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Inflammation and endothelial 
gene polymorphism are 
associated with ischemic stroke
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Aim: Evaluate the correlation between ischemic stroke and genetic variations 
related to inflammation and endothelial function.

Methods: This was a multicenter cross-sectional research conducted in 
southwestern China. Residents aged ≥40 years voluntarily join in the face-to-
face survey in 8 communities. 2,377 participants were at high risk of stroke, 
of which 429 had a previous history of ischemic stroke. We selected the 429 
ischemic stroke patients as the research subjects, and adopted a 1:1 matching 
method to select 429 healthy people with a 2-year age difference and the 
same gender and hypertension as the control group. We detected genotypes 
of 19 variants in 10 genes related to inflammation and endothelial function. 
Analyze gene–gene interaction through generalized multifactor dimensionality 
reduction (GMDR).

Results: Analysis found no statistically significant differences in age, gender, 
hypertension, BMI, and smoking history between ischemic stroke patients and 
healthy control group. Compared with the healthy group, ischemic stroke group 
has a higher proportion of diabetes, heart disease, dyslipidemia, stroke family 
history, and a higher proportion of lack of exercise. HABP2 rs7923349, NOS2A 
rs8081248, HABP2 rs932650 were related to stroke in univariate analysis. GMDR 
analysis showed significant gene–gene interactions between HABP2 rs7923349, 
HABP2 rs932650. After adjusting for covariates, high-risk interaction genotypes 
between these two variants were independently associated with higher stroke 
risk (OR, 3.578, 95% CI: 2.618–4.890, p < 0.001).

Conclusion: This study found that specific variations in genes related to 
inflammation and endothelial function are associated with ischemic stroke. The 
high-risk interactive genotypes among HABP2 rs7923349, HABP2 rs932650 
distinctly increased the risk of ischemic stroke.
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1 Introduction

Stroke is one of the leading cause of death and adult disability in China (1, 2), of which 
ischemic stroke accounts for the majority (3). Ischemic stroke is a multifactorial, complex 
disease that is a combination of genetic and environmental factors (4–6). Even after good 
control of stroke risk factors (environmental factors) such as diabetes, hypertension, 
hyperlipidemia and smoking, stroke still occurs in some people (7), it suggests that genetic 
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factors are crucial in the onset of stroke. In rare cases, stroke can 
be directly caused by monogenic disease, where a rare mutation in 
a gene is sufficient to cause disease (8). However in most cases, 
genetic risk factors contribute to the risk for stroke as part of a 
multifactorial susceptibility (9). Genome-wide association studies 
identified the risk loci for ischemic stroke and its subtypes related 
to atrial fibrillation (PITX 2 and ZFHX 3), coronary artery disease 
(ABO, chr9p21, HDAC 9 and ALDH 2), blood pressure (HLDH 2 
and HDAC 9), pericyte and smooth muscle cell development 
(FOXF 2), coagulation (HABP2), carotid plaque formation 
(MMP 12), and neuroinflammation (TSPAN2) (10). A more precise 
strategy is to construct a genetic risk score for ischemic stroke and 
combining the genetic risk score with risk factor profile and 
clinical information may eventually lead to better risk prediction 
(11). Therefore, identifying the etiology of stroke, including genetic 
etiology, is of great significance for preventing stroke. But, so far, 
the impact of genes on stroke is not fully understood.

Atherosclerosis is the most prominent cause and risk factor of 
ischemic stroke. Atherosclerosis is a chronic inflammatory process. 
Chronic inflammation and vascular endothelial injury play an 
important role in the initiation and development of atherosclerosis. 
Chronic inflammation and vascular endothelial function are 
encoded and regulated by related genes, mutations or 
polymorphisms of these regulatory genes may impact the 
occurrence and development of atherosclerosis, and thus affect the 
susceptibility to stroke. Gardener et al. (12) studied 197 SNPs of 48 
inflammatory and endothelial function related genes in 287 
patients, and found that 10 genes were closely related to carotid 
atherosclerosis, revealing the role of inflammatory and endothelial 
function related genes in the development of atherosclerosis. 
However, the number of cases in this study was small, and no 
prospective follow-up was conducted on the cases. The impact of 
these gene gene interactions and gene environment interactions on 
atherosclerosis and stroke was not discussed. Therefore, our 
research group selected these 10 genes, and the 19 variants to 
further discuss the relationship with atherosclerosis and stroke. 
Our previous research has confirmed that some inflammation and 
endothelial genes are related to carotid atherosclerosis (13). 
However, further study is required to determine whether these 
genes are associated with ischemic stroke.

Based on the China National Stroke Screening Survey (CNSSS) 
program, which has been expounded in our previous research (14), 
we conducted this study: (1) Comparison of general information 
between ischemic stroke patients at high-risk stroke populations 
and healthy control group; (2) the relationship between 19 SNPs in 
genes related to endothelial function and inflammation and stroke, 
as well as the impact of gene–gene interaction between the 19 SNPs 
on stroke. In general, these findings are pivotal for identifying the 
genetic causes of ischemic stroke and contribute to better 
prevention of cerebrovascular events.

2 Materials and methods

2.1 Study population

This community-based multicenter cross-sectional survey was 
part of the CNSSS approved by the Chinese Stroke Screening and 

Prevention Committee (Grant No. 2011BAI08B01) (15). The research 
plan was checked and consented by the Ethics Committee of the 
involved hospitals (the Affiliated Hospital of Southwest Medical 
University, the People’s Hospital of Deyang City, and Suining Central 
Hospital). Prior to enrollment, written informed consent forms were 
acquired from all participants.

The review and organization of this survey can be discovered 
in past publications by our team (14–16). In short, we randomly 
selected 8 communities in Sichuan from May 2015 to September 
2015 and conducted a structured face-to-face questionnaire 
survey on residents aged≥40 years who had lived in the 
communities for over 6 months. The questionnaire includes 
detailed information about demographic characteristics, history 
of chronic diseases (such as hypertension, diabetes, dyslipidemia, 
and atrial fibrillation), behavioral factors, physical examination, 
and family and personal history of stroke.

2.2 Assessment of risk factors and 
definition of high-risk stroke populations

We evaluated eight common risk factors, including 
hypertension, diabetes mellitus, coronary artery disease, 
dyslipidemia, overweight/obesity, smoking, lack of exercise, and 
stroke family history. We have described the detailed diagnostic 
criteria in previous studies (16). If these individuals have at least 
three of the eight conventional risk factors for stroke mentioned 
above, or have a history of stroke, they are defined as a high-risk 
stroke population (14–16).

Determine stroke history through self-report and 
neuroimaging examinations (computed tomography or magnetic 
resonance imaging) (14). We selected ischemic stroke patients as 
the research subjects among high-risk populations for stroke, and 
adopted a 1:1 matching method to select healthy people with a 
2-year age difference and the same gender and hypertension as the 
control group.

2.3 Data cleaning procedures

Out of 16,892 participants, 2,893 individuals were defined as high-
risk stroke populations, in high-risk stroke populations, 429 had a 
previous history of ischemic stroke. The detailed program is shown in 
Figure 1.

2.4 Genotyping

Nineteen SNPs in 10 genes concerned with endothelial function 
and inflammation were obtained from NCBI database1 following the 
standard: (1) the variants might cause amino acid changes; (2) the 
variants have been evaluated in the past studies (12, 17); (3) the minor 
allele frequency > 0.05; (4) nonsynonymous variants.

1 https://www.ncbi.nlm.nih.gov/snp
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DNA was extracted from peripheral blood using an modified 
phenol/chloroform method (17, 18), and genotypes of the 19 SNPs 
were assessed by using matrix-assisted laser desorption/ionization 
time of flight mass spectrometry method. In brief, each SNP gene 
possessed a specific genotype, with two amplification primers and 
one extension primer. The reaction mix was desalted by adding 
6 mg of cation exchange resin (Sequenom Inc., San Diego, CA), 
mixed, and resuspended in 25 μL of water. Once the primer 
extension reaction was completed, the samples were spotted onto 
a 384-well spectroCHIP (Sequenom Inc., San Diego, CA) using a 
MassARRAY Nanodispenser (Sequenom Inc., San Diego, CA) and 
genotyped using the MALDI-TOF mass spectrometer. Genotyping 
was performed in real time with MassARRAY RT software, 
version 3.0.0.4, and analyzed using the MassARRAY Typer 
software, version 3.4 (Sequenom Inc., San Diego, CA). The 
investigators were unaware the clinical data of participants.

2.5 Statistical analysis

The data were analyzed using SPSS 22.0 (SPSS Inc. New York, 
New York, USA). Continuous variables are described as median 
and interquartile intervals, while categorical variables are 
described as percentages. Intergroup differences in the baseline 
characteristics and genotype distributions of the 19 SNPs were 
evaluated by χ2 test or Fisher’s exact test (categorical variables) 
and Nonparametric tests (continuous variables).

Use the χ2 test to evaluate the allele frequency of Hardy–
Weinberg equilibrium. Gene–gene interactions between the 19 
SNPs were analyzed using generalized multifactor dimensionality 
reduction (GMDR) method (19), as we previously described (17, 
18). We used multivariate logistic regression analysis to assess the 
stroke risk associated with high-risk interacting genotypes and 
reported the hazard ratio (HR) with a 95% confidence interval 
(CI). Input variables with statistical significance when the p value 
< 0.05 in univariate analysis into multivariate logistic regression 

analysis for adjustment. All tests are 2 sided, p value < 0.05 was 
supposed to statistically significant.

3 Results

3.1 Baseline characteristics of ischemic 
stroke patients and healthy control group

Among the 2,893 high-risk stoke populations, 429 had a 
history of ischemic stroke. Analysis found no statistically 
significant differences in age, gender, hypertension, BMI, and 
smoking history between the two groups (Table 1). Compared 
with the healthy group, ischemic stroke group has a higher 
proportion of diabetes, heart disease, dyslipidemia, stroke family 
history, and a higher proportion of lack of exercise (Table 1).

3.2 Genotype distributions in objects with 
and without ischemic stroke

The genotype distributions of the 19 SNPs evaluated in this 
study were in Hardy–Weinberg equilibrium (p value > 0.05). 
Three genes involved in inflammation and endothelial function 
were associated with ischemic stroke (HABP2 rs7923349, NOS2A 
rs8081248, HABP2 rs932650, Table 2).

3.3 Gene–gene interactions between the 
19 variants

We evaluated the relationship between high-order interactions 
of 19 variants and ischemic stroke using GMDR method. 
Significant gene–gene interaction was discovered in the 19 
variants, and the optimal interaction model for ischemic stroke is 
the interaction between HABP2 rs7923349 and HABP2 rs932650, 
in which the sign test was 10 and cross-validation consistency was 
10/10 (p = 0.001; Table 3). The p-value of the prediction error 
based on permutation test is 0.016.

3.4 Different genotype combinations and 
the risk of ischemic stroke

Subsequently, the correlation between different genotype 
combinations and stroke risk in two interacting variants were 
evaluated. It was found that compared with the individuals with 
wild-type genotype of the two variants (rs7923349 GG, rs932650 
TT), five genotype combinations associated with a higher risk of 
ischemic stroke, including rs7923349 TT, rs932650 TT 
(OR = 3.53, 95% CI: 1.78–6.99, p = 0.000); rs7923349 GT, 
rs932650 CC (OR = 21.28, 95% CI: 2.76–166.67, p = 0.000); 
rs7923349 GT, rs932650 CT (OR = 2.41, 95% CI: 1.55–3.75, 
p = 0.000); rs7923349 GG, rs932650 CC (OR = 50.00, 95% CI: 
6.85–333.33, p = 0.000); rs7923349 GG, rs932650 CT (OR = 4.00, 
95% CI: 2.58–6.21, p = 0.000) (Table 4). We defined the above five 
genotype combinations as high-risk interaction genotypes, while 
other genotype combinations that did not reach statistical 

FIGURE 1

Flow chart in this study.
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TABLE 2 Genotype distributions in objects with and without ischemic stroke.

Stroke patients (n = 429) Healthy group (n = 429) p-value

TNFSF4 (rs11811788) 0.100

  CC 356 (83.00) 362 (84.40)

  CG 68 (15.90) 67 (15.60)

  GG 5 (1.20) 0 (0.00)

TNFSF4 (rs1234313) 0.396

  AA 188 (43.80) 187 (43.60)

  AG 195 (45.50) 207 (48.30)

  GG 46 (10.70) 35 (8.20)

IL6R (rs1386821) 0.670

  GG 1 (0.20) 1 (0.20)

  GT 33 (7.70) 25 (5.80)

  TT 395 (92.10) 403 (93.90)

L1A (rs1609682) 0.458

  GG 198 (46.20) 200 (46.60)

  GT 190 (44.30) 198 (46.20)

  TT 41 (9.60) 31 (7.20)

IL1A (rs1800587) 0.055

  AA 2 (0.50) 2 (0.50)

  AG 63 (14.70) 41 (9.60)

  GG 364 (84.80) 386 (90.00)

TLR4 (rs1927911) 0.953

  AA 68 (15.90) 65 (15.20)

  AG 210 (49.00) 210 (49.00)

  GG 151 (35.20) 154 (35.90)

ITGA2 (rs1991013) 0.270

  AA 196 (45.70) 193 (45.00)

  AG 197 (45.90) 186 (43.40)

  GG 36 (8.40) 50 (11.70)

NOS2A (rs2297518) 0.426

  AA 14 (3.30) 12 (2.80)

(Continued)

TABLE 1 Baseline characteristics of ischemic stroke patients and healthy control group.

Variables Stroke patients (n = 429) Healthy group (n = 429) p-value

Age (years) 64.0 (58.0–71.0) 64.0 (58.0–69.0) 0.923

Body mass index (kg/m2) 26.7 (25.0–27.0) 25.3 (24.1–28.1) 0.155

Male (n, %) 158 (36.8%) 158 (36.8%) 1.000

Hypertension (n, %) 246 (57.3%) 246 (57.3%) 1.000

Diabetes mellitus (n, %) 94 (21.9%) 59 (13.8%) 0.002

Coronary artery disease (n, %) 60 (14.0%) 39 (9.1%) 0.025

Smoking history (n, %) 104 (24.2%) 128 (29.8%) 0.065

Dyslipidemia (n, %) 108 (25.2%) 69 (16.1%) 0.001

Lack of exercise (n, %) 251 (58.5%) 185 (43.1%) 0.000

Stroke family history (n, %) 55 (12.8%) 23 (5.4%) 0.000
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TABLE 2 (Continued)

Stroke patients (n = 429) Healthy group (n = 429) p-value

  AG 115 (26.80) 132 (30.80)

  GG 300 (69.90) 285 (66.40)

VCAM1 (rs2392221) 0.248

  CC 301 (70.20) 321 (74.80)

  CT 114 (26.60) 99 (23.10)

  TT 14 (3.30) 9 (2.10)

TNF (rs3093662) 0.145

  AA 399 (93.00) 409 (95.30)

  AG 30 (7.00) 20 (4.70)

VCAM1 (rs3783615)

  AA 429 (100.00) 429 (100.00)

PPARA (rs4253655) 0.624

  AG 3 (0.70) 1 (0.20)

  GG 426 (99.30) 428 (99.80)

PPARA (rs4253778) 1.000

  CG 1 (0.20) 1 (0.20)

  GG 428 (99.80) 428 (99.80)

IL6R (rs4845625) 0.295

  CC 87 (20.30) 106 (24.70)

  CT 216 (50.30) 202 (47.10)

  TT 126 (29.40) 121 (28.20)

ITGA2 (rs4865756) 0.454

  AA 29 (6.80) 35 (8.20)

  AG 167 (38.90) 151 (35.20)

  GG 233 (54.30) 243 (56.60)

TLR4 (rs752998) 0.790

  GG 303 (70.60) 294 (68.50)

  GT 116 (27.00) 125 (29.10)

  TT 10 (2.30) 10 (2.30)

HABP2 (rs7923349) 0.001

  GG 227 (52.90) 198 (46.20)

  GT 164 (38.20) 212 (49.40)

  TT 38 (8.90) 19 (4.40)

NOS2A (rs8081248) 0.000

  AA 52 (12.10) 24 (5.60)

  AG 184 (42.90) 168 (39.20)

  GG 193 (45.00) 237 (55.20)

HABP2 (rs932650) 0.000

  CC 44 (10.30) 2 (0.50)

  CT 183 (42.70) 97 (22.60)

  TT 202 (47.10) 330 (76.90)
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significance (p > 0.05) are considered low-risk interaction  
genotypes.

3.5 Correlation between high-risk 
interactive genotypes and ischemic stroke

There were 249 carriers of the high-risk interactive genotypes 
among 429 ischemic stroke patients, 180 carriers in healthy control 
group. The proportion of high-risk genes carried by ischemic stroke 

patients is higher than that of healthy individuals (58.0% [249/429] vs. 
25.2% [108/429], χ2 = 95.372, p < 0.001).

In addition, we used multivariate logistic regression to evaluate 
the risk of ischemic stroke associated with high-risk interaction 
genotypes between HABP2 rs7923349 and HABP2 rs932650. The 
high-risk interactive genotypes were assigned as one, while the 
low-risk interactive genotypes were assigned as zero. Other variables 
that showed a significant correlation (p < 0.05) with ischemic stroke 
in univariate analysis were adjusted by inputting them into the 
multivariate logistic regression model. The results showed that after 

TABLE 3 GMDR analysis of the best models, prediction accuracies, cross-validation consistencies, and p-values for ischemic stroke.

Best model* Training balanced 
accuracy

Testing balanced 
accuracy

Cross-validation 
consistency

Sign test (p-value)

1 0.6492 0.6492 10/10 10 (0.0010)

1, 2 0.6678 0.6677 10/10 10 (0.0010)

1, 2, 3 0.6854 0.6725 9/10 10 (0.0010)

1, 2, 3, 4 0.7034 0.6415 5/10 10 (0.0010)

1, 2, 3, 5, 6 0.7370 0.6078 4/10 10 (0.0010)

1, 3, 5, 6, 7, 8 0.7868 0.5741 5/10 9 (0.0107)

1, 3, 4, 5, 6, 7, 8 0.8491 0.5820 9/10 10 (0.0010)

1, 2, 3, 4, 5, 6, 7, 8 0.9021 0.5400 5/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9 0.9434 0.5615 8/10 6 (0.3770)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0.9671 0.5400 6/10 7 (0.1719)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 0.9821 0.6216 10/10 8 (0.0547)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 0.9877 0.6150 5/10 8 (0.0547)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13
0.9917 0.6681 5/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14
0.9938 0.7636 10/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15
0.9938 0.7356 10/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16
0.9938 0.6689 10/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17
0.9938 0.6689 10/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18
0.9938 0.6667 10/10 9 (0.0107)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19
0.9938 0.6667 10/10 9 (0.0107)

GMDR, generalized multifactor dimensionality reduction. *Numbers 1–19 represent rs932650, rs7923349, rs8081248, rs1609682, rs1234313, rs4845625, rs1927911, rs4865756, rs1991013, 
rs2297518, rs2392221, rs752998, rs1386821, rs11811788, rs1800587, rs3093662, rs3783615, rs4253655, and rs4253778, respectively.

TABLE 4 Different genotype combinations and the risk of ischemic stroke.

rs7923349 GG TT GT GT GG GG TT GT

rs932650 TT TT CC CT CC CT CT TT

OR 1* 3.53 21.28 2.41 50.00 4.00 2.64 0.80

95%CI - 1.78–6.99 2.76–166.67 1.55–3.75 6.85–333.33 2.58–6.21 0.84–8.33 0.55–1.16

P-value - 0.000 0.000 0.000 0.000 0.000 0.086 0.237

*Using wild-type genotype as a reference OR. OR, odds ratio; CI, confidence interval.
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adjusting for covariates, high-risk interaction genotypes in HABP2 
rs7923349 and HABP2 rs932650 were independently associated with 
higher stroke risk (OR, 3.578, 95% CI: 2.618–4.890, p < 0.001,Table 5). 
Furthermore, we used the H-L test to judge the goodness of fit of the 
multivariate logistic regression model, and the results showed that the 
model had a good fit (χ2value = 13.100, p = 0.108).

4 Discussion

In this study, we selected 429 patients with a history of ischemic 
stroke from the high-risk stroke populations as the experimental 
group, and matched 429 healthy controls with similar age, gender, and 
hypertension history. Compared with the control group, the 
experimental group has a higher proportion of diabetes, heart disease, 
dyslipidemia, stroke family history, and a higher proportion of lack of 
exercise. In single SNP analysis, we  found that two endothelial 
function related gene variants (HABP2 rs7923349, HABP2 rs932650) 
and one inflammation related gene variant (NOS2A rs8081248) were 
significantly associated with ischemic stroke. Moreover, GMDR 
analysis showed significant gene–gene interactions between HABP2 
rs7923349, HABP2 rs932650, and high-risk interaction genotypes 
between these two variants were independently associated with higher 
stroke risk.

Genetics has been discovered to play an important role in the 
initiation of stroke. In large-scale genomic research, multiple genetic 
associations have been found between various risk factors and 
ischemic stroke itself (20, 21). Nevertheless, the exact mechanism and 
etiology of stroke development are very complex and have not been 
fully described yet (22). Our team’s previous research has shown that 
endothelial and inflammatory genes are relate to carotid 
atherosclerosis (13), this study aims to investigate whether endothelial 
and inflammatory genes are associated with ischemic stroke. As far as 
we know, our study is the first to investigate the possible association 
between genetic variations related to inflammation and endothelial 
function and ischemic stroke in the Chinese population.

Inflammation plays a vital role in the increase of inflammatory cell 
migration and the initiation of atherosclerosis (23, 24). Inflammatory 
gene polymorphism may affect the progression and development of 
atherosclerosis through direct or indirect interaction with vascular 
risk factors (25). The inducible nitric oxide synthase (iNOS) encrypted 
by the NOS2A gene is one of the important inflammatory mediators 
released by macrophages (26), the NO catalyzed by it can react with 
peroxy anion to form peroxynitrite, which can cause endothelial 
damage, promote the inflammatory reaction of vascular wall, and 
promote the progress and development of atherosclerosis. In addition, 
the expression of iNOS can induce the expression of matrix 
metalloproteinase 9 gene (matrix metalloproteinase, MMP-9) (27), 
MMP-9 can decompose collagen components in atherosclerotic 
plaque, leading to instability of atherosclerotic plaque and eventually 
leading to ischemic stroke. Our previous research has also shown that 
NOS2A is associated with unstable plaques (17). In this study, The 
NOS2A gene is associated with stroke, implying its essential role in 
different stages of stroke.

Endothelial function control platelet adhesion and aggregation, 
interactions between platelets and immune cells, capillary tension, and 
adhesion between endothelial cells to maintains the vascular barrier. 
Endothelial dysfunction may damage the integrity of blood vessels 
and is related to diverse human diseases, for instance coronary artery 
disease, atherosclerosis and stroke (28). The hyaluronic acid binding 
protein 2 (HABP2) gene encodes a cell adhesion protein (hyaluronic 
acid binding protein 2) that regulates vascular integrity. This gene may 
be a genetic susceptibility locus for stroke (29), which is concordance 
with this study.

Stroke is a sophisticated disease because it does not follow 
Mendelian inheritance patterns, which may be the outcome of gene–
gene interactions (17, 18). Single gene methods may not be effective in 
identifying the genetic causes of complex diseases, therefore evaluating 
gene gene interactions is necessary for studying the genetic mechanisms 
of stroke. In this study, we used GMDR analysis to assess the gene–gene 
interactions between 19 variants and ischemic stroke. The most 
remarkable finding in our study was the significant gene–gene 
interaction between HABP2 rs7923349 and HABP2 rs932650. High-risk 
interaction genotypes between these two variants were independently 
related to higher stroke risk, indicating that the synergistic interaction 
between these two variants leads to ischemic stroke. GMDR analysis 
emphasizes the complexity of genetic effects and the potential synergistic 
effects of variants in increasing stroke risk. In addition, past studies have 
also explored the roles of different genes in stroke (18, 30). Nevertheless, 
the molecular mechanisms underlying the interaction between these 
two variants are still unclear. One possible illustration is that these two 
variants can encode and regulate endothelial function related enzymes, 
which participate in the important pathogenic mechanisms of ischemic 
stroke. Therefore, further research is needed to explore the molecular 
mechanisms underlying the interactions between these two variants.

Although our findings are encouraging, but there has several 
limitations. First, our study was a case–control study, we choose patients 
with ischemic stroke in the high-risk populations and a healthy control 
group. Therefore, there may be  selection bias, and because it is a 
retrospective study, due to self-reported questionnaires, there may 
be recall bias. The small sample size and the selection of high-risk stroke 
individuals based on predefined criteria may exclude participants with 
atypical presentations or less common risk factors, potentially leading to 
skewed results. Our research results can only suggest a possible 

TABLE 5 Association between high-risk interactive genotypes and 
ischemic stroke.

Risk factor OR 95% CI p-value

Stroke family history 2.712 1.563–4.705 0.000

Diabetes mellitus (n, 

%)

1.577 1.059–2.350 0.025

Coronary artery 

disease (n, %)

1.588 0.988–2.555 0.056

Smoking history (n, 

%)

0.817 0.585–1.143 0.238

Dyslipidemia (n, %) 1.401 0.959–2.048 0.081

Lack of exercise (n, %) 1.808 1.339–2.442 0.000

HABP2 rs7923349 GG 1.307 0.968–1.764 0.081

NOS2A rs8081248 AA 2.575 1.488–4.457 0.001

HABP2 rs932650 CC 11.110 2.605–47.379 0.001

High-risk interactive 

genotype

3.578 2.618–4.890 0.000
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association between genes and stroke. Because this study is a retrospective 
study, it is difficult to obtain all the examination results of stroke patients, 
so it is difficult to distinguish various stroke types, therefore the etiology 
of our patients included atherosclerosis, arteriolar occlusion, and perhaps 
a small number of unknown causes. Prospective research is needed in 
the future to explore the genetic risk factors in different etiologies of 
stroke. Second, this study only conducted a sampling survey on residents 
aged ≥40 years; as a result, our conclusion cannot be extended to all 
populations in southwestern China. Third, although we have examined 
the role of several important genes related to endothelial function and 
inflammation, there are still some known and unknown genes that have 
not been studied. Moreover, the molecular mechanism of gene 
interaction was not further explored in this study. In the future, more 
research involving genetic variations should be conducted to further 
elucidate the impact of gene–gene interactions on ischemic stroke.

5 Conclusion

In this study, we identified the associations of variants in HABP2 
rs7923349, HABP2 rs932650, NOS2A rs8081248 with stroke. There 
was an obvious gene–gene interaction observed in HABP2 rs7923349, 
HABP2 rs932650, the high-risk interaction genotype between the two 
variants is an independent risk factor for ischemic stroke. According 
to our research results, active intervention in traditional risk factors, 
such as dyslipidemia and diabetes mellitus, may be very important to 
reduce the risk of stroke in high-risk stroke population with high-risk 
interactive genotypes. In addition the gene–gene interactive analysis 
used in our study may be  very beneficial in elucidating the 
sophisticated genetic risk factors for ischemic stroke. Further research 
exploring the molecular mechanisms underlying interactions between 
genetic variants is essential to deepen our understanding of the genetic 
mechanisms underlying stroke.
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