lead to several consequences, 
including energy metabolism disorders, redox imbalance, increased 
apoptosis, cellular calcium ion imbalance, and disrupted 
mitochondrial autophagy (31). Recent studies on the cellular and 
molecular mechanisms associated with IS have suggested that redox 
imbalance, cellular calcium ion dysregulation, and disruptions in 
mitochondrial autophagy may be linked to IS (32–34). Interestingly, 
an MR analysis examining the relationship between BMR and vascular 
disease risk, based on mitochondrial aging theory, also concluded that 
increased BMR can lead to a surge in reactive oxygen species (ROS) 
(35). These findings are consistent with our results.

An increase in ROS primarily results from redox imbalance, 
leading to enhanced oxidative stress. Calcium ion dysregulation is 
associated with mitochondrial transport; when mitochondrial 
transport increases, cellular calcium ion concentrations tend to rise, 
potentially increasing the risk of IS. Mitochondrial autophagy is a 
crucial physiological process, and its disruption can trigger a cascade 
of adverse effects (36). A potential mechanism underlying these effects 
could be  that the pathogenesis of IS involves oxidative stress and 
inflammatory responses. Disruption of mitochondrial autophagy 
could exacerbate oxidative stress, leading to excess ROS production 
and increased release of inflammatory cytokines (34, 37). These pieces 
of evidence suggest that the causal relationship between BMR and IS 
may be driven by underlying mitochondrial dysfunction, warranting 
further exploration of the biological mechanisms involved in 
future studies.

Thyroid-stimulating hormone (TSH) levels may play a crucial role 
in the observed association between BMR and IS. Research indicates 
that thyroid hormone secretion is correlated with BMR levels and plays 
a critical role in regulating basal metabolic rate (38). As BMR increases, 
the hypothalamus reduces the release of thyrotropin-releasing hormone 
(TRH), which subsequently lowers TSH release, leading to a decrease in 
thyroid hormone production (39). This physiological process is regulated 
by the hypothalamic–pituitary-thyroid (HPT) axis. A reduction in TSH 
levels can increase the likelihood of hyperthyroidism (39, 40). An MR 
study investigating the impact of thyroid function on stroke risk through 
atrial fibrillation, along with another study examining stroke risk within 
the normal thyroid function range, found a significant association 
between higher TSH levels within the normal range and lower stroke 
risk, potentially mediated by atrial fibrillation (41, 42). Elevated BMR 
may increase the risk of IS due to its effect on TSH levels.

Furthermore, thrombosis is a direct pathological cause of IS (43). 
An MR study suggested that higher BMR may increase the risk of 
venous thrombosis in the lower limbs, potentially through 
BMR-induced endothelial dysfunction, which creates a 
pro-inflammatory and pro-coagulant environment in the vascular 
system (44). Although IS is caused by arterial thrombosis in the brain, 
the underlying mechanisms in the vascular system are similar. 
Therefore, we hypothesize that the causal relationship between BMR 
and IS may be mediated by thrombosis, and further investigation is 
needed to confirm the link between BMR and cerebral blood vessels.

The results of this study suggest a potential causal relationship 
between high BMR levels and IS, indicating that elevated BMR could 
serve as an early risk marker for IS. Monitoring individual BMR levels, 
especially in populations with metabolic abnormalities, could help 
identify high-risk individuals early, enabling timely intervention. This 
provides a new perspective for clinical practice and stroke prevention 
strategies. Furthermore, future studies could investigate whether 
lifestyle changes or pharmacological treatments can help individuals 
with elevated BMR maintain it within the normal range, potentially 
aiding in the prevention of IS. If successful, these approaches could 
expand clinical strategies for stroke prevention and open new avenues 
for reducing stroke risk in individuals with elevated BMR.

This study presents an MR analysis of the relationship between BMR 
and IS, providing new insights into early stroke prevention for individuals 
with elevated BMR. While numerous studies have explored BMR and 
cardiovascular health, research specifically investigating BMR and IS is 
still lacking, making this study innovative in its focus. Furthermore, the 
use of MR analysis reduces the impact of confounding factors and biases, 
enabling more robust causal inferences.

Despite these strengths, our study has several limitations. First, 
the GWAS data used in this analysis were derived from European 
populations, raising uncertainty about the applicability of the results 
to non-European populations. Second, although IS was used as the 
outcome measure, we did not conduct subgroup analyses by gender, 
age group, or geographic region due to the limitations of the GWAS 
database, which limits our ability to assess the stability of outcomes 
across different subgroups. Third, due to the inability to extract data 
on hemorrhagic stroke, our analysis was restricted to IS.

5 Conclusion

In conclusion, our research findings suggest that a higher BMR 
may increase the risk of IS. Intervention measures aimed at improving 
BMR may be beneficial in reducing the incidence of IS.
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