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Traumatic brain injury (TBI) is a complex condition involving mechanisms that

lead to brain dysfunction and nerve damage, resulting in significant morbidity

and mortality globally. A�ecting ∼50 million people annually, TBI’s impact

includes a high death rate, exceeding that of heart disease and cancer.

Complications arising from TBI encompass concussion, cerebral hemorrhage,

tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment

methods, such as pharmacotherapy with dihydropyridines, high-pressure

oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have

shown limited e�cacy. A comprehensive understanding of vascular components

is essential for developing new treatments to improve blood vessel-related

brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising

results in repairing and mitigating brain damage. Studies indicate that MSCs can

promote neurogenesis and angiogenesis through variousmechanisms, including

releasing bioactive molecules and extracellular vesicles (EVs), which help reduce

neuroinflammation. In research, the distinctive characteristics of MSCs have

positioned them as highly desirable cell sources. Extensive investigations have

been conducted on the regulatory properties of MSCs and their manipulation,

tagging, and transportation techniques for brain-related applications. This review

explores the progress and prospects of MSC therapy in TBI, focusing on

mechanisms of action, therapeutic benefits, and the challenges and potential

limitations of using MSCs in treating neurological disorders.
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1 Introduction

Traumatic brain injury (TBI) is a disruption in normal brain
function caused by an external force, leading to various degrees
of neuronal damage and brain dysfunction (1–3). TBI is the most
common cause of death and disability in people under 40 years
of age in the United Kingdom and the third leading cause of
death worldwide (1, 4). The mortality rate is 3.5 times higher
than that of heart disease and cancer in industrialized countries
(5). TBI involves both primary and secondary injuries. Mechanical
trauma initiates primary damage, which subsequently triggers
a cascade of pathological changes, leading to secondary injury
(6). TBI contributes to various complications, such as cerebral
hemorrhage and concussion. Additionally, TBI-related processes
can lead to delayed apoptosis and necrosis, affecting autophagy and
neuronal count (5, 7). Intracerebral hemorrhage (ICH), referred to
as cerebral bleeding, intraparenchymal bleeding, or hemorrhagic
stroke, is sudden bleeding into the tissues of the mind or bleeding
the mind tissue into its ventricles, or both, that can cause brain
harm and be life-threatening (8). Bleeding happens in 46% of all
TBIs and is progressively predominant in moderate and severe
injuries. Brain damage brings about hemorrhage that can steadily
advance over the initial 24–48 h. Sometimes, the spilling blood
gathers outside the vessel, forming a hematoma (9, 10). One less
investigated potential objective has been mined vasculature and its
effect on TBI results. A significant result of TBI is immediate harm
to the cerebral vasculature. We still need a complete understanding
of vascular components that could improve new vascular therapies
for TBI and vascular-related brain injuries (11).

At present, there is no safe drug treatment for moderate and
severe TBI (12, 13). Among the pharmacological agents evaluated,
nimodipine and nifedipine, both dihydropyridines, demonstrated
efficacy in rodent and mammalian models. However, these agents
showed limited effectiveness in promoting recovery in patients with
TBI (14, 15). So far, high-pressure oxygen therapy, non-invasive
brain stimulation, drug therapy, and behavioral therapy have been
used to treat TBI. Recent advances in stem cell research have
opened new avenues for treating TBI (16, 17). In recent years,
progress in the study of stem cell biology, especially mesenchymal
stem cells (MSCs), has been very effective in improving and
repairing brain injuries, such as TBI, and therapeutic strategies for
stroke treatment (Table 1) (6, 18). These cells can, by migrating to
that area and replacing the damaged tissue or by differentiating into
cells that secrete growth factors and anti-inflammatory cytokines,
in addition to decreasing brain edema and neuroinflammation and,
on the other hand, improving function. Movement increases the
proliferation and differentiation of neural stem cells, neurogenesis,
and angiogenesis (16, 19). Exosomes play a role in the recovery of
perinatal brain damage and reduce neuroinflammation caused by
microglia (20, 21). Based on studies, MSCs produce extracellular
vesicles (EVs) that prevent microglia activation, and then exosomes
are used to reduce neuroinflammation caused by TBI (Figure 1)
(22, 23).

This article aims to investigate the familiarity with MSCs
and their types, EVs derived from MSCs, the regenerative
and therapeutic role of MSCs and EVs in TBI, and the
challenges and potential limitations of MSCs used in treating
neurological disorders.

2 Mesenchymal stem cells

MSCs are multipotent cells that can self-renew and differentiate
into various cell types. They can be sourced from multiple human
tissues and organs, including bone marrow (BM), adipose tissue,
lung, brain, synovial fusion, pancreas, synovium, and peripheral
blood (24–30). Friedenstein was the first to develop guinea
pig bone-forming cells, and Owen revitalized this research by
extending this technique to rats (31, 32). The isolation and in

vitro expansion of MSCs derived from human BM were first
documented in 1992, with subsequent reports of their therapeutic
administration to patients commencing as early as 1993, as
noted in a publication from 1995 (33, 34). Stem cells are
characterized primarily by their multi-differentiation and self-
renewal capabilities, as well as their various origins. Additionally,
MSCs aid in tissue regeneration by producing cytokines and
growth factors that draw other cells to the injured area (35–
37). These cytokines and growth factors also encourage the
development of new blood vessels, which are essential for tissue
healing. Stem cell treatment is a viable alternative for tissue
regeneration and repair since MSCs can control immune system
activity, lower inflammation, and inhibit immunological responses.
They are therefore excellent candidates for cellular treatments
for a range of illnesses because of this characteristic (38–40).
Stem cell transplantation has been shown in numerous studies
to be beneficial for several diseases, including diabetic foot
ulcers, congenital cataracts, ocular surface burns, severe skin
burns, myocardial infarction, Parkinson’s disease, Huntington’s
disease, and TBI (41–50). MSCs derived from human or rat
donors specifically target damaged brain tissue (homing) following
injections and aid in functional recovery (51, 52).

MSCs demonstrate therapeutic benefits in various medical
conditions due to their diverse mechanisms of action. These cells
are recognized for their regenerative properties, which encompass
facilitating tissue regeneration and enhancing the healing process
of wounds (45, 53, 54). The functions of MSCs in the management
of neurological disorders and diseases encompass mitigating
inflammation via immunomodulation, discharging trophic
factors to facilitate therapeutic outcomes, fostering neurogenesis,
being antibacterial, stimulating angiogenesis, diminishing
infarct volume, substituting damaged cells, and emitting EVs,
all of which contribute to their therapeutic efficacy (55–58).
MSCs demonstrate immunomodulatory properties through
the inhibition of inflammatory reactions and the facilitation of
anti-inflammatory pathways (59, 60). MSCs have the potential to
enhance the production of anti-inflammatory cytokines, including
interleukin-4 (IL-4), interleukin-10 (IL-10), and tumor necrosis
factor β (TNF-β). Conversely, MSCs have the potential to decrease
the production of inflammatory cytokines such as interleukin-1
(IL-1), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α),
and membrane cofactor protein-1 (MCP-1) (61–64). MSCs
modulated various pathways related to immune cells and immune
responses by controlling the levels of cytokines, thereby mitigating
inflammation (65–67). Studies showed that TNF-α and IFN-γ
were the central pro-inflammatory cytokines. Prostaglandin E2
(PGE2) has been identified as a significant mediator of MSCs,
playing a crucial role in modulating the immune response and
inflammation. It achieves this by regulating immunity, suppressing
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TABLE 1 The therapeutic e�ects of MSCs in all types of brain injuries.

Type of brain injury The therapeutic e�ect of MSC in all kinds of brain injuries Route References

Ischemic stroke (ICH) Nerve damage recovery by regulating various mechanisms, such as immune system
function, nutritional factor secretion, stimulating angiogenesis, neurogenesis, and
synapse formation.

IV, IA (271–273)

Hemorrhage Reduces brain damage after ICH through the Rhino signaling pathway and promotes
neurogenesis.

Intraventricular, IV (274–276)

Concussion It improves neurological characteristics by differentiating the damaged areas of the
brain into healthy neurons and increasing glial cells on the damaged site.

IV, IA (208, 277)

Tumor Apoptosis inducement through the phosphatidyl-3-kinase/protein kinase B
(AKT/PI3K) pathway and growth suppression and proliferation of glioma cells and
exhibition of anti-angiogenic characteristics.

IV, localized
injection

(74, 278)

Encephalitis In addition to regulating inflammation, the ability to migrate to the site of injury and
differentiate into different types of cells, such as fat cells, osteocytes, chondrocytes, and
neurons, causes a defensive immune function against many injuries caused by bacteria
or viruses.

IV, intranasal
administration,
intraperitoneal

(250, 279)

IV, intravenous; IA, intra-arterial.

FIGURE 1

The origins, di�erentiation ability, therapeutic mechanisms, and delivery methods of MSCs and EVs secreted by MSCs for TBI. MSCs can di�erentiate

into chondrocytes, adipocytes, neurons, osteoblasts, and glial cells.

T-cell proliferation, and influencing T-cell differentiation (68).
Following a stroke, there was a noted decrease in the level of PGE2,
which subsequently increased after the transplantation of MSCs.
This was accompanied by a reduction in the secretion of TNF-α in
dendritic cells (DCs) and a reduction in the secretion of IFN-γ in T

helper one cells and natural killer (NK) cells. Consequently, there
was a notable decrease in the density of TNF-α, suggesting that
MSCs mitigated the neuroinflammation induced by stroke (69, 70).

Studies conducted in laboratory settings have shown that
MSCs play a role in stimulating the growth of neurogenesis and
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angiogenesis. MSCs release growth factors like vascular endothelial
growth factor (VEGF) and brain-derived neurotrophic factor
(BDNF), which contribute to the development of neurons and
the creation of new vascular structures (71–73). These properties
enable MSCs to mitigate tissue damage and enhance functional
recovery in conditions such as TBI (6, 74).

MSCs are a kind of immunodeficient cell that is easily
obtained. Allogeneic gene transplantation often does not result in
immunological rejection. Human leukocyte antigen (HLA) class
I is represented at modest levels in the majority of stem cells,
according to earlier research. HLA class II is not expressed by
them, nor are co-stimulator factors (CD40, CD80, and CD86) or
surface markers of hematopoietic cells (CD34, CD45, CD79, and
CD14) expressed by them (75–77). This characteristic allows stem
cells to have immune privilege without provoking the host and
transplanted cells’ immune systems to clash (78). HLA class I is
essential because modest protein concentrations can shield cells
from the cytotoxic effects of NK cells (79). It has been documented
that exposure to the pro-inflammatory milieu of injured tissues
causes MSCs to express HLA class II (78). It has been shown that
MSCs are extremely immunogenic after they are transplanted into
the host (80). Over 90% of undifferentiated MSCs demonstrate
the expression of HLA class II upon exposure to IFN-γ (81).
Furthermore, to evade immune monitoring, hair follicle stem cells
downregulate major histocompatibility complex (MHC) class I
in the static state, according to research by Agudo et al. (82).
Numerous variables, such as the microenvironment and cell state,
might affect how immunogenicMSCs become. Consequently, more
research on the specifics of MSC immunogenicity is required to
increase the effectiveness of MSC transplantation (83).

MSCs exhibit various cell surface immune markers, leading
the International Society for Cellular Therapy (ISCT) to establish
identification criteria for MSCs in 2006. These criteria include
characteristics such as plasticity and adherence, as well as the
presence of CD73, CD90, and CD105 markers while lacking
CD14, CD34, CD45, CD11b, CD79α, CD19, andHLA-DRmarkers.
Additionally, MSCs should demonstrate the ability to differentiate
into chondrocytes, osteoblasts, and adipocytes (84). The goal
of the ISCT recommendations is to encourage cooperation
among researchers and standardize MSC research. The common
immunophenotypes of MSCs may generally be expressed by MSCs
derived from various tissue origins, while the expression of the
other immunophenotypes varies somewhat. As research develops
and new information becomes available, this standard will likely be
changed in the future (83).

2.1 Types of MSCs

Various origins of MSCs have been identified in the
literature. Contemporary studies indicate stem cells can be
isolated from diverse tissue sources (Figure 1). Bone marrow-
derived mesenchymal stem cells (BM-MSCs), Human umbilical
cord mesenchymal stem cells (HUC-MSCs), Adipose tissue-
derived mesenchymal stem cells (ADSCs), and placenta-derived
mesenchymal stem cells (PD-MSCs) are among the more
researched MSC types. BM-MSCs are a diverse population of

cells comprising pluripotent adult stem cells that can differentiate
into many lineages, such as chondrocytic, adipocytic, or osteocytic
(85, 86). This cell type constitutes∼0.001%−0.01% of bonemarrow
mononuclear cells (BMMNCs). It is characterized by the presence
of CD73, CD90, andCD105markers while lacking the expression of
CD14, CD45, CD34, CD11b, CD79α, CD19, and HLA-DR surface
molecules (87). Owing to its low abundance, large-scale in vitro

culture and amplification are needed to provide enough samples
for study or therapeutic application (88). BM-MSC collection is
frequently an expensive and intrusive procedure. Additionally,
when donor age increased, the quality of the BM-MSCs’ cells
declined noticeably (89, 90).

HUC-MSCs were isolated from Wharton’s Jelly, a gelatinous
connective tissue surrounding the umbilical cord blood vessels
(91). Since it is often abandoned at birthing, collecting it is non-
intrusive and presents few moral dilemmas (92). Its traits include
a lengthy survival duration, a low doubling time, and potent anti-
inflammatory properties. Prolonged in vitro culture has minimal
effect on its genetic stability and phenotype (93–96). In contrast
to BM-MSCs, HUC-MSCs exhibit enhanced proliferative capacity
and reduced HLA-ABC and HLA-DR expression (97).

ADSCs are abundant in tissue reservoirs and can be acquired
through minimally invasive procedures involving extracting
subcutaneous white adipose tissue from the abdominal region,
thighs, or buttocks of both animals and humans (98). ADSCs are
easy to isolate and have a high yield-1,000mL of adipose tissue
can generate about 100mL of ADSCs (99). It can differentiate
into several lineages, such as hepatic, neurogenic, chondrogenesis,
osteogenesis, cardiomyocyte, and adipogenesis (100, 101). In low-
passage cultures, ADSCs frequently express CD34; however, this
diminishes with ongoing cell passage (102, 103). In contrast to
BM-MSCs, ASCs lack the expression of the sialoglycoprotein
podocalyxin (PODXL) and the adhesion marker CD106 (104, 105).

The amniotic membrane, amniotic fluid, chorionic villi,
chorionic plate, decidua basalis, entire placenta, and complete
placenta are among the tissue sources of placenta-derived MSCs
(PD-MSCs) (106). Compared to other tissue-derived MSCs,
the placenta’s stem cell-like cells have a greater capacity for
differentiation and self-renewal (107). Furthermore, research
conducted in vivo and in vitro has demonstrated its low
immune qualities (108). Additionally, it has been shown that PD-
MSCs promote monocyte differentiation from inflammatory M1
macrophages to M2-like macrophages, indicating that PD-MSCs
may help treat inflammatory disorders (109). Nonetheless, MSCS
that are separated from various placental regions have modest
variations in characteristics. The placental tissue, for instance,
comprises two distinct individual tissues: the fetal and the maternal
placental tissues. Compared to MSCs produced from maternal
placental tissues, those derived from fetal placental tissues exhibit
substantially greater proliferation ability (110).

Gingival MSCs (GMSCs) are derived from various sources,
such as periodontal tissue, dental pulp, and gingival ligaments.
GMSCs exhibit MSC-related cell surface markers such as CD73,
CD90, CD105, and stromal cell antigen 1 (STRO-1), just as MSCs
from other sources (111). Research has also revealed that GMSCs
may transdifferentiate into ectoderm and endoderm cell lineages,
including keratinocytes, endothelial cells, and nerve cells, in
addition to having the capacity to develop into the three mesoderm
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lines of adipocytes, osteocytes, and chondrocytes (112, 113).
Furthermore, GMSCs can modulate the immune system, have an
anti-inflammatory effect, and stimulate macrophage development
(114–116). Moreover, GMSCS have constant morphological and
functional properties under increased passage, are homogeneous,
multiply quickly, and are not carcinogenic (114).

From normal human labial minor salivary glands, scientists
have isolated heterogeneous cell populations with mesenchymal
and epithelial characteristics (117). The existence of human labial
gland-derivedMSCs (LGMSCs) in the oral mucosa’s lamina propria
was later verified (118). Wang and colleagues effectively recovered
MSCs from mature female salivary gland cysts and used flow
cytometry to detect the distinctiveMSC expressionmarkers, such as
CD29, CD44, CD73, CD90, and CD105. Notably, the salivary gland
epithelial markers (CD49f) and CD34, CD45, CD106, and CD117
were negative (119). Compared to other MSCs, LGMSCs show a
better capacity for differentiating into salivary gland epithelioid-
like cells. They also possess the capability for osteogenic and
lipogenic differentiation. Its capacity for adipogenic differentiation
is, however, inferior to that of ADSCs (120, 121). LGMSCs can also
modulate immunological function, have a shallow glandular site,
and are simple to acquire and grow in vitro (122–124).

Furthermore, MSCs obtained from organs including the
liver and pancreas are being studied, opening up possibilities
for MSC multi-source routes. Noteworthy, MSCs derived from
donors with type 1 diabetes mellitus (T1DM) have phenotypic
and functional similarities with those of donors in good health.
They can continue to perform secretory or immunomodulatory
tasks typically (125). Nonetheless, MSCs derived from donors
with type 2 diabetes mellitus (T2DM) frequently exhibit
elevated apoptosis and senescence to reduced angiogenesis
capacity (126).

2.2 MSCs and their extracellular vesicles
(EVs)

The therapeutic benefits of MSCs may be attributed to the
production and dissemination of EVs, although other substances
released by MSCs are also linked to their therapeutic properties
(Figure 1) (127–130). Owing to the lack of agreement over specific
EV subtype markers, it is advised to use physical EV features
like size (131–133). Consequently, EVs with <200 nm are called
tiny EVs. Considering that microvesicles range in diameter from
100 to 1,000 nm, some of them may also be tiny EVs (131).
Therefore, it won’t be entirely proper to use the word “exosome.”
The International Society for Extracellular Vesicles supports the
term “EVs” to refer to any naturally occurring particles that are
discharged from cells and are surrounded by a lipid bilayer but
are unable to multiply due to the lack of a functioning nucleus
(132, 133). Nearly all cells can release EVs, which are composed of
many functional components, including proteins, lipids, enzymes,
cytokines, receptors on the cell surface, and nucleic acids such as
DNA,messenger RNAs (mRNAs), andmicroRNAs (miRNAs) (133,
134). EVs are essential for intercellular communication because, in
their capacity as regenerative medicine, they deliver their payload
to recipient cells (135, 136).

The issues with MSC use, particularly in human treatments,
have made it possible to do related research on vesicles. Many of
the therapeutic actions of MSCs were recapitulated by MSC-EVs,
with notable enhancements. Recent research has demonstrated that
MSC-EV therapies offer comparable or even greater efficacy than
MSCs in treating a wide range of illnesses, all while lowering
hazards significantly. Therefore, EVs took the place of their parent
cells for several therapies. These demonstrations have created
opportunities for a novel therapeutic approach based on the usage
of MSC-EVs, which is commonly referred to as cell-free treatment
(137). There are several benefits to this advancement, including
quicker tissue penetration and more excellent safety. Additionally,
the limited potential of MSC-EVs to trigger the immune system
prevents disappointments even during allo- and xeno-grafts; the
ease of transport and storage makes the potential of EV therapy
optimal when compared to standard cell-based approaches; and the
inability of MSC-EVs to self-replicate dramatically reduces the risk
of tumors and expansions, typical ofMSCs (137–141). Some clinical
trials have developed as a result of these findings. Since MSC-
derived EVs eliminate many of the hazards associated with MSC-
based treatment, their applications are gaining popularity (142).
The heterogeneity ofMSC-EVs is an important characteristic. Their
parent cells are produced in the stroma of tissues, whichmight vary,
as was previously indicated (142).

3 Therapeutic e�ect of MSC on
di�erent brain injuries

3.1 Ischemic stroke

Stroke is the leading cause of permanent disability and the
second leading cause of death worldwide, with ∼5.5 million
deaths per year (143). About 80% of stroke events include
ischemic stroke (144). While TBI is often caused by motor
vehicle or sports accidents and is the leading cause of death
and disability in adolescents and young men, stroke mainly
affects the elderly (145). Neonatal/perinatal ischemic stroke is
a devastating disease that occurs once in every 3,500 births
per year in the United States (146, 147). The consequences of
perinatal stroke include spasticity, cognitive impairment, and death
(148). Angiopathy and thromboembolism caused by intracranial
or extracranial vessels are among the causes of ischemic stroke,
and the most common cause in children under 15 years old
is cerebral arteriopathy, which includes half of the cases (146,
148, 149). In stroke, rapid activation of innate immunity is
the cause of inflammation (150). Breakdown of transcellular ion
gradients due to the reduction of oxygen and energy supply,
cytotoxic edema, production of toxic free radicals, and progressive
thrombus formation in cerebral microvessels due to endothelial
dysfunction are among the first pathological events after cerebral
stroke (151). Studies have shown that CD4+ CD28-T cells increase
in clinical conditions of acute ischemic stroke. T cells producing
high amounts of γ-interferon and TNF-α probably have a direct
pathogenic role in nerve damage (152). There are few treatments
for ischemic stroke. In adults, the only FDA-approved drug for the
treatment of ischemic stroke is tissue plasminogen activator (tPA),
a thrombolytic agent. In comparison, the efficacy and safety of
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tPA in children are unknown (148). The paraspinal administration
of etanercept in a study that included 629 patients with chronic
neurological, mental, and clinical disorders after a stroke caused
a partial improvement of the disease (153). The hypothesis that
inhibiting the production of pro-inflammatory cytokines may be a
therapeutic approach to treating brain injury is also proposed (154).
Cytokines TNF-α, IL-1, and interleukin-6 modulate tissue damage
in ischemic stroke (155). For the treatment of increased intracranial
pressure (ICP) resulting from various causes, particularly ischemic
and traumatic brain injuries, decompressive craniectomy has been
employed. Given the rigid structure of the skull, brain swelling
induced by stroke or TBI can lead to compartment syndrome
and elevated ICP, necessitating this surgical intervention (156).
Due to the little-known treatment methods, there is an urgent
clinical demand for new treatment options. The therapeutic
strategy can be successful in this situation if it targets several
pathophysiological mechanisms that occur in different stages of
brain damage (Figure 1) (143).

3.2 MSCs improve stroke outcomes by
stimulating angiogenesis, neurogenesis,
and synapse formation

MSC may play a role in the recovery of nerve damage by
regulating various mechanisms such as immune system function
and nutritional factor secretion (157–160). The mechanisms of
action of MSCs have two levels: the peripheral level and the
central level. The peripheral level includes the reduction of
inflammation and immune modulation, and the central level
is affected by angiogenesis, astrocytes, neurogenesis, axons, and
oligodendrocytes (Figure 1) (18, 161). These cells will probably
be able to create an environment that stimulates angiogenesis
and neurogenesis, and on the other hand, they will increase the
secretion of growth factors (162). Transplantation of MSCs into
animal models of infants suffering from ischemic stroke improves
performance. This mechanism works by stimulating neurogenesis,
oligodendrogenesis, and axon regeneration. Infants are believed to
benefit more from cell therapy than adults because infants have
more flexible brains and different injury pathophysiologies. Also,
microglial activation is more evident in infants because microglial
activation is also present during the physiological development of
the brain (153). The role of EVs derived from MSC is to prevent
microglia activation (22).

An increasing body of preclinical research indicates that stem
cell therapy shows promise in the treatment of ischemic brain
injury and in mitigating its enduring consequences. The positive
outcomes observed in phase I clinical trials of stem cell therapy for
stroke have bolstered the confidence of researchers and clinicians
in the potential clinical utility of this therapeutic approach (163,
164). Further improvement is necessary regarding the clinical
applicability of these treatments and to validate their effectiveness
and safety (165, 166). Additionally, the National Institutes of Health
Consortium’s “Stem Cell Therapies as an Emerging Paradigm
for Stroke (STEPS)” has established the fundamental guidelines
supporting the use of MSCs in clinical trials for stroke patients to
guarantee the resolution of ethical, technical, and medical issues

before clinical translation (167, 168). According to STEPS, human
trials might involve either an immediate infusion of stem cells to
reduce the chance of ischemia harm occurring later on or a late
intervention to promote neuronal regeneration during the chronic
phase of the stroke (164). Furthermore, additional data from
earlier clinical studies has shown the necessity of enhancing critical
elements, such as the proper selection of appropriate cells and the
mode of delivery, to successfully convert preclinical findings into
practical clinical practice (169).

After confirming that stem cell transplantation in stroke
patients is a safe and well-tolerated treatment, higher-stage
clinical trials sought to determine whether stem cells may offer
quantifiable advantages (170). A randomized controlled trial
(RCT) was conducted to examine alterations in neuroimaging
metrics following the administration of stem cell-based therapy
in individuals diagnosed with ischemic stroke. The participants
were segregated into groups receiving MSC treatment and control
groups. The neuroimaging assessment encompassed 31 patients
who received MSC treatment and 13 control patients. Motor
function was assessed through the Fugl-Meyer assessment scale.
At the same time, neuroimaging techniques were employed
to analyze fractional anisotropy in the corticospinal tract and
posterior limb of the internal capsule, as well as connectivity
within the motor network. The group receiving MSC treatment
demonstrated a notable enhancement in motor function and
preservation of corticospinal tract integrity, in contrast to the
control group, which showed a deterioration in these aspects.
Moreover, the MSC group exhibited heightened interhemispheric
and ipsilesional connectivity, demonstrating notable variations in
interhemispheric connectivity alterations compared to the control
group. These results imply that stem cell-based treatment can
promote network reconfiguration and prevent degeneration of the
corticospinal tract, promoting motor recovery following a stroke
(NCT01716481) (171).

A study conducted at a single medical facility, known as ISIS-
HERMES, utilized an RCT design with an open-label approach to
investigate the safety, feasibility, and effectiveness of intravenous
(IV) autologous BM-MSCs in individuals aged 18–70 who had
experienced moderate to severe ischemic carotid stroke within 2
weeks of its onset. The study had a follow-up period of 2 years.
Participants were assigned randomly in a 2:1 ratio to receive MSCs
or standard care. The main objectives of the study were to evaluate
the feasibility and safety of the intervention, with an additional
focus on secondary outcomes, such as overall improvement and
motor recovery, assessed through fMRI during passive wrist
movements. Out of 31 participants, 16 were administered MSCs,
demonstrating a treatment feasibility rate of 80%. The cohort that
receivedMSC treatment exhibited notable enhancements inmotor-
NIHSS (p = 0.004), motor-Fugl-Meyer scores (p = 0.028), and
task-related fMRI activity within the primary motor cortex regions
MI-4a and MI-4p (p = 0.031 and p = 0.002, respectively). The
findings suggest that administering IV autologous MSC therapy
following a stroke is both safe and viable, and it contributes to
improved motor function recovery by promoting sensorimotor
neuroplasticity (NCT00875654) (172).

A phase 2 single-center, assessor-blinded RCT investigated the
safety and efficacy of IV autologous BM-MSCs in 17 patients aged
30–75 with severe ischemic stroke in the middle cerebral artery
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territory. Participants were randomly assigned to receive either
BM-MSCs or conventional treatment. The primary endpoints
evaluated after 12 months were the National Institutes of Health
Stroke Scale (NIHSS), modified Rankin Scale (mRS), Barthel Index
(BI), and MRI infarct volume. The findings indicated no notable
variations in NIHSS, mRS, or BI among the groups; however, a
marked decrease in median infarct volume was observed in the
BM-MSC group. The treatment was deemed safe and well-received,
indicating promising advantages in diminishing infarct volume
(NCT01461720) (173).

Chung et al. (174) conducted an RCT to investigate the
potential benefits of autologous-modified MSCs in enhancing
recovery among individuals with chronic stroke. The study’s
findings indicated that the IV administration of preconditioned
autologous MSCs, along with autologous serum, was both feasible
and safe for patients with chronic severe stroke. Additionally,
the researchers noted improvements in foot movement through
detailed functional assessments (NCT01716481) (174). These
clinical trials collectively emphasize the therapeutic potential of
MSCs in improving stroke outcomes.

3.3 Brain hemorrhages

Spontaneous ICH is one of the most detrimental
cerebrovascular diseases globally, causes immoderate morbidity
and mortality, and is a kind of stroke. Cerebral hemorrhage is
frequently categorized based totally on the same region in the
brain where it happens (175). Bleeding within the brain itself is
called ICH. Bleeding can also occur between the lining of the
brain and the brain tissue itself. That’s known as a subarachnoid
hemorrhage. If a blood clot occurs between the cranium and the
brain, it’s known as a subdural or epidural hematoma, depending
on whether it’s far underneath or over the difficult overlaying
(dura) of the brain. Subdural and epidural hematoma most likely
occur due to stressful brain damage or after a fall (176). The pooled
blood that creates a hematoma within the brain can cause extended
intracranial stress, which in turn damages the mind’s parenchyma
and may result in everlasting nerve damage or loss of life. The most
common cause of cerebral hemorrhage is high blood pressure.
Over time, excessive blood strain can weaken the arterial walls and
lead to rupture, which is set at 13% of strokes, hemorrhagic strokes,
or spontaneous bleeding within the brain (176). The reasons for
cerebral hemorrhage consist of high blood stress (high blood
pressure) or cerebral amyloid angiopathy (CAA), which is one of
the most common and important reasons for cerebral hemorrhage.
With the passage of time and age, blood pressure will increase
and may harm the walls of cerebral arteries. Weaken and expand
(aneurysm) abnormally and lead to rupture (177–179).

MSCs have shown promising results in preclinical models
for the treatment of ICH. MSC treatment has improved
neural network reconstruction, neurological functioning, and
ICH-induced neuronal abnormalities through anti-inflammatory,
neurogenesis, angiogenesis, and anti-apoptotic effects (180, 181).
By modulating immune responses and releasing anti-inflammatory
cytokines, MSCs lessen the inflammatory cascade set off by brain
hemorrhage. This reduces the possibility of further harm to brain

tissue (182, 183). A study conducted by Azevedo et al. (184)
in a preclinical setting aimed to examine the possible effects
of MSCs on CD4T cells. The findings indicated that MSCs
prompted the differentiation of CD4T cells into regulatory T
cell (Treg)-like cells through the activation of TGF-β and, or
programmed death-1 (PD-1)/and programmed death ligand 1
(PD-L1) signaling pathways. Experimental evidence has confirmed
that PD-L1 downregulates the migration of CD4+ T cells to the
brain, leading to the upregulation of Th2 and Treg cells while
simultaneously downregulating Th1 and Th17 cells. This regulatory
effect is mediated through the mTOR pathway, as demonstrated in
both in vitro and in vivo studies (185). Additionally, other research
has shown comparable findings in the ICH rodent model, a specific
B10.D2 [H-2(d)) donor to BALB/c (H-2(d)] recipient mice model,
and the experimental autoimmune neuritis (EAN) rat model (185–
187). It is widely recognized that neuroinflammation exacerbates
the advancement of brain damage resulting from ICH. Therefore,
interventions to modulate the immune response can potentially
mitigate ICH-induced brain injury. The notable characteristics
of anti-inflammatory and immunomodulatory effects render
MSC transplantation a suitable therapeutic option for addressing
inflammatory conditions such as ICH. This is achieved by
modulating microglia and neutrophils, augmenting the defensive
role of anti-inflammatory cytokines, and mitigating the adverse
effects of pro-inflammatory cytokines (181, 188, 189). Kim et al.
(190) discovered that transplanting ADMSCs into rats with an ICH
model resulted in a reduction of acute inflammation and chronic
brain deterioration, leading to enhanced long-term functional
recovery (190).

BMSCs are commonly employed in treating brain injuries due
to their convenient procurement from the host and ability to
penetrate the blood-brain barrier (BBB) without causing structural
disruption. This allows them to differentiate into neurons or
neuron-like cells, facilitating tissue repair (191–195). Several
research studies have shown that BMSCs have the potential to
reduce neurological impairments and maintain the integrity of the
BBB in rats with ICH (182, 196). In their study, Chen et al. (197)
observed that using rat ADSCs in treating rats with ICH resulted
in the development of cells resembling neurons and astrocytes
near the injury site. Additionally, this treatment led to enhanced
levels of VEGF, contributing to the restoration of neurological
function in the affected rats (197). Yang et al. (198) utilized
ADSCs obtained from the fat tissue of a 65-year-old male donor
and administered them via injection into the right femoral vein
of rats with ICH-induced stroke. Their findings indicated that
transplantation of ADSCs may enhance the functional recovery of
the test subjects (198).

MSCs reduce brain damage after ICH through the Hippo
signaling pathway, which could promote neurogenesis and
decrease the facet outcomes of intellectual injuries (199, 200).
The Hippo signaling pathway is regulated by kinase activity,
specifically involving mammalian sterile 20-like kinase 1 (MST1)
and its associated protein, Yes-associated protein (YAP), which
protects astrocytes from apoptosis. This pathway induces nuclear
translocation of YAP by suppressing MST1 using small interfering
RNA (siRNA). Furthermore, studies suggest that astrocytes
adopt an astroglial-mesenchymal phenotype after BM-MSC
transplantation, potentially enhancing their reparative capacity
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through the Hippo pathway. These findings position the Hippo
signaling pathway as a promising therapeutic target for advancing
the treatment and management of ICH (199, 201, 202).

3.4 Concussions

A concussion is a “temporary disturbance in brain function
as a result of trauma” and is a subset of neurological accidents
referred to as annoying brain accidents. Concussions are technically
a subset of mild traumatic brain injury (mTBI) (203). Concussions
arise as a result of direct or oblique trauma to the head. However,
indirect effects from forces someplace else inside the body can bring
about acute acceleration or deceleration harm to the brain, which
can also result in concussions (204). A complex web of biological
processes, including structural modifications, neurochemical shifts,
and functional deficits, interact to cause concussions. Cellular and
metabolic alterations may result from the first impact’s ability to
stretch and damage axons. These consist of inflammatory reactions,
disruption of the BBB, and excitatory neurotransmitter release.
All of these mechanisms have a role in the acute and long-term
symptoms that people with concussions experience. The discharge
of electrolytes through ion channel depolarization results in the
release of neurotransmitters and subsequent neuronal dysfunction.
Adjustments in glucose metabolism lower cerebral blood flow, and
mitochondrial dysfunction additionally occurs (205, 206).

MSCs and their EVs have emerged as promising therapeutic
agents for addressing the complex pathophysiology of concussions
(207, 208). A 2013 experiment that included 97 TBI patients
who received autologous BM-MSCs by lumbar puncture lends
support to the safety and effectiveness of this cell treatment in
the context of clinical investigations of MSC therapy for TBI.
After receiving a transplant, over 40% of patients showed better
neurological function. Twenty-seven of the 73 individuals initially
presented with motor problems showed improved motor abilities.
The study found that patient age and the administrative window
following injury all impacted the result, with younger patients
responding better to the advantages of a cell transplant (209).
Because of the features of multi-capacity and self-renewal and
their availability and occasional immunogenicity and ability after
freezing, their use turns them into a promising treatment for
injuries and strokes. MSCs are multipotent stem cells with the
potential for self-renewal and more than one differentiation (210–
214). Inside the mouse TBI model, IV-injected BM-MSCs can
penetrate the BBB and introduce dietary elements into the mind
enhancer. They can also selectively switch them to the damaged
areas of the brain tissue and differentiate them into neurons
and astrocytes (215, 216). Advertising of axonal regeneration
within the mind and angiogenesis and increasing glial cells on
the site of harm can boost the internal restoration procedure.
Additionally, MSC-derived EVs, which carry bioactive molecules
such as mRNA, miRNA, and anti-inflammatory cytokines, play a
crucial role in intercellular communication and neuroprotection
(217). EVs derived from BM-MSCs prompt T cells by freeing
anti-inflammatory cytokines and affecting apoptosis (218, 219).
Research displays that EVs decreased using MSCs in hypoxic
situations can put off neuronal degeneration and cause neurological
recovery (220). Therefore, research is needed to determine the

quality of MSCs to treat TBI. Thinking about the prevalence
of mitochondrial dysfunction in TBI, enhancing mitochondrial
features has been a practical therapeutic aim for acute brain harm
in recent years. Mitochondrial switching fromMSCs can lessen the
rate of apoptosis in recipient cells and enhance cellular survival by
regulating the Bcl-2-associated protein X (Bax)/Bcl-2 ratio (221).
MSCs can also boost the expression of the antiapoptotic gene Bcl-
2 and decrease the extent of superoxide anion, thereby shielding
brain tissue (222). This mitochondrial transfer occurs amongMSCs
and target cells via tunneling nanotubes (TNTs), microvesicles,
EVs, hole junctions, and cytoplasmic fusion (223–226). Many
studies have shown thatMSCs can shield brain tissue from excessive
harm by inhibiting oxidative pressure. In a TBI mouse model,
overexpression of specific genes, including that for superoxide
dismutase 2, in vitro can enhance the antioxidant impact of MSCs
and improve their therapeutic effects (227). In conclusion, while
concussions pose significant clinical challenges, MSCs and their
EVs offer innovative therapeutic strategies. Much medical research
is underway to decide the most advantageous course and timing of
management and dosage of MSCs and EVs, which can be famous
directions for future studies.

3.5 Tumor

Tumors that form in the brain can have debilitating effects,
even if the tumor is benign (228). Glioblastoma multiforme
(GBM) is the most common and aggressive brain tumor and a
complex and resistant cancer. GBM can originate from normal
brain cells or low-grade astrocytes (229, 230). Although the use of
surgery, radiotherapy, and chemotherapy is suggested to increase
life expectancy and quality of life, there is currently no cure for this
cancer (231). One of the ways that has created new hope for the
treatment and reducing the complications of GBM is mesenchymal
stem cell therapy (232).

Studies have shown that MSCs are toxic to tumor cells. Also,
new research shows that these cells induce apoptosis through the
phosphatidyl-3-kinase/protein kinase B (AKT/PI3K) pathway and
suppress the growth and proliferation of glioma cells (233). MSCs
have anti-angiogenic properties, which has made them sound like
anti-tumors; observations show that these cells can inhibit tumor
blood vessels (234). Without forming a new ship and access to
blood, tumors cannot grow more than 2–3 cubic millimeters (235).
The process that controls and inhibits angiogenesis by MSCs in
GBM is the reduction of focal adhesion kinase (FAK) and integrin
β2α expression. FAK is a cytoplasmic tyrosine kinase involved
in integrin activation, regulation of cell migration, proliferation,
persistence, and aggression play a role. Research shows that MSC
reduces FAK activity and reduces the formation of new blood
vessels in the tumor (236). MSCs can induce apoptosis by inducing
glioma cell death by downregulating X protein-associated inhibitor
of apoptosis (XIPA). This protein is a member of the family of
apoptosis inhibitor proteins, which has a positive effect on most
malignancies, including GBM (237). MSC prevents the increase of
glioma cell lines, accompanied by a 50% increase in cytotoxicity
and apoptosis. The data obtained from the western blot shows a
significant reduction of XIPA and alpha-serine/threonine kinase,
which is associated with cell death. Further studies show that huc-
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MSC MSCs express genes encoding pro-proteins. Belonging to
the pro-apoptotic Bcl-2 family, including Bax Bad, these studies
confirmed the successful induction of apoptosis by MSC, huc-
MSC, in glioma cells (238). An additional potential anti-tumor
mechanism associated with MSCs is their influence on epidermal
growth factor receptor (EGFR) signaling (239).

A few of these tactics have been taken to the clinic, where
at least two ongoing clinical trials assess the potential benefits
of MSC-based GBM therapies (240). The initial study, conducted
at the M.D. Anderson Cancer Center in Texas, United States,
is an extension of their findings from preclinical experiments
involving GBM. In these experiments, allogeneic MSCs carrying
oncolytic viruses (OVs) were introduced into the carotid artery,
demonstrating encouraging outcomes (NCT03896568) (241). In
this phase I clinical trial, an open-label approach is employed to
investigate the utilization of the conditionally replicating oncolytic
adenovirus Delta24-RGD in conjunction with MSCs. This strategy
aims to capitalize on the inherent tumor-tropism of MSCs, with
the potential benefit of restricting the dissemination of the virus to
non-target organs. Additionally, this enables MSCs to penetrate the
BBB and disperse broadly throughout the tumor (NCT03896568).
Patients with recurrent glioblastoma are being treated in another
research at CHA University in South Korea by transplanting MSCs
that express the suicide gene cytosine deaminase (CD). This phase
I/II clinical trial is open-label and aims to assess safety, efficacy, and
maximum tolerated dosage (NCT04657315).

3.6 Immune modulator by MSCs

There is a similarity between macrophages and MSCs, such
as the ability to switch between pro- and anti-inflammatory
phenotypes. Stefani and colleagues tested the effect of low-dose
MSCs on GBM. The GL261 glioma cell line implanted in the right
striatum ofmice treated with irradiated BM-MSCs increasedmouse
lifespan and reduced tumor volume by ∼67%, and histochemical
staining of the vessels of the tumor mass also showed that the
blood vessels inside the tumor had decreased density (238). One
of the most essential characteristics of malignant gliomas is the
immunosuppression that an active tumor creates in the existing
tissue (242). Therefore, one of the anti-cancer treatment strategies
based on MSCs is dependent on intra-tumor immunomodulating
cytokines, such as ILs. Momeh et al. researched that intra-
tumor administration of genetically modified MSCs increased
expression. IL-7 and IL-2 control pro-inflammatory intracranial
tumors. Recent studies have proven that MSCs that express IL-24
secret immunomodulatory cytokines suppress tumor growth and
induce apoptosis of glioma cells (139). Other cytokines delivered
by MSC-dependent strategies include interferon-beta (IFN-β)
secretion (243). MSCs represent a groundbreaking approach to
GBM treatment by targeting tumor growth, angiogenesis, and the
immunosuppressive microenvironment.

3.7 Encephalitis

Encephalitis means brain inflammation. This disease is mainly
caused by viruses and, in some cases, due to the immune system.

The most common viral encephalitis is caused by herpes simplex
infection, and other causes are viruses such as rabies, polio, and
measles (244–246). Adults with encephalitis manifest with the
onset of high fever, headache, confusion, and sometimes seizures.
Younger children or infants may present with irritability, loss of
appetite, and fever (247).

Currently, the application of MSCs in treating encephalitis
demonstrates significant potential (248–250). MSCs have
characteristics such as the ability to regulate immunity, the ability
to migrate to the site of injury, and the ability to differentiate into
different types of cells such as fat cells, osteocytes, chondrocytes,
and neuron-like cells (95, 251, 252). Research shows that MSC
transplantation can regulate the expression of BDNF and nerve
growth factor (NGF) and also can improve nerves in many
central nervous system (CNS) diseases (253–256). By regulating
inflammation and other processes, MSCs have a therapeutic
effect on most CNS diseases. In recent years, many studies have
been conducted on the therapeutic effect of MSCs on CNS and
viral diseases (257–261). In the research, they found that MSC
transplantation improved the life span and also reduced the
neurological symptoms in the mouse model that was infected
with encephalitis and also in the mice that are suffering from
neuroinflammation and treated with MSC, based on the changes in
Pathological tissue, their neuroinflammation decreases. Research
in the laboratory shows that IV or intraspinal administration of
MSC improves the autoimmune encephalitis (EAE) mouse model
and causes the disease to decrease significantly. Mice infected with
JEV without MSC treatment showed clinical signs of encephalitis,
which starts with piloerection and physical limitations, followed
by paralysis and stiffness, and finally leads to severe neurological
symptoms such as paralysis, seizures, and even death. The group
treated with MSC had a faster recovery in terms of weight and
behavioral conditions. Also, the lifespan in this group increased
significantly compared to the group that was not treated, and
studies have shown that treatment with MSC also reduces pain.
Severe meningitis decreased significantly in JEV-infected mice
treated with MSCs, and the levels of inflammatory cytokines
and chemokines were also reduced in this group compared to
the untreated group (261). Experiments show that after JEV
infection, either in vivo or in vitro, a significant amount of TNF-α
is produced, and MSCs can produce TSG-6 (TNF-α-stimulated
gene/protein 6); by inducing TNF-α, it moderates inflammatory
responses, controls BBB destruction, and also improves tissue
damage. Through the experiments they conducted, researchers
found that the expression of cytokines transforming growth factor
TGF-β and TSG-6 in MSCs that were Cultured with Neuro2a
cells that were infected with JEV was increased, which has an
anti-inflammatory role (262, 263).

MSCs, in addition to their role in regulating inflammation,
possess a protective immune function against various injuries
caused by bacteria and viruses (259, 260, 264–268). Research
indicates that MSCs exhibit an antiviral role. Also, the titer of
JEV decreased in Neuro2a cells cultured simultaneously with MSC.
One of the reasons for this is that MSCs can improve innate and
adaptive immune responses by modulating immunity and helping
eliminate the virus (259, 269, 270). Neuro 2A (N2a) is a cell line
derived from mouse neural crest cells that is widely utilized in
research focused on neuronal differentiation, axonal growth, and
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various signaling pathways. A notable feature of these cells is their
capacity to undergo differentiation into neurons within a matter of
days (261).

Critical to the efficacy of MSC therapy for neurological
disorders are the dosage, duration, and route of administration of
MSCs. Various studies have utilized dosages ranging from 1 × 106

to 5× 106 for each kilogram of body weight across different animal
models and types of injuries. Furthermore, the optimal dosage
remains to be determined, as variations in dosage may lead to
differing therapeutic outcomes. Consequently, further investigation
is essential to refine dosing strategies and maximize the therapeutic
potential of MSCs (162, 253, 280).

The route of administration is another critical factor that affects
the bio-distribution, retention, and therapeutic efficiency of MSCs.
Different routes, including IV, IA, intrathecal, intraperitoneal, and
localized injections, have been employed in numerous studies
(271, 281–283). IV injection is frequently used in instances of
extensive injury, including conditions such as stroke, TBI, and
Parkinson’s disease, to facilitate the widespread dissemination
of cells throughout the body, encompassing the affected brain
tissue (280, 284, 285). IA administration represents a promising
route for delivering MSCs in the treatment of neurological
disorders, particularly ischemic stroke and brain injuries (286, 287).
Compared to intracerebroventricular, intraparenchymal, and IV
stem cell administration, IA stem cell distribution after ischemic
stroke is less invasive and permits better diffusion and distribution
of more significant stem cells inside and outside the infarct area
(288). Moreover, it mitigates the risk of MSC entrapment in the
lungs and liver, a standard limitation of IV administration (289).
For instance, Zhang et al. (290) demonstrated that IA delivery of
bone marrow MSCs resulted in the most significant neurological
recovery compared to IV and intracerebral routes in a rat model
of cerebral ischemia (290). Thus, a thorough understanding of
MSC dosage and administration routes is critical for optimizing
therapeutic outcomes and advancing MSC therapy from preclinical
studies to clinical applications.

4 MSC-derived extracellular vesicles
(EVs) as therapy for TBI

4.1 Neurorestorative e�ects of MSC-EVs

MSC-derived EVs have been shown to have neurorestorative
capacity and have emerged as an innovative TBI therapy (Figures 1,
2). MSC-derived EVs have been demonstrated to enhance
functional recovery in a rat model of TBI with postponed IV
injection in a broad range of efficacious dosages (50–200 µg
protein/rat) for TBI therapy with a prolonged therapeutic window
from 1 day to 7 days post injury (291). In addition, EVs generated
from monkey BM-MSCs that are given 24 h after an injury can
improve fine motor function recovery in a monkey cortical injury
model (292). The protective benefits of MSC-derived EVs in
rats with TBI are mediated via endogenous angiogenesis and
neurogenesis, as well as inflammation reduction (291). Following
TBI, endogenous neurovascular plasticity, such as neurogenesis,
angiogenesis, axonal sprouting, and synaptogenesis, occurs. This

may aid in the brain damage’s natural healing process (293). Post-
brain damage, spontaneous healing is not always possible. They
are developing innovative treatments to increase neurovascular
plasticity and promote functional recovery following TBI, which is
urgently needed. In the dentate gyrus of the damaged hippocampal
brain, there is an increased endogenous neurogenic response in
the subventricular and subgranular zones. This response is linked
to the recovery of cognitive function following TBI (294). Neural
stem cells located in the subventricular zone and subgranular zone
exhibit the capacity to continually produce new neurons in adult
mammals, which subsequently differentiate into fully developed
neurons. The ability of adult-born dentate gyrus granule cells to
integrate functionally into the current circuitry is well known
(295). Neurogenesis and angiogenesis are markedly increased in
the wounded brain following TBI when treated with MSC-derived
EVs (beginning 24 h after injury), which may partially account for
functional recovery following TBI (296). Normal brain vasculature
is quiescent, but following an injury, it becomes active. Growth
factors that support neurorestorative processes like neurogenesis
and synaptogenesis may be secreted by activated vasculature, which
might promote functional recovery following brain damage (297).

A thorough analysis has been done on the possible impacts of
EVs produced from MSCs on neuroinflammation, neurogenesis,
and, particularly, functional recovery in TBI (298, 299). According
to a recent study, in elderly rats with a stroke, BM-MSCs-EVs
boost post-stroke neurogenesis next to the subventricular zone
and support functional neurological recovery (300). Through
endogenous angiogenesis and neurogenesis promotion, MSC-
derived EVs from human BM-MSCs (100µg protein, IV) markedly
enhance functional recovery following ICH in rats (301). Therefore,
MSC-derived EVs without cells might be a potential treatment
for ICH. The introduction of cell-free EVs derived from MSCs
via IV administration following a stroke has been shown to
enhance functional recovery and promote neurite restructuring,
neurogenesis, and angiogenesis. This approach presents a novel
therapeutic strategy for treating stroke (302–305). By defending
the BBB, preventing apoptosis, reducing inflammation, and
controlling autophagy in brain lesions through various chemicals
and mechanisms, including miRNA, EVs may enhance cognitive
function (306). In vitro neural progenitor cell neural development
is promoted by EVs produced from adipose-derived MSCs (307).
Through the transfer of miR-25 from EVs generated from adipose-
derived MSCs, autophagy is decreased in stroke mice (308).
In a stroke-prone mouse model, EVs derived from human
BM-MSCs enhance neurodegeneration and avert post-ischemic
immunosuppression (309). EVs from human BM-MSCs reduce
neuroinflammation in rats with focal brain damage (310). Mice
exposed to ischemia brain injury are protected against MSC-
derived EV-enclosed microRNA-93 (311). EVs derived from HUC-
MSCs, when administered intranasal, demonstrate neuroprotective
properties and enhance functional recovery following perinatal
brain injury in rat models (312). The above research indicates
that EV therapy enhances functional recovery by affecting the
immune system, neurogenesis, neurorestoration, angiogenesis,
and neuroprotection.

Neuroinflammation is a distinguishing feature of both acute
and chronic TBI. An emerging mechanism facilitating cell-cell
communication in regulating immune responses involves EVs
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(313). After being injected IV, green fluorescent protein-tagged
(GFP+) MSC-EVs can be absorbed by microglia, astrocytes, and
neurons in the TBI rat brain as early as 30min later. More EVs
are found in the injured hemisphere, and GFP+ EVs are co-
localized with CD68+macrophages in the liver, spleen, and thymus
(314). These findings imply that IV injection of EVs may play
not only central functions in promoting neurovascular remodeling
and controlling neuroinflammation but also non-central effects in
modulating peripheral immune responses. If there are any non-
CNS effects, they would be complimentary and would not lessen
the therapeutic benefits of EVs on neurovascular remodeling and
functional recovery (315, 316).

4.2 Neuroprotective e�ects of MSC-EVs

Giving MSC-EVs to mice as soon as possible (15min after the
injury) reduces the size of the lesion and enhances their functional
ability. This is achieved by modifying the polarization of macroglia
andmicroglia, boosting the expression of the anti-apoptotic protein
Bcl-2, but decreasing the expression of the pro-apoptotic protein
Bcl-2-associated X protein and pro-inflammatory cytokines, IL-
1β and TNF-α (317). The neuroprotective effectiveness of MSC-
derived EVs has been studied in large animal models in
translational research. Early (1-h post-injury) single-dose treatment
of MSC-derived EVs reduces brain swelling, lesion size, and BBB
breach, providing neuroprotection in a combined swine model of
TBI and hemorrhagic shock (318). These findings promote further
research into EVs as a cutting-edge TBI treatment by showing that
cell-free EVs have neuroprotective and neurorestorative benefits for
enhancing TBI functional recovery. Utilizing MSCs from human
BM as the source of EVs might guarantee the most significant
translational potential for TBI research in big animals. Multiple
citations regarding the utilization of human BM-MSCs-derived
EVs in extensive animal models of TBI, specifically in monkeys and
swine, are outlined in Supplementary (Table 2) (130, 292, 318–320).

While we concentrated on the therapeutic benefits of MSC-
derived EVs in TBI, EVs produced from a wide range of other
cells, such as astrocytes, microglia, and neural stem cells, can
also improve functional recovery in TBI (207). Adipose tissue
is commonly regarded as refuse and disposed of; however, it
represents a valuable reservoir of cells (321, 322). It has been
demonstrated that adipose tissue is a rich, readily available, and
plentiful source of adult stem cells with multipotent qualities
appropriate for tissue engineering and regenerative medicine
applications (321). Treating TBI using MSC-derived EVs has
shown to be a promising approach (323, 324).

5 Potential challenges and limitations

Given their ease of separation, minimal immunogenicity,
and capacity to develop into a variety of tissue lineages,
including brain cells, MSCs provide the most therapeutic promise
(281). Nonetheless, there are still several restrictions on MSC
transplantation. MSCs are likely to be contaminated during
their cultivation and treatment, and cells cultivated in vitro

are susceptible to mutation. Foreign infections may potentially

spread as a result of cell transplantation. Furthermore, MSC
transplantation may provide cancer cells vitality and encourage
the development and spread of tumors. It is unclear how MSCs
initiate and control mitochondrial translocation. Furthermore, it is
impossible to overlook the possibility of allogeneic immunological
rejection. Therefore, enhancing MSC therapy’s safety is very
crucial (21).

In the following, we discuss some challenges and limitations of
using MSCs in nervous system disorders and TBI.

5.1 Immunocompatibility

It’s interesting to note that MSCs can have proinflammatory
and immunosuppressive effects. These effects are contingent
upon the degree to which the cell is stimulated by chemokines
(e.g., PGE2, TGF-B, IL-6, IL-10, HLAG5), metalloproteinases,
nitric oxide (NO), indoleamine-2,3-dioxygenase (IDO1), and
inflammatory cytokines. Therefore, MSCs’ immunosuppressive
activity can be used to avoid instances of allograft rejection as well
as an aberrant inflammatory or autoimmune response (333). MSCs
are known to exhibit immunosuppressive effects in the presence
of NO on a molecular level (334, 335). In contrast, in regions
deficient in NO, specifically in areas where the activity of inducible
nitric oxide synthase (iNOS) is suppressed, MSCs promote the
proliferation of immune cells. Additionally, Qin et al. (336) have
found that MSCs cannot stop T-cell proliferation in rat models
when the NOS inhibitor L-NMMA is present (336). These results
strongly suggest that NO generation or increased NOS2 activity
is necessary for starting MSC-mediated immunosuppression. In
MSC-mediated immunomodulation, indoleamine 2,3-dioxygenase
is a switch similar to NO (337, 338). While some studies indicate
that MSCs may play a role in cancer development, others show
that they have a suppressive impact on the growth of tumors
(339). The processes that underlie these suppressive effects include
the induction of cell cycle arrest, suppression of proliferation-
related signaling pathways PI3K/AKT, and, ultimately, a decrease in
cancer development (340). On the contrary, alternative research has
demonstrated that MSCs can differentiate into cancer-associated
fibroblasts (CAFs) and consequently play a role in facilitating
cancer advancement (341–343).

5.2 Stemness stability and di�erentiation of
MSCs

Numerous factors, including the technique used for separation,
the individual diversity of the source tissue, the donor’s health,
and the specific cell culture’s history, might influence the stemness
qualities of MSCs (344). Roughly 10% of the cells in the dental
pulp are mesenchymal stem cells (DP-MSCs). Compared to BM-
MSCs and AT-MSCs, DP-MSCs generate fewer proangiogenic
factors in vitro, although having more excellent proliferation
rates (345). However, additional research has demonstrated that
the chemokines and neurotrophins that DP-MSCs release are
essential for neuroprotection and the body’s reaction to nervous
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TABLE 2 Treatment with EVs derived from MSCs in animal models of TBI.

TBI model TBI
animal
species/sex

MSC source
for EVs

Dosage Injection
time/route

Conclusion References

Mice/male Human BM-MSCs 6.4 or 12.8 or 25.6
× 10−9 EVs/mouse

90min PI/IN Avoiding long-term mood and cognitive
deficits in a dose-dependent manner

(325)

Mouse/male Rat bone
mesenchymal stem
cells (BM-MSCs)

30 µg
protein/mouse

15min
PI/retro-
orbital

Inhibiting neuroinflammation, reducing
lesion size, improving neurobehavioral
performance

(317)

Mice/male 3.8, 7.5, 15, 30 µg
EVs per mouse

1 h PI/IV Restoring cognitive deficits following
TBI and reducing neuroinflammation in
a dose-dependent manner

(326)

CCI Rat/male 50, 100, 200 µg
protein/rat

One day PI/IV Demonstrating a broad spectrum of safe
dosages for the treatment of TBI with a
minimum 7-day therapeutic window

(291)

Rat/male Human BM-MSCs 100 µg protein/rat One day PI/IV Enhancing native neurogenesis and
angiogenesis, decreasing
neuroinflammation, and improving
functional recovery

(296)

Rat/male 100 µg protein/rat One day PI/IV EVs produced from hMSCs cultivated in
3D scaffolds outperform EVs from
hMSCs cultured in 2D conditions in
terms of spatial learning results.

(327)

Rat/male 100 µg protein/rat One day PI/IV Compared to naïve exosome therapy,
miR-17-92 cluster-enriched EVs show
superior therapeutic effects on improved
functional recovery by lowering
neuroinflammation and cell death and
boosting angiogenesis and neurogenesis.

(328)

Rat/male 100 µg protein/rat One day PI/IV MiRNA attenuation in EVs produced
fromMSCs eliminates the beneficial
effects of EV therapy on TBI healing.

(329)

Rat/not
described

Rat BM-MSCs 100 µg protein/rat 1 h PI/IV Minimizing neurological harm through
the mitigation of glutamate-induced
excitotoxicity

(330)

Feeney’s
weight-drop
method

Rat/male Human adipose
MSCs

20 µg protein/rat One day
PI/ICV

As a result of their targeted entry into
microglia and macrophages following
brain damage, hADSC-EVs reduce
inflammation and promote functional
recovery.

(331)

CCI combined with
hemorrhage shock

Swine/female Human BM-MSCs 1× 1012
particles/swine

1 hour PI/IV Lowering blood-based cerebral
biomarker levels, decreasing brain
edema and lesion size, and enhancing
BBB integrity

(318)

CCI combined with
hemorrhage shock

Swine/female Human BM-MSCs 1× 1013
particles/swine

1 h PI/IV Reducing inflammatory networks in the
brain and encouraging neurogenesis
and neuroplasticity

(332)

Cortical injury in
the mapped hand
representation.

Monkey/female Monkey BM-MSCs 4× 1011
particles/kg

One day and
14 days PI/IV

Enhancing recovery of motor function (292)

Cortical injury in
the mapped hand
representation.

Monkey/male
and female

Monkey BM-MSCs 4× 1011
particles/kg

One day and
14 days PI/IV

Reducing hyperexcitability brought on
by injuries and reestablishing
excitatory/inhibitory balance in the
ventral premotor cortex to return
cortical networks responsible for motor
function to normal

(320)

CCI, controlled cortical injury (an open head injury, focal contusion); hADSC, human adipose mesenchymal stem cells; IN, intranasal administration; IV, intravenous administration;
PI, post-injury.

system damage (346, 347). Remarkably, MSCs display donor-
related differences as well. These may result from the patient’s
age, underlying illnesses, gender, body mass index (BMI), and
donor place (344). In a rat model, MSCs extracted from female

donors are more effective thanMSCs frommale donors in lowering
lung inflammation, according to a 2016 research by Sammour
et al. (348). On the other hand, the osteogenic capacity of local
stem cells is diminished by the hormonal fluctuations that women
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experience, particularly after menopause (349). Additionally,
Ogawa et al. (350) confirmed that there is gender variability
in AT-MSCs by observing that cells produced from female
mice had greater levels of the adipogenesis marker Peroxisome
Proliferator-Activated Receptor-g2 (PPAR-g2) (348–350). Age-
related alterations in MSCs have also been documented in several
studies (98, 351, 352). For instance, MSCs derived from older
individuals exhibit reduced superoxide dismutase activity, along
with elevated concentrations of reactive nitrogen species (RNS)
and reactive oxygen species (ROS) (353). As a result, MSCs suffer
oxidative damage, which triggers apoptosis. Furthermore, aged
MSCs have elevated expression of p53 and p21, which are known
for their pro-apoptotic activities, and downregulated expression of
the Notch1 receptor, which is linked to bone formation (353).

For therapies utilizing MSCs to achieve notable efficacy in
addressing neurological disorders, it is imperative to consider
the impact of these diseases on the regenerative capabilities of
the cells. For instance, via downregulating pro-angiogenic factors,
Diabetes Mellitus (type 2 diabetes) negatively affects MSC function
and decreases their capacity to form new blood vessels (354).
Furthermore, BM-MSCs obtained from diabetes patients show an
increased tendency to grow into adipocytes and reduced paracrine
secretion (355). Additionally, it has been noted that BMI affects
adipocytes’ capacity for differentiation and proliferation (356).
Therefore, impaired DNA telomere length, cell proliferation, and
differentiation are features of overweight persons. Together with
this, cells have a reduced capacity for self-renewal and an early
beginning of apoptosis. Furthermore, elevated BMI negatively
impacts adipogenic and osteogenic differentiation in AT- and
BM-MSCs, as demonstrated by significantly reduced cell division,
increased senescence, and lessened adipogenic differentiation
(357). It’s noteworthy to notice that with a significant drop in
weight, there is less damage to DNA and an improvement in both
cell viability and replicative lifespan (358).

Lastly, pharmacological substances and treatment modalities
such as immunosuppressive medications, anticancer medications,
and radiation therapy also affect the characteristics of MSCs (359–
361). Like this, long-term morphine usage reduces endothelial
progenitor cell activation and angiogenesis (362). Furthermore,
it hurts MSC differentiation and proliferation, changing their
secretory capacities and impeding wound healing (362).

5.3 Heterogeneity

MSCs from diverse origins have dramatically variable features,
even though several studies have demonstrated the intriguing
advantages of MSCs in tissue regeneration, making them an
appealing study topic in regenerative medicine (363). For instance,
compared to cells isolated from adult tissues, MSCs derived
from fetal tissues exhibit faster cell proliferation and the capacity
to go through many in vitro passages before senescence (364).
Conversely, adult-isolated BM-MSCs and AT-MSCs have a greater
stemness, demonstrated by their capacity to form more fibroblast
colonies (CFU-F) (365, 366). It’s interesting to note that MSCs
derived from specific donors may have distinct variations.
Studies on BM-MSCs isolated from donors of various ages and
sexes revealed notable variations in the cells’ proliferation rates,
osteogenesis, and activity levels of the marker for bone remodeling

(alkaline phosphatase, or ALP) (367). It’s interesting to note that
there was no reported relationship between these and the donors’
age or sex. However, other research has demonstrated that the
age of the donor has a significant impact on the characteristics
of BM-MSCs. For instance, cells taken from older adults showed
reduced proliferation, higher apoptosis, and a lower ability to
differentiate into osteoblasts (368). Heo et al. (366) also showed
that MSCs generated from various tissues exhibit significant
inter donor heterogeneity in distal-less homeobox 5 (DLX5)
gene expression (366). To facilitate the identification of specific
molecular and functional phenotypes associated with harvesting
techniques and tissue sources, Colter et al. (369) categorized MSCs
into three subpopulations based on their morphology: spindle-
shaped proliferating cells resembling fibroblasts (Type I); large, flat
cells characterized by prominent cytoskeletal structure containing
numerous granules (Type II); and small, round cells exhibiting a
high capacity for self-renewal (Type III) (369, 370).

5.4 Adverse e�ects

Further study is necessary to resolve the numerous issues and
disagreements surrounding the use of MSCs in the human cell
niche despite the positive results that MSC therapy offers. Thus,
some of the primary possible risks associated with MSC therapy
are as follows: (1) the possibility of pro-tumorigenic activity and
undesirable cell type differentiation; (2) an uncontrolled immune
response; (3) a brief survival period following implantation; (4)
a lack of sufficient research on the differentiation capacities of
MSCs; and (5) an inability to determine the best doses and
mode of cell administration. By promoting tumor invasion by
releasing CCL5 and preventing apoptosis by releasing pro-survival
molecules like VEGF and bFGF, MSCs may demonstrate pro-
tumorous activity (371–374). Therefore, introducing MSCs may
cause an uncontrollable immunological response at the local or
global level since they can explain both immunosuppressive and
immunomodulatory effects (375). Regarding MSCs’ brief lifetime
after implantation, several studies have shown that, soon after
transplantation, MSCs undergo massive mortality due to the
activation of hypoxia signaling pathways and Caspase 3-mediated
apoptosis. Remarkably, research by Deschepper et al. (376) revealed
that ischemia circumstances (low pO2 and glucose depletion)
caused the widespread mortality of MSCs at day 6. Still, hypoxic
settings (low O2) allowed cells to survive until day 12 (376).

There are still several uncertainties about the differentiation
ability and use of MSCs despite all the advantages of potential
therapy approaches. These consist of their precise mode of action,
safety during standard clinical usage, and tissue migration patterns
(377). As a result, a large body of research indicates that various
clinical indications and illnesses require distinct administration
techniques for optimal therapeutic success (378, 379).

5.5 Tumor-promoting ability

Despite the ability of MSCs to migrate toward tumor
locations, numerous studies caution against their pro-tumor
effects, which include immunosuppression, stimulation of blood
vessel formation, transformation into cancer-associated fibroblasts,
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prevention of cell death in cancer cells, enhancement of metastasis
and tumor growth, initiation of epithelial-mesenchymal transition
(EMT), and facilitation of resistance to drugs (334, 380–393).
While the previously described research examined and measured
the impact of local MSCs on tumor development and related
activities, it is essential to consider MSCs’ capacity to promote
tumor growth while developing novel treatment strategies utilizing
this cell population (394). MSCs play a crucial role in inhibiting
the innate and adaptive immune responses. They achieve this
by secreting several substances such as TGF α, TNF β, IFN γ,
PGE2, NO, HLA-G, HGF, IL-1b, IL-1a, LPS, and IL-6 (375, 394).
Consequently, these elements lessen the maturation of DC, the
production of IgG, the activity of natural killer cells (NKCs), and the
proliferation of effector T- and B-cells. The net effect is a decrease
in anti-tumor immunity. Additionally, it has been demonstrated
that MSCs stimulate tumor angiogenesis by releasing bFGF, VEGF,
FGF-2, IL-8, IL-6, IGF-1, TNF, and TGF β. They also induce the
development of new tumor arteries and change into smoothmuscle
cells and pericytes. MSCs can differentiate into cancer-associated
fibroblasts (CAFs) and smooth muscle cells (56, 389, 394, 395).

5.6 Technical and societal challenges

The use of MSCs for therapeutic reasons necessitates highly
competent specialists to prevent cell contamination and ease the
deployment of a highly standardized technique. A consistent
methodology detailing the proper processes for isolating and
maintaining MSC cultures still does not exist, even though
several clinical trials are now in progress (396). The rationale
for the significance of this standardized protocol is its ability to
simplify the process of comparing several experimental studies
and clinical trials side by side to identify the best distribution
strategy and concentration. The public’s interest in stem cell
treatment has grown, leading to a growth in biobanking in recent
years. While these establishments offer their clients the ability to
obtain versatile stem cells as needed, they are also vulnerable to
potential exploitation (56, 396). This is especially noticeable in
biobanks run by private companies, where there is a chance of
privacy violations and health data being sold (397). Furthermore,
users of these biobanking services seem to belong to a particular
social group: well-educated, white, middle-class people. As a result,
those who don’t match these stereotypes—namely, those who are
lower class, indigenous, or from culturally varied communities—
are inadvertently left out (398). This prejudice not only prevents
marginalized people from accessing biobanks but also has a
detrimental effect on scientific research because biobank samples
and data are used in many different types of studies. However,
understanding also brings the power to address these problemswith
representativeness and inclusion, which we should actively work to
address in the following years (56, 398).

6 Progress and prospects

Simultaneously, researchers have demonstrated that while
stem cell therapy is utilized for treating brain damage, MSC
therapy has potential disadvantages, such as the risk of tumor

formation. However, this risk can be mitigated using exosomes
derived from MSCs, which offer a safer alternative. Research
has shown that MSCs can increase and decrease tumor growth
and tumorigenesis in different conditions (Figures 1, 2). The
tumor in its microenvironment tries not to be recognized by the
immune system and creates a stable state by secreting inflammatory
mediators. There is a lot of focus on the interaction between
cancer cells, normal cells, and the matrix in the microenvironment
because this interaction contributes to the milestones of cancer
progression, such as angiogenesis, immunemodulation, metastasis,
and invasion, as well as resistance to apoptosis (399–401).
Some studies have shown that MSCs migrate to the cancer
microenvironment. This place supports the development of the
tumor vascular system and influences immune reactions, thus
modulating the tumor’s response to antitumor therapy (Figure 2).
MSCs have immunosuppressive solid properties that cause tumor
cells to escape immune surveillance (341, 402–405). MSCs in
the tumor microenvironment by pro-inflammatory cytokines
IFN-γ, TNF-α, or IL-1β can be activated and secreted by
macrophages and tumor cells (371, 406–408). IFN-γ produced
by Th1 decreases, and IL-4 secretion increases through Th2,
which minimizes antitumor immunity and immune response.
Monocyte differentiation is controlled by IL-6 secreted by MSC
toward DCs, and they reduce the ability of DCs to stimulate
T cells (380, 409). Exosomes derived from MSCs have shown
significant promise in the field of regenerative medicine, including
the treatment of TBI. The three-dimensional culture of MSCs
enhances the production of exosomes, thereby increasing their
therapeutic efficacy. Exosomes offer inherent safety advantages
over the administration of living cells. They reduce the risk of
blockage in small vessels or irregular growth of transplanted cells.
Unlike exogenous neural progenitor stem cell transplantation,
MSC-derived exosomes stimulate endogenous neural progenitor
stem cells to repair the damaged brain. The use of exosomes has
several significant advantages, such as:

• There is no ethical problem with embryonic cells.
• They are less invasive.
• There is little or no tumorigenesis.

Exosomes are promising therapeutic agents because their
complex cargo of protein and genetic material has different
biochemical potential to participate in many biochemical and
cellular processes, which is an essential feature in treating complex
diseases with multiple secondary injury mechanisms such as
TBI (394).

Future research should focus on optimizing MSC delivery
methods and exploring the long-term effects of MSC therapy
on neuroplasticity and cognitive function. Additionally,
understanding the molecular mechanisms underlying
MSC-mediated neuroprotection could pave the way for
targeted therapies.

7 Conclusion

MSCs and their EVs represent innovative and promising
therapeutic strategies for treating neurological disorders,
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FIGURE 2

Mechanisms of MSC application in TBI. Communication between MSCs and tissue environments is facilitated through two primary mechanisms:

direct cell-to-cell interactions and communication via EVs. MSCs engage in communicate with neighboring cells such as immune cells, nerve cells,

glial cells, and endothelial cells, enabling regenerative healing and the architectural reorganization of injured tissue. MSCs produce EVs that

encapsulate proteins, lipids, microRNAs, and cytokines, facilitating the transfer of functional molecules among cells. Positive modulation enhances

biological functions such as autophagy, apoptosis, pyroptosis, inflammation, angiogenesis, cell plasticity, cell migration, and oxidative stress. These

interactions induce the di�erentiation of MSCs into specific cell lineages and regulate immune cell reactions (181).

particularly TBI, ischemic strokes, concussions, tumors,
encephalitis, and brain hemorrhages. Through their multifaceted
mechanisms, including immunomodulation, angiogenesis,
neurogenesis, anti-inflammatory properties, and apoptosis
regulation, MSCs and EVs address the complex pathophysiology
of neurological injuries effectively. The key insights of the article
highlight the ability of MSCs to target injured brain regions,
thereby reducing neuroinflammation and promoting recovery.
Similarly, cell-free therapeutic agents derived from MSC-derived
EVs present enhanced safety profiles and circumvent challenges
associated with using MSCs, such as immunogenicity and
tumorigenicity. A review of preclinical and clinical evidence
strongly suggests that MSCs and EVs are promising candidates for
addressing unmet therapeutic needs in brain injuries due to their
regenerative potential.

These advances, however, present several challenges
that must be addressed. The sources of MSCs exhibit
variability, recipient responses are heterogeneous, and
concerns regarding immunocompatibility and potential
tumorigenic risks warrant further investigation. Additionally,
there is a need for standardization and thorough validation
of optimal dosing, administration routes, and long-term
safety profiles.
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4. Streubel-Gallasch L, Zyśk M, Beretta C, Erlandsson A. Traumatic brain injury in
the presence of Aβ pathology affects neuronal survival, glial activation and autophagy.
Sci Rep. (2021) 11:1–19. doi: 10.1038/s41598-021-02371-3

5. Rostami E. Traumatic Brain Injury in Humans and Animal Models. Sweden:
Karolinska Institutet (2012).

6. Dehghanian F, Soltani Z, Khaksari M. Can mesenchymal stem cells
act multipotential in traumatic brain injury? J Mol Neurosci. (2020)
70:677–88. doi: 10.1007/s12031-019-01475-w

7. Dehghan F, Shahrokhi N, Khaksari M, Soltani Z, Asadikorom G,
Najafi A, et al. Does the administration of melatonin during post-
traumatic brain injury affect cytokine levels? Inflammopharmacology. (2018)
26:1017–23. doi: 10.1007/s10787-017-0417-1

8. Kutty SA. Intracerebral Hematoma. In: Hemorrhagic Stroke-An Update.
IntechOpen. (2017). doi: 10.5772/66867

9. Perel P, Roberts I, Bouamra O, Woodford M, Mooney J, Lecky F. Intracranial
bleeding in patients with traumatic brain injury: a prognostic study. BMC Emerg Med.
(2009) 9:15. doi: 10.1186/1471-227X-9-15

10. Hochstadter E, Stewart TC, Alharfi IM, Ranger A, Fraser DD.
Subarachnoid hemorrhage prevalence and its association with short-term
outcome in pediatric severe traumatic brain injury. Neurocrit Care. (2014)
21:505–13. doi: 10.1007/s12028-014-9986-7

11. Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature
following traumatic brain injury. J Cereb Blood Flow Metabol. (2017) 37:2320–
39. doi: 10.1177/0271678X17701460

12. Kota DJ, Prabhakara KS, Toledano-Furman N, Bhattarai D, Chen Q,
DiCarlo B, et al. Prostaglandin E2 indicates therapeutic efficacy of mesenchymal
stem cells in experimental traumatic brain injury. Stem Cells. (2017) 35:1416–
30. doi: 10.1002/stem.2603

13. Kalra S, Malik R, Singh G, Bhatia S, Al-Harrasi A, Mohan S, et al.
Pathogenesis and management of traumatic brain injury (TBI): role of
neuroinflammation and anti-inflammatory drugs. Inflammopharmacology. (2022)
30:1153–66. doi: 10.1007/s10787-022-01017-8

14. Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium
channel antagonists and traumatic brain injury. Pharmaceuticals. (2013)
6:788–812. doi: 10.3390/ph6070788

15. Wells AJ, Viaroli E, and Hutchinson PJ. The management of traumatic brain
injury. Surgery. (2024) 42:543–52. doi: 10.1016/j.mpsur.2024.05.004

16. Dang B, Chen W, He W, Chen G. Rehabilitation treatment and
progress of traumatic brain injury dysfunction. Neural Plast. (2017).
2017:1582182. doi: 10.1155/2017/1582182

17. Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic
brain injury. Science. (2016) 353:783–5. doi: 10.1126/science.aaf6260

18. Wang F, Tang H, Zhu J, Zhang JH. Transplanting mesenchymal
stem cells for treatment of ischemic stroke. Cell Transplant. (2018)
27:1825–34. doi: 10.1177/0963689718795424

19. Cozene B, Sadanandan N, Farooq J, Kingsbury C, Park
YJ, Wang Z-J, et al. Mesenchymal stem cell-induced anti-
neuroinflammation against traumatic brain injury. Cell Transplant. (2021)
30:09636897211035715. doi: 10.1177/09636897211035715

20. Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A. Correction:
exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-
mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther. (2022)
13:1–2. doi: 10.1186/s13287-022-03079-5

21. Zhang K, Jiang Y, Wang B, Li T, Shang D, Zhang X. Mesenchymal stem
cell therapy: a potential treatment targeting pathological manifestations of traumatic

brain injury. Oxid Med Cell Longev. (2022) 2022:4645021. doi: 10.1155/2022/46
45021

22. Jaimes Y, Naaldijk Y, Wenk K, Leovsky C, Emmrich F. Mesenchymal stem cell-
derived microvesicles modulate lipopolysaccharides-induced inflammatory responses
to microglia cells. Stem Cells. (2017) 35:812–23. doi: 10.1002/stem.2541

23. Li Y, Yang Y-Y, Ren J-L, Xu F, Chen F-M, Li A. Exosomes secreted by stem
cells from human exfoliated deciduous teeth contribute to functional recovery after
traumatic brain injury by shifting microglia M1/M2 polarization in rats. Stem Cell Res
Ther. (2017) 8:1–11. doi: 10.1186/s13287-017-0648-5

24. Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos
KI. Avoidance of total knee arthroplasty in early osteoarthritis of the knee with
intra-articular implantation of autologous activated peripheral blood stem cells versus
hyaluronic acid: a randomized controlled trial with differential effects of growth factor
addition. Stem Cells Int. (2017). 2017:8925132. doi: 10.1155/2017/8925132

25. Wu X, Wang W, Meng C, Yang S, Duan D, Xu W, et al. Regulation of
differentiation in trabecular bone-derived mesenchymal stem cells by T cell activation
and inflammation. Oncol Rep. (2013) 30:2211–9. doi: 10.3892/or.2013.2687

26. Neybecker P, Henrionnet C, Pape E, Mainard D, Galois L, Loeuille D, et al.
In vitro and in vivo potentialities for cartilage repair from human advanced knee
osteoarthritis synovial fluid-derivedmesenchymal stem cells. StemCell Res Ther. (2018)
9:329. doi: 10.1186/s13287-018-1071-2

27. Lee WS, Kim HJ, Kim KI, Kim GB, Jin W. Intra-articular injection of autologous
adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis:
a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. (2019)
8:504–11. doi: 10.1002/sctm.18-0122

28. Ilas DC, Churchman SM, Baboolal T, Giannoudis PV, Aderinto J, McGonagle
D, et al. The simultaneous analysis of mesenchymal stem cells and early osteocytes
accumulation in osteoarthritic femoral head sclerotic bone. Rheumatology (Oxford).
(2019) 58:1777–83. doi: 10.1093/rheumatology/kez130

29. Greif DN, Kouroupis D, Murdock CJ, Griswold AJ, Kaplan LD, Best TM, et al.
Infrapatellar fat pad/synovium complex in early-stage knee osteoarthritis: potential
new target and source of therapeutic mesenchymal stem/stromal cells. Front Bioeng
Biotechnol. (2020) 8:860. doi: 10.3389/fbioe.2020.00860

30. Cai H and Guo H. Mesenchymal stem cells and their exocytotic vesicles. Int J
Mol Sci. (2023) 24:2085. doi: 10.3390/ijms24032085

31. Friedenstein A, Chailakhjan R, Lalykina KS. The development of fibroblast
colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue
Kinet. (1970) 3:393–403. doi: 10.1111/j.1365-2184.1970.tb00347.x

32. Owen M, Friedenstein A. Stromal stem cells: marrow-derived
osteogenic precursors. In Ciba Foundation Symposium 136-Cell and
Molecular Biology of Vertebrate Hard Tissues: Cell and Molecular Biology of
Vertebrate Hard Tissues: Ciba Foundation Symposium. Wiley Online Library.
(2007). doi: 10.1002/9780470513637.ch4

33. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization
of cells with osteogenic potential from human marrow. Bone. (1992) 13:81–
8. doi: 10.1016/8756-3282(92)90364-3

34. Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS. Caplan AI. Ex
vivo expansion and subsequent infusion of human bone marrow-derived stromal
progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone
Marrow Transplant. (1995) 16:557–64.

35. Guillamat-Prats R. The role ofMSC inwound healing, scarring and regeneration.
Cells. (2021) 10:1729. doi: 10.3390/cells10071729

36. Aliniay-Sharafshadehi S, Yousefi MH, Ghodratie M, Kashfi M, Afkhami H,
Ghoreyshiamiri SM. Exploring the therapeutic potential of different sources of
mesenchymal stem cells: novel approach to combat burn wound infections. Front
Microbiol. (2024) 15:1495011. doi: 10.3389/fmicb.2024.1495011

37. Andalib E, Kashfi M, Mahmoudvand G, Rezaei E, Mahjoor M, Torki
A, et al. Application of hypoxia-mesenchymal stem cells in treatment
of anaerobic bacterial wound infection: wound healing and infection
recovery. Front. Microbiol. (2023) 14:1251956. doi: 10.3389/fmicb.2023.12
51956

38. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal
stem cells. Cell Death Differ. (2014) 21:216–25. doi: 10.1038/cdd.2013.158

Frontiers inNeurology 16 frontiersin.org

https://doi.org/10.3389/fneur.2025.1472679
https://doi.org/10.1007/s00415-019-09541-4
https://doi.org/10.1016/S1474-4422(22)00309-X
https://doi.org/10.1016/j.biopsych.2021.09.024
https://doi.org/10.1038/s41598-021-02371-3
https://doi.org/10.1007/s12031-019-01475-w
https://doi.org/10.1007/s10787-017-0417-1
https://doi.org/10.5772/66867
https://doi.org/10.1186/1471-227X-9-15
https://doi.org/10.1007/s12028-014-9986-7
https://doi.org/10.1177/0271678X17701460
https://doi.org/10.1002/stem.2603
https://doi.org/10.1007/s10787-022-01017-8
https://doi.org/10.3390/ph6070788
https://doi.org/10.1016/j.mpsur.2024.05.004
https://doi.org/10.1155/2017/1582182
https://doi.org/10.1126/science.aaf6260
https://doi.org/10.1177/0963689718795424
https://doi.org/10.1177/09636897211035715
https://doi.org/10.1186/s13287-022-03079-5
https://doi.org/10.1155/2022/4645021
https://doi.org/10.1002/stem.2541
https://doi.org/10.1186/s13287-017-0648-5
https://doi.org/10.1155/2017/8925132
https://doi.org/10.3892/or.2013.2687
https://doi.org/10.1186/s13287-018-1071-2
https://doi.org/10.1002/sctm.18-0122
https://doi.org/10.1093/rheumatology/kez130
https://doi.org/10.3389/fbioe.2020.00860
https://doi.org/10.3390/ijms24032085
https://doi.org/10.1111/j.1365-2184.1970.tb00347.x
https://doi.org/10.1002/9780470513637.ch4
https://doi.org/10.1016/8756-3282(92)90364-3
https://doi.org/10.3390/cells10071729
https://doi.org/10.3389/fmicb.2024.1495011
https://doi.org/10.3389/fmicb.2023.1251956
https://doi.org/10.1038/cdd.2013.158
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yarahmadi et al. 10.3389/fneur.2025.1472679

39. Fakouri A, Razavi Z-S, Mohammed AT, Hussein AHA, Afkhami H, Hooshiar
MH. Applications of mesenchymal stem cell-exosome components in wound infection
healing: new insights. Burns Trauma. (2024) 12:tkae021. doi: 10.1093/burnst/tkae021

40. Farokhi S, Razavi Z-S, Mavaei M, Shadab A. New perspectives on arteriosclerosis
treatment using nanoparticles and mesenchymal stem cells. Discover Appl Sci. (2024)
6:1–40. doi: 10.1007/s42452-024-06113-8

41. Jackson CJ, Tonseth KA, Utheim TP. Cultured epidermal stem
cells in regenerative medicine. Stem Cell Res Ther. (2017) 8:1–
7. doi: 10.1186/s13287-017-0587-1

42. Rodgers K, Jadhav S. The application of mesenchymal stem cells
to treat thermal and radiation burns. Adv Drug Deliv Rev. (2018)
123:75–81. doi: 10.1016/j.addr.2017.10.003

43. Miao C, Lei M, Hu W, Han S, Wang Q. A brief review: the therapeutic potential
of bone marrow mesenchymal stem cells in myocardial infarction. Stem Cell Res Ther.
(2017) 8:242. doi: 10.1186/s13287-017-0697-9

44. Parmar M. Towards stem cell based therapies for Parkinson’s disease.
Development. (2018) 145:dev156117. doi: 10.1242/dev.156117

45. Andrzejewska A, Dabrowska S, Lukomska B, Janowski M.
Mesenchymal stem cells for neurological disorders. Adv Sci (Weinh). (2021)
8:2002944. doi: 10.1002/advs.202002944

46. Kerkis I, Haddad MS, Valverde CW, Glosman S. Neural and mesenchymal stem
cells in animal models of Huntington’s disease: past experiences and future challenges.
Stem Cell Res Ther. (2015) 6:232. doi: 10.1186/s13287-015-0248-1

47. Berlanga-Acosta JA, Guillén-Nieto GE, Rodríguez-Rodríguez N, Mendoza-Mari
Y, Bringas-Vega ML, Berlanga-Saez JO, et al. Cellular senescence as the pathogenic
hub of diabetes-related wound chronicity. Front Endocrinol (Lausanne). (2020)
11:573032. doi: 10.3389/fendo.2020.573032

48. Weston NM, Sun D. The potential of stem cells in treatment of traumatic brain
injury. Curr Neurol Neurosci Rep. (2018) 18:1. doi: 10.1007/s11910-018-0812-z

49. Basu S, Ali H, Sangwan V. Clinical outcomes of repeat autologous cultivated
limbal epithelial transplantation for ocular surface burns. Am J Ophthalmol. (2012)
153:643–50.e2. doi: 10.1016/j.ajo.2011.09.016

50. Shiels A, Hejtmancik JF. Biology of inherited cataracts and
opportunities for treatment. Annu Rev Vis Sci. (2019) 5:123–
49. doi: 10.1146/annurev-vision-091517-034346

51. Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of traumatic
brain injury in female rats with intravenous administration of bone marrow
stromal cells. Neurosurgery. (2001) 49:1196–204. doi: 10.1227/00006123-200111000-
00031

52. Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F, et al.
Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma.
Crit Care Med. (2011) 39:2501–10. doi: 10.1097/CCM.0b013e31822629ba

53. Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, et al. The secretion profile of
mesenchymal stem cells and potential applications in treating human diseases. Signal
Transduct Target Ther. (2022) 7:92. doi: 10.1038/s41392-022-00932-0

54. Wang M, Xu X, Lei X, Tan J, Xie H. Mesenchymal stem cell-based therapy for
burn wound healing. Burns Trauma. (2021) 9:tkab002. doi: 10.1093/burnst/tkab002

55. Herman S, Fishel I. Intranasal delivery of mesenchymal stem cells-derived
extracellular vesicles for the treatment of neurological diseases. Stem Cells. (2021)
39:1589–600. doi: 10.1002/stem.3456
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