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Aim: Several studies have suggested the favorable impact of thiamine 
administration on the prognosis of diseases. However, the value of thiamine 
in patients with traumatic brain injury (TBI) admitted to the intensive care unit 
(ICU) remains unclear. The aim of this study was to investigate the association 
between the between thiamine administration and in-hospital mortality in TBI 
patients.

Methods: A cohort of 1,755 individuals diagnosed with TBI from the Medical 
Information Mart for Intensive Care IV database were included in this retrospective 
cohort study. Thiamine administration is determined by the patient’s usage 
during their stay in the ICU. The primary outcome was in-hospital mortality. 
Univariable and multivariable Cox regression analysis were used to investigate 
the relationship between thiamine administration and in-hospital mortality of 
patients with TBI. Subgroup analysis was also performed to determine if this 
association differed for subgroups classified using different variables including 
age (<65 years and ≥65 years), gender (male and female), and the severity of TBI 
(mild, moderate, and severe).

Results: The median follow-up time was 6.77 (3.98, 12.94) days, and the in-
hospital mortality rate for the population was approximately 14.1%. In the 
univariable Cox regression analysis, thiamine administration was significantly 
associated with the reduced risk of in-hospital mortality in TBI patients 
admitted to the ICU. performing the multivariable Cox regression analysis, 
the observed association of thiamine administration and in-hospital mortality 
remained significant, with the hazard ratios (HR) of 0.66 [95% confidence 
interval (CI) = 0.45–0.98]. In the subgroup analysis, the results demonstrated 
that thiamine administration resulted in a decreased risk of in-hospital mortality 
among TBI patients who aged 65 years or older (HR = 0.36, 95% CI: 0.19–0.69), 
as well as male individuals (HR = 0.36, 95% CI: 0.17–0.80) and those with severe 
TBI (HR = 0.16, 95% CI: 0.04–0.57).

Conclusion: Thiamine administration may reduce in-hospital mortality for 
patients with TBI admitted to the ICU.
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Introduction

Traumatic brain injury (TBI) is regarded as an acquired insult 
to the brain resulting from external mechanical force, which might 
lead to potential temporary or permanent impairment (1, 2). The 
research findings indicate that TBI has been a prominent 
contributor to global disability, morbidity, and mortality (3). High 
mortality rate of TBI is attributed not only to the severity of the 
initial brain injury, but also to systemic complications arising as a 
result of the brain injury (4, 5). Despite the gradual improvement 
and standardization of treatment options, the mortality associated 
with TBI remains a cause for concern, Therefore, exploring the new 
therapeutic approaches is crucial for improving the prognosis of 
TBI patients.

Thiamine is an essential water-soluble vitamin that plays a crucial 
role in various physiological processes (6). Thiamine deficiency may 
result in alterations in neurotransmitters, lactic acidosis, apoptosis, 
activation of oxidative stress response, inflammation, as well as 
dysfunction of the blood–brain barrier (7, 8). In the pathophysiology 
of TBI, the increasing of free radical and reactive oxygen species 
following the injury results in oxidative stress and subsequent 
secondary neurotoxicity (9). An animal experiment demonstrated 
that thiamine has the potential to effectively ameliorate mitochondrial 
damage and neuritis in rats with TBI (10). A retrospective cohort 
analysis revealed that thiamine was linked with decreased risk of 
in-hospital mortality among heart failure patients admitted to the 
intensive care unit (ICU) (11). Early thiamine administration was 
found to have an improvement in short-term survival outcomes for 
critically ill patients with acute kidney injury (AKI) (12). In addition, 
the study conducted by Yue et  al. also highlighted a significant 
reduction in the risk of in-hospital, 30-day, and 90-day mortality 
among myocardial infarction patients receiving thiamine compared 
to those not receiving thiamine (13). These studies findings suggested 
the favorable impact of thiamine administration on the prognosis of 
diseases. However, the existing studies does not provide any evidence 
regarding the potential effect of thiamine in enhancing outcomes 
among critically ill individuals suffering from TBI.

Therefore, this study intends to investigate the association between 
thiamine administration and the risk of in-hospital mortality in 
patients with TBI based on Medical Information Mart for Intensive 
Care (MIMIC)-IV database. The findings from this research might 
provide valuable insights for treatment decision-making and 
prognosis enhancement in TBI patients.

Methods

Study population

This retrospective cohort study obtained all data from the MIMIC-
IV, an openly accessible and freely available critical care database (14). 
This database contained comprehensive clinical data of patients who 
underwent inpatient treatment at the Beth Israel Deaconess Medical 
Center (BIDMC) between 2008 and 2019, such as basic patient 
information, vital signs, laboratory indicators and survival data. 
We did not require patient consent or ethical approval as all patient 
privacy information in the database has been de-identified.

We selected patients from the MIMIC-IV database based on the 
following criteria: (1) diagnosed as TBI at ICU admission 
[International Classification of Disease, Ninth (ICD-9: 85) and Tenth 
(ICD-10: S06) Versions]; (2) aged≥18 years old. The exclusion criteria 
for participation in the study were as follows: (1) hospitalized in the 
ICU for less than 24 h (n = 626); (2) missing information of thiamine 
use (n = 0); (3) missing survival information (n = 1). The flowchart 
for study participants enrolling is presented in Figure 1.

FIGURE 1

Flowchart for study participants enrolling.
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Data collection

We extracted some important variables from the MIMIC-IV 
database: age (years), gender, race/ethnicity, insurance status, ICU 
type, urine output (mL), hypertension, deterioration of 
neurological function, acute kidney injury (AKI), heart rate (bpm), 
systolic blood pressure (SBP, mmHg), diastolic blood pressure 
(DBP, mmHg), respiratory rate (insp/min), temperature (°C), 
oxygen saturation (SpO2, %), Sequential Organ Failure Assessment 
(SOFA) score, Charlson comorbidity index (CCI), Glasgow Coma 
Score (GCS), Simplified Acute Physiology Score II (SAPSII), white 
blood cell (WBC, K/μL), platelet (K/μL), hemoglobin (g/dL), 
hematocrit (%), red cell distribution width (RDW, %), epidermal 
growth factor receptor (eGFR, mL/min/1.73m2), blood urea 
nitrogen (BUN, mg/dL), glucose (mg/dL), calcium (mg/dL), 
sodium (mEq/L), potassium (mEq/L), chloride (mEq/L), 
vasopressor, mechanical ventilation, mannitol, diuretic, surgery, 
and thiamine. Deterioration of neurological function was defined 
as a decline of ≥2 points in the GCS during the ICU period (15). 
Thiamine administration is determined by the patient’s usage 
during their stay in the ICU. The primary outcome of the present 
study was in-hospital mortality. For patients with multiple ICU 
admissions, only clinical data from the first ICU admission were 
utilized. Variables with more than 10% missing values were 
excluded from the study. Conversely, these variables with less than 
10% missing values were imputed using multiple interpolation 
method. Supplementary Table 1 shows the sensitivity analysis on 
the data sets before and after interpolation.

Statistical analysis

We reported the categorical variables as numbers and 
percentages. The normally distributed continuous variables were 
expressed as the means ± standard deviation (SD), the skewed 
distributed continuous variables as the median and interquartile 
range [M (Q₁, Q3)]. Among the groups, we compared categorical 
variables by Chi-squared test. Continuous variables were 
compared by T test (normally distributed) or Wilcoxon rank sum 
test (skewed distributed). Univariable and multivariable Cox 
regression analysis were used to investigate the relationship 
between thiamine administration and in-hospital mortality of 
patients with TBI, the results were expressed as hazard ratios (HR) 
and 95% confidence interval (CI). Model 1 was unadjusted 
(univariable Cox regression analysis). Model 2 (multivariable Cox 
regression analysis) adjusted for all confounding variables. 
p < 0.05 was considered statistically significant. Subgroup analysis 
was also performed to determine if this association differed for 
subgroups classified using different variables including age 
(<65 years and ≥ 65 years), gender (male and female), and the 
severity of TBI (mild, moderate, and severe). According to the 
GCS, patients with TBI can be categorized as mild (13–15 points), 
moderate (9–12 points), or severe (3–8 points) (16). In addition, 
Kaplan–Meier survival curves were employed to observe the 
relationship between thiamine administration and in-hospital 
mortality among patients with TBI. All statistical analyses were 
performed using SAS9.4 software.

Results

General characteristics

A total of 1,755 individuals diagnosed with TBI were included 
in this study, with an average age of 64.41 ± 20.26 years. Among 
them, 1,079 (61.48%) patients were men. The median follow-up 
time was 6.77 (3.98, 12.94) days, and the in-hospital mortality rate 
for the population was approximately 14.1%. Table 1 summarizes 
the comparison of characteristics between the survival (n = 1,538) 
and in-hospital mortality groups (n = 217). Compared with the 
survival group, the in-hospital mortality group showed older age 
(70.25 vs. 63.59 years, p < 0.001), higher prevalence of deterioration 
of neurological function (62.21% vs. 51.04%, p = 0.002) and AKI 
(80.65% vs. 54.68%, p < 0.001) but lower DBP, temperature, platelet, 
hematocrit, hemoglobin, eGFR, and calcium levels (p < 0.05). In 
addition, we also observed that the proportion of thiamine use in 
the in-hospital mortality group (16.13%) was lower than that of the 
survival group (21.65%^), although without statistical significance. 
The detailed population characteristics can be found in Table 1.

Thiamine administration and in-hospital 
mortality

Univariable Cox regression identified 21 variables significantly 
linked to mortality (p < 0.05), including age (HR = 1.02, 95% CI: 
1.02–1.03), AKI (HR = 1.96, 95% CI: 1.40–2.76), and SOFA score 
(HR = 1.21, 95% CI: 1.14–1.28), protective factors included 
hemoglobin (HR = 0.90, 95% CI: 0.84–0.95) and temperature 
(HR = 0.75, 95% CI: 0.67–0.84), as presented in 
Supplementary Table 2. These variables were subsequently adjusted 
in multivariable models to isolate the independent effect of thiamine 
on mortality. In both unadjusted and adjusted Cox regression 
analyses, we found that thiamine administration was significantly 
associated with the reduced risk of in-hospital mortality in TBI 
patients admitted to the ICU (Model 1: HR = 0.46, 95% CI: 0.32–0.67, 
p < 0.001; Model 2: HR = 0.66, 95% CI: 0.45–0.98, p = 0.037). 
Kaplan–Meier survival curves (Figure 2) suggested that the survival 
rate of thiamine administration group was significantly higher than 
that of the non-thiamine administration group (p < 0.001). The 
thiamine group demonstrated higher cumulative survival rates over 
the follow-up period (median: 6.77 days), aligning with regression 
results (Table 2).

Subgroup analysis

We performed subgroup analysis based on age (<65 years and ≥ 
65 years), gender (male and female), and the severity of TBI (mild, 
moderate, and severe) to assess the association between thiamine 
administration and in-hospital mortality in TBI patients admitted to 
the ICU (Table 3). After performing the multivariable Cox regression 
analysis, the results demonstrated that thiamine administration 
resulted in a decreased risk of in-hospital mortality among TBI 
patients who aged 65 years or older (HR = 0.36, 95% CI: 0.19–0.69, 
p = 0.002), as well as male individuals (HR = 0.36, 95% CI: 0.17–0.80, 
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TABLE 1 Comparison of characteristics between the survival and in-hospital mortality groups.

Variables Total (n = 1,755) Survival group 
(n = 1,538)

In-hospital mortality 
group (n = 217)

Statistics p

Age (years), Mean ± SD 64.41 ± 20.26 63.59 ± 20.37 70.25 ± 18.52 t = −4.56 <0.001

Gender, n (%) χ2 = 1.572 0.210

  Female 676 (38.52) 584 (37.97) 92 (42.40)

  Male 1,079 (61.48) 954 (62.03) 125 (57.60)

Race, n (%) χ2 = 18.978 <0.001

  White 1,110 (63.25) 999 (64.95) 111 (51.15)

  Black 108 (6.15) 96 (6.24) 12 (5.53)

  Other 537 (30.60) 443 (28.80) 94 (43.32)

Insurance, n (%) χ2 = 14.976 <0.001

  Medicaid 122 (6.95) 105 (6.83) 17 (7.83)

  Medicare 740 (42.17) 624 (40.57) 116 (53.46)

  Other 893 (50.88) 809 (52.60) 84 (38.71)

ICU type, n (%) χ2 = 3.394 0.335

  MICU 102 (5.81) 84 (5.46) 18 (8.29)

  SICU 463 (26.38) 405 (26.33) 58 (26.73)

  TSICU 762 (43.42) 668 (43.43) 94 (43.32)

  Other 428 (24.39) 381 (24.77) 47 (21.66)

Urine output (mL), M (Q1, Q3) 1632.00 (1070.00, 2310.00) 1631.00 (1085.00, 2290.00) 1670.00 (1005.00, 2425.00) Z = 0.408 0.683

Hypertension, yes, n (%) 912 (51.97) 791 (51.43) 121 (55.76) χ2 = 1.428 0.232

Deterioration of neurological function, 

yes, n (%)

920 (52.42) 785 (51.04) 135 (62.21) χ2 = 9.516 0.002

AKI, yes, n (%) 1,016 (57.89) 841 (54.68) 175 (80.65) χ2 = 52.588 <0.001

Heart rate (bpm), Mean ± SD 84.83 ± 18.53 84.56 ± 18.16 86.76 ± 20.91 t = −1.48 0.141

SBP (mmHg), Mean ± SD 132.73 ± 22.87 132.93 ± 22.44 131.29 ± 25.71 t = 0.90 0.371

DBP (mmHg), Mean ± SD 72.41 ± 16.98 72.77 ± 16.70 69.86 ± 18.68 t = 2.17 0.031

Respiratory rate (insp/min), Mean ± SD 18.52 ± 5.17 18.44 ± 5.08 19.08 ± 5.80 t = −1.55 0.122

Temperature (°C), Mean ± SD 36.80 ± 0.80 36.83 ± 0.73 36.56 ± 1.16 t = 3.33 <0.001

SPO2 (%), Mean ± SD 97.52 ± 3.62 97.47 ± 3.62 97.84 ± 3.61 t = −1.41 0.160

SOFA, M (Q1, Q3) 1.00 (0.00, 1.00) 0.00 (0.00, 1.00) 1.00 (0.00, 3.00) Z = 6.719 <0.001

CCI, M (Q1, Q3) 1.00 (0.00, 2.00) 1.00 (0.00, 2.00) 1.00 (0.00, 3.00) Z = 4.308 <0.001

GCS, M (Q1, Q3) 14.00 (13.00, 15.00) 14.00 (13.00, 15.00) 15.00 (9.00, 15.00) Z = 0.147 0.883

SAPSII, M (Q1, Q3) 32.00 (25.00, 40.00) 31.00 (24.00, 38.00) 40.00 (33.00, 50.00) Z = 11.853 <0.001

WBC (K/uL), M (Q1, Q3) 10.20 (7.50, 13.20) 10.00 (7.40, 13.00) 11.70 (8.80, 15.00) Z = 4.905 <0.001

Platelet (K/uL), M (Q1, Q3) 189.00 (146.00, 242.00) 190.00 (150.00, 242.00) 174.00 (123.00, 224.00) Z = -3.209 0.001

Hematocrit (%), Mean ± SD 34.20 ± 5.78 34.41 ± 5.66 32.65 ± 6.38 t = 3.86 <0.001

Hemoglobin (g/dL), Mean ± SD 11.40 ± 2.03 11.49 ± 2.00 10.80 ± 2.15 t = 4.66 <0.001

RDW (%), Mean ± SD 14.23 ± 1.90 14.09 ± 1.75 15.19 ± 2.55 t = −6.12 <0.001

eGFR (mL/min/1.73m2), Mean ± SD 95.20 ± 14.58 95.60 ± 14.66 92.34 ± 13.66 t = 3.09 0.002

BUN (mg/dL), M (Q1, Q3) 15.00 (11.00, 22.00) 15.00 (11.00, 21.00) 18.00 (14.00, 29.00) Z = 6.330 <0.001

Glucose (mg/dL), M (Q1, Q3) 123.00 (102.00, 154.00) 121.00 (101.00, 149.00) 142.00 (114.00, 173.00) Z = 6.291 <0.001

Calcium (mg/dL), Mean ± SD 8.09 ± 1.48 8.12 ± 1.46 7.88 ± 1.60 t = 2.23 0.026

Sodium (mEq/L), Mean ± SD 138.80 ± 4.90 138.74 ± 4.77 139.25 ± 5.69 t = −1.27 0.207

Potassium (mEq/L), Mean ± SD 4.07 ± 0.71 4.06 ± 0.70 4.14 ± 0.83 t = −1.27 0.207

Chloride (mEq/L), Mean ± SD 103.67 ± 5.70 103.61 ± 5.53 104.10 ± 6.73 t = −1.02 0.307

(Continued)
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p = 0.012) and those with severe TBI (HR = 0.16, 95% CI: 0.04–0.57, 
p = 0.005).

Discussion

This retrospective study investigated the therapeutic potential of 
thiamine supplementation in TBI management using data from the 
MIMIC-IV database. Our analysis revealed a significant association 
between thiamine administration and reduced in-hospital mortality 
risk among critically ill TBI patients (HR = 0.46, 95% CI: 0.32–0.67, 
p < 0.001). Notably, this mortality reduction remained statistically 
significant after rigorous adjustment for injury severity, comorbidities, 
and treatment covariates through multivariable logistic regression 
modeling (HR = 0.66, 95% CI: 0.45–0.98, p = 0.037). These findings 

suggest that this readily available micronutrient intervention, 
characterized by its favorable safety profile and low cost, may represent 
a novel neuroprotective strategy for improving clinical outcomes in 
TBI populations requiring intensive care.

The water-soluble vitamin thiamine, commonly known as vitamin 
B1, is essential for glucose metabolism as its bioactive form, thiamine 
pyrophosphate, acts as essential co-enzyme (17). Total thiamine levels 
(essentially TPP) are much lower in humans than other species with a 
normal steady-state whole body store of approximately 30 mg (18). The 
Recommended Daily Allowance (RDA) suggests the thiamine dose for 
adults as 1.1–1.2 mg/day (19). Critically ill patients with TBI often 
experience exacerbated thiamine deficiency due to heightened 
metabolic demands, insufficient supplementation, and increased 
urinary excretion (20). Recently, numerous published studies have 
suggested the beneficial effects of thiamine supplementation on the 

TABLE 1 (Continued)

Variables Total (n = 1,755) Survival group 
(n = 1,538)

In-hospital mortality 
group (n = 217)

Statistics p

Vasopressors, yes, n (%) 228 (12.99) 157 (10.21) 71 (32.72) χ2 = 85.252 <0.001

Mechanical ventilation, yes, n (%) 1,166 (66.44) 980 (63.72) 186 (85.71) χ2 = 41.260 <0.001

Mannitol, yes, n (%) 49 (2.79) 25 (1.63) 24 (11.06) χ2 = 62.366 <0.001

Diuretic, yes, n (%) 338 (19.26) 261 (16.97) 77 (35.48) χ2 = 41.918 <0.001

Surgery, yes, n (%) 14 (0.80) 12 (0.78) 2 (0.92) - 0.688

Thiamine, yes, n (%) 368 (20.97) 333 (21.65) 35 (16.13) χ2 = 3.500 0.061

Follow-up-time (days), M (Q1, Q3) 6.77 (3.98, 12.94) 6.92 (4.21, 13.45) 5.15 (2.40, 10.46) Z = -5.175 <0.001

ICU, intensive care unit; MICU, medical intensive care unit; SICU, surgical intensive care unit; TSICU, trauma and surgical intensive care unit; AKI, acute kidney injury; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; SPO2, pulse oxygen saturation; SOFA, Sequential Organ Failure Assessment; CCI, Charlson comorbidity index; GCS, Glasgow Coma Score; SAPSII, 
Simplified Acute Physiology Score II; WBC, white blood cell; RDW, red cell distribution width; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen.

FIGURE 2

Comparison of survival between the thiamine group and the non-thiamine group using the Kaplan–Meier survival analysis in the cohort.
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TABLE 3 Subgroup analysis.

Variables Age: <65 Age: ≥65

HR (95%CI) p HR (95%CI) p

Thiamine administration

No Ref Ref

Yes 0.71 (0.39–1.27) 0.244 0.36 (0.19–0.69) 0.002

Variables
Gender: male Gender: female

HR (95%CI) p HR (95%CI) p

Thiamine administration

No Ref Ref

Yes 0.36 (0.17–0.80) 0.012 0.78 (0.49–1.24) 0.286

Variables
GCS: 13–15 points GCS: 9–12 points GCS: 3–8 points

HR (95%CI) p HR (95%CI) p HR (95%CI) p

Thiamine administration

No Ref Ref Ref

Yes 0.81 (0.50–1.29) 0.367 0.35 (0.11–1.14) 0.083 0.16 (0.04–0.57) 0.005

Ref, reference; HR, hazard ratio; CI, confidence interval; GCS, Glasgow Coma Score; In age subgroup: adjusted gender, insurance status, urine output, acute kidney injury (AKI), diastolic 
blood pressure (DBP), temperature, Sequential Organ Failure Assessment (SOFA), Charlson comorbidity index (CCI), GCS, Simplified Acute Physiology Score II (SAPSII), white blood cell 
(WBC), hematocrit, hemoglobin, red cell distribution width (RDW), estimated glomerular filtration rate (eGFR), blood urea nitrogen (BUN), glucose, sodium, vasopressor, mechanical 
ventilation, and mannitol. In gender subgroup: adjusted age, insurance status, urine output, AKI, DBP, temperature, SOFA, CCI, GCS, SAPSII, WBC, hematocrit, hemoglobin, RDW, eGFR, 
BUN, glucose, sodium, vasopressor, mechanical ventilation, and mannitol. In GCS subgroup: adjusted age, gender, insurance status, urine output, AKI, DBP, temperature, SOFA, CCI, SAPSII, 
WBC, hematocrit, hemoglobin, RDW, eGFR, BUN, glucose, sodium, vasopressor, mechanical ventilation, and mannitol.

prognosis of patients (21, 22). For example, in a cross-sectional study 
from Korea, thiamine intake was found to be critically associated with 
lower risks of hypertension, myocardial infarction or angina, type 2 
diabetes, depression and dyslipidemia after adjusting all potential 
confounders (23). The provision of thiamine after cardiac arrest 
improved neurological outcome and 10 days survival in a mouse model 
(24). In addition, receiving thiamine supplementation was found to 
have multiple benefits for patients with ventilator-associated 
pneumonia, including enhancing energy restoration, reducing the 
likelihood of certain complications, alleviating oxidative stress, and 
exerting an anti-inflammatory effect (25). These findings hold 
significant implications for improving patient prognosis and survival 
rates. Nevertheless, there are few data to support relationship between 
the thiamine supplementation and in-hospital mortality of TBI patients.

After adjusting multiple confounding factors, our study showed 
that TBI patients receiving thiamine use have a lower risk of in-hospital 
mortality, which provided a new perspective to develop therapeutic 
strategies for TBI. The exact biological mechanisms by which thiamine 
could exert protective effects for patients with TBI remain unclear. The 

pivotal role of thiamine in mitochondrial energy metabolism and its 
involvement in various metabolic processes within mitochondria and 
peroxisomes in vivo, while also conferring cellular resistance against 
oxidative stress [16, 17]. Mitochondrial dysfunction, oxidative stress 
and inflammation contribute to the ongoing brain injury and cellular 
death (7). The administration of thiamine has been demonstrated to 
mitigate histological brain injury, enhance mitochondrial dynamics, 
and restore mitochondrial PDH complex activity through activation 
of the mitochondrial PDH complex (24). Thiamine deficiency has also 
been proposed as a possible cause of serious damage to brain regions 
(26). A systematic review suggested that thiamine supplementation 
may have a positive effect on the delay and prevention of cognitive 
decline (27). A study conducted on animals demonstrated that 
thiamine administration can potentially enhance brain homeostatic 
mechanisms and physiological fitness (28). Previous studies have also 
described the effect of vitamin for TBI (29, 30). TBI resulted in the 
manifestation of neurological deficits, accompanied by cerebral 
edema, disruption of the blood–brain barrier, and an inflammatory 
response (31). According to the above literature, Thiamine, in its active 

TABLE 2 Thiamine administration and in-hospital mortality.

Variables Model 1 Model 2

HR (95%CI) p HR (95%CI) p

Thiamine administration

No Ref Ref

Yes 0.46 (0.32–0.67) <0.001 0.66 (0.45–0.98) 0.037

Ref, reference; HR, hazard ratio; CI, confidence interval; Model 1: unadjusted; Model 2: adjusted age, gender, insurance status, urine output, acute kidney injury, diastolic blood pressure, 
temperature, Sequential Organ Failure Assessment, Charlson comorbidity index, Glasgow Coma Score, Simplified Acute Physiology Score II, white blood cell, hematocrit, hemoglobin, red cell 
distribution width, estimated glomerular filtration rate, blood urea nitrogen, glucose, sodium, vasopressor, mechanical ventilation, and mannitol.
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form TPP, plays a pivotal role in central nervous system energy 
metabolism by supporting oxidative decarboxylation reactions critical 
for ATP production. Additionally, it modulates neurotransmitter 
synthesis and myelin lipid metabolism, both of which are essential for 
maintaining neuronal integrity and signal transduction. In addition, 
our study revealed significant associations between thiamine 
administration and in-hospital mortality among elderly patients 
(≥65 years), male individuals, and those with severe TBI. These results 
also suggest that thiamine supplementation may confer prognostic 
benefits within this specific population.

However, this study has several limitations. First, due to its nature 
of single-center retrospective design, selection bias was inevitable. 
Second, although multivariate adjustment was employed, certain 
potential confounding factors that could impact the mortality of TBI 
patients, such as brain imaging data, administration time of thiamine 
and dosage of thiamine, were unobtainable in this MIMIC-IV database. 
Finally, this study was solely performed utilized data of patients admitted 
to the ICU, further investigation is warranted to explore the potential 
impact of thiamine on the prognosis of TBI patients in general wards.

Conclusion

In short, thiamine administration may reduce in-hospital 
mortality for patients with TBI admitted to the ICU. Nevertheless, 
further randomized controlled trials with large sample sizes are 
needed to confirm the efficacy of thiamine in TBI treatment.
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