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Purpose: To assess the predictive value of radiomics features extracted from 
structural MRI, dynamic contrast enhanced (DCE), and diffusion tensor imaging 
(DTI) in detecting O6-methylguanine-DNA methyltransferase (MGMT) promoter 
methylation in patients with diffuse gliomas.

Methods: Retrospective MRI data of 110 patients were enrolled in this study. 
The training dataset included 88 patients (mean age 52.84 ± 14.71, 47 females). 
The test dataset included 22 patients (mean age 50.64 ± 12.58, 12 females). 
A total of 2,782 radiomic features were extracted from structural MRI, DCE, 
and DTI within two region of interests (ROIs). Feature section was conducted 
using Pearson correlation and least absolute shrinkage and selection operator. 
Principal component analysis was utilized for dimensionality reduction. Support 
vector machine was employed for model construction. Two radiologists with 
1 year and 5 years of experience evaluated the MGMT status in the test dataset 
as a comparison with the models. The chi-square test and independent samples 
t-test were used for assessing the statistical differences in patients’ clinical 
characteristics.

Results: On the training dataset, the model structural MRI + DCE achieved the 
highest AUC of 0.906. On the test dataset, the model structural MRI + DCE + DTI 
achieved the highest AUC of 0.868, outperforming two radiologists.

Conclusion: The radiomics models have obtained promising performance in 
predicting MGMT promoter methylation status. Adding DCE and DTI features 
can provide extra information to structural MRI in detecting MGMT promoter 
methylation.
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1 Introduction

Gliomas are the most common primary malignant tumors of the 
central nervous system (CNS), characterized by significant 
heterogeneity in their biological behavior and clinical prognosis (1, 2). 
Currently, the standard treatment for gliomas includes neurological 
surgery followed by radiation and adjuvant chemotherapy with 
temozolomide (TMZ) (3, 4). The latest 2021 classification of CNS 
tumors highlighted the value of molecular markers in the clinical 
diagnosis and prognosis of gliomas (5, 6).

O6-methylguanine-DNA methyltransferase (MGMT) gene 
promoter methylation status is one of the critical molecular 
markers influencing the prognosis and treatment response in adult 
diffuse gliomas (7). MGMT is a DNA-repairing enzyme that 
counteracts the alkylating effects of TMZ by preventing DNA 
mismatches and apoptosis, reducing the cytotoxic effect of 
alkylating agents and resulting in tumor cells resistant to 
chemotherapy (8). When the MGMT promoter is methylated, the 
tumor cells are more susceptible to the cytotoxic effects of 
alkylating agents. Thus, patients with MGMT promoter methylation 
exhibit better therapeutic response with more prolonged 
progression-free survival (PFS) and overall survival (OS) compared 
to those without MGMT promoter methylation (9). Therefore, the 
accurate detection of MGMT methylation status is crucial for 
optimizing treatment plans and improvement of patient 
prognosis (10).

Traditionally, MGMT methylation status is assessed by 
sequencing the tumor tissue samples obtained from surgery or 
invasive biopsy, which is time-consuming and expensive. Clinically, 
MRI is commonly used for pre-operative diagnosis of gliomas. 
Non-invasive MRI-based radio-genomics provide a promising 
alternative for evaluating MGMT promoter methylation status 
before surgery. Structural MRI such as T1-weighted imaging 
(T1WI), T2-weighted imaging (T2WI), T1 contrast-enhanced 
imaging (T1CE), and fluid-attenuated inversion recovery (FLAIR) 
are clinically used for evaluating tumor morphology and anatomy. 
In recent years, advanced MRI techniques have become more 
available in clinical routines. Dynamic contrast-enhanced (DCE) 
MRI assesses tumor perfusion and permeability (11, 12). Diffusion 
tensor imaging (DTI) reflects tumor cell density and the integrity 
of white matter tracts (13, 14). DCE and DTI can offer 
complementary information on tumor anatomy, vascularity and 
microstructural organization, which indicate the biogenetic 
markers of the tumors.

Machine learning-based radiomics is the process of extracting 
high-throughput information from quantitative imaging data, 
analyzing and modeling (15). In recent years, radiomics has been 
proven promising in predicting key molecular markers in gliomas. 
However, most of these researches concentrated on conventional 
structural MRI (16–19). Currently, there is no research combining 
DCE and DTI radiomics in detecting MGMT methylation status. 
Whether adding DCE and DTI radiomic features can improve the 
model performance in pre-operative MGMT evaluation remains 
unclear. This study tries to address these gaps by exploring the 
potential of combining conventional structural MRI, DCE, and 
DTI-derived radiomic features for predicting MGMT methylation 
status in gliomas. Specifically, we  seek to evaluate whether the 

inclusion of DCE and DTI features improves model performance 
over traditional structural MRI-based radiomics.

In this study, we aim to investigate the value of radiomic features 
derived from structural MRI, DCE, and DTI in predicting MGMT 
methylation status in glioma patients. We hypothesize that adding 
DCE and DTI radiomic features can increase the model performance 
in detecting MGMT promoter status.

2 Materials and methods

2.1 Study population

The protocol for this research was approved by our Institutional 
Ethics Committee (Approval Number: 2022-364-02) and performed 
in accordance with the Declaration of Helsinki. Patients in this 
research were enrolled in our hospital between January 2018 and 
August 2022. The requirement for informed consent was waived due 
to the retrospective nature of this research. The inclusion criteria were 
as follows: (1) grade 2–4 adult diffuse gliomas confirmed with 
pathology; (2) patients with known MGMT mutation status. (3) 
patients underwent MRI scanning within 7 days before surgery. The 
exclusion criteria were as follows: (1) incomplete images; (2) poor 
image quality with severe motion artifacts; (3) radiotherapy or 
chemotherapy before MRI scanning; (4) failure of DCE or DTI post-
processing. According to the above criteria, a total of 110 patients were 
recruited in this research, of which 55 patients with MGMT 
methylated and 55 patients with MGMT unmethylated. MGMT 
promoter methylation status was tested using a quantitative 
polymerase chain reaction assay (see Figure 1).

2.2 MRI protocol

All the pre-operative MRI data were acquired using a 3.0 T MRI 
scanner (uMR790, United Imaging Healthcare, Shanghai, China) with 
a 32-channel phased-array head coil. Conventional MRI examinations 
included 3D T1WI pre- and post- the injection of gadolinium-based 
contrast agent [repetition time (TR)/echo time (TE) = 7.9/3.1 
milliseconds; inversion time (TI) = 810 milliseconds; flip angle 
(FA) = 10°; matrix = 256 × 256; field of view (FOV) = 256 × 232 mm2; 
slice thickness = 1 mm], 3D T2WI (TR/TE = 2,200/606.36 
milliseconds; TI = 1,519 milliseconds; FA: from 19° to 150°; 
matrix = 256 × 256; FOV = 256 × 232 mm2; slice thickness = 1 mm) 
and 3D FLAIR (TR/TE = 4,800/428.04 milliseconds; TI = 1,519 
milliseconds; FA: from 21° to 150°; matrix = 240 × 240; 
FOV = 256 × 232 mm2; slice thickness = 1 mm).

DTI was performed with 32 directions and the following 
parameters: TR/TE =2,205/68.2 milliseconds; FA = 90°; 
matrix = 128 × 128; FOV = 230 × 230 mm2; slice thickness = 2 mm.

Axial DCE-MRI acquisition was performed using dynamic scan 
of a T1-gradient echo sequence and setting the following 
parameters: TR/TE = 3.47/1.9 milliseconds; FA = 13°; 
matrix = 160 × 160; FOV = 240 × 220 mm2; slice thickness = 5 mm. 
Pre-contrast images with multiple FA 5, 10 and 15° were acquired 
for the T1 maps. Then the contrast agent (Gadovist, 1 mmol/mL, 
Bayer Healthcare, Berlin, Germany) was administered (0.1 mmol/
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kg of bodyweight) through the antecubital vein via a power injector 
at a rate of 2 mL/s. A series of 1,800 images at 90 dynamic phases 
for 20 axial sections were obtained with a temporal resolution of 4 s 
for each dynamic phase.

2.3 DCE and DTI post-processing

United imaging software workstation was utilized to analyze 
DCE and DTI parameters. For DCE metrics analysis, the arterial 
input function was acquired with the ROI positioned in the internal 
carotid artery adjacent to the tumor side. The following perfusion 
parameters were analyzed based on the extended Tofts 
two-component model: Ktrans, Kep, Ve, Vp and iAUC. Ktrans refers 
to the volume transfer constant, signifying the flow of gadolinium 
from the blood plasma into the extravascular extracellular space 
(EES), Kep denotes the time constant of gadolinium reflux from the 
EES back into the vascular system, Ve represents the EES volume 
per unit tissue volume, Vp indicates the plasma volume per unit 
tissue volume, and iAUC illustrates to the initial area under the 
time-concentration curve for the first 60 s. For DTI metrics analysis, 
fractional anisotropy, mean diffusivity, axial diffusivity and radial 
diffusivity maps were calculated.

2.4 Image process and radiomic feature 
extraction

Each sequence was registered and resampled to a 1 × 1 × 1 mm 
voxel resolution represented by FLAIR image utilizing automated 
nonlinear registration. Subsequently, the resampled data was skull 
stripped. Intensity normalization was used to eliminate the greyscale 
distribution differences and made the MRI image histograms more 
consistent among patients.

In this research, we focused on two key regions of interest (ROI): 
whole tumor (WT) and tumor core (TC). The WT refers to the 
entirety of the tumor, including the tumor core and the adjacent 
edematous regions, whereas the TC is specifically defined by regions 
of enhancing tumor tissue, non-enhancing tumor tissue, and necrotic 
areas. The segmentation of all corresponding labels was conducted 
manually by a board-certificated neuroradiologists with more than 
15 years of experience in neuro-oncology. Two examples of tumor 
segmentation can be seen in Figures 2, 3.

Given that isotropic voxel dimensions can ensure the consistency 
of extracted features across all directions and thereby enhance the 
reliability of the analysis, we adopted the sitkBSpline interpolation 
method to resample the raw imaging data to an isotropic resolution of 
1 × 1 × 1 mm3. For each patient, we  selected four conventional 

FIGURE 1

Patient enrollment flowchart. AUC = area under the curve; ACC= accuracy; SENS = sensitivity; PREC= precision; DCE = dynamic contrast enhanced;
DTI=diffusion tensor imaging.
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FIGURE 2

Example for MR images of a patient with MGMT unmethylated: T1CE (A), T2WI (B), T1WI (C), FLAIR (D), tumor core segmentation on T1CE (E), whole 
tumor segmentation on T2WI (F), Ktrans map of DCE (G), and MD map of DTI (H).

FIGURE 3

Example for MR images of a patient with MGMT methylated: T1CE (A), T2WI (B), T1WI (C), FLAIR (D), tumor core segmentation on T1CE (E), whole 
tumor segmentation on T2WI (F), Ktrans map of DCE (G), and MD map of DTI (H).

https://doi.org/10.3389/fneur.2025.1493666
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2025.1493666

Frontiers in Neurology 05 frontiersin.org

structural MRI sequences (T1WI, T2WI, FLAIR, and TICE) alongside 
five DCE maps (iAUC90, Ktrans, Kep, Ve, and Vp) and DTI maps (FA, 
AD, MD, and RD), resulting in a total of 13 MRI sequences. For each 
sequence, we  extracted features from two specific ROIs: TC and 
WT. A total of 107 features were obtained from each ROI, 
encompassing form shape features, first-order statistics, and texture 
features generated from various matrices such as gray-level 
co-occurrence matrices, size zone matrices, run length matrices, 
nearby gray tone difference matrices, and dependency matrices. One 
hundred and seven features were extracted from each of the 2 ROIs in 
the 13 sequences for each patient, for a total of 2,782 radiomic features.

2.5 Dataset splitting and z-score 
normalization

To maintain consistent data distribution between the training and 
test sets, we employed stratified sampling to randomly split the dataset 
into training and test datasets with an 8:2 ratio. Subsequently, 
we applied z-score normalization to the features of both the training 
and test sets, using the mean and standard deviation computed from 
the training set features.

2.6 Feature selection

The feature selection encompasses three meticulous steps: initially, 
we  employ the Pearson correlation coefficient as a means of 
preliminary feature pre-selecting, establishing a threshold of 0.75 to 
discern and eliminate one member from each pair of features 
exhibiting a high degree of correlation (signified by an absolute 
correlation coefficient exceeding this threshold). Subsequently, 
we  implement the least absolute shrinkage and selection operator 
(LASSO) regression model for granular feature selection. LASSO 
regression, through the incorporation of the L1 regularization term, 
exhibits an inherent capability to simultaneously select relevant 
features and shrink their corresponding coefficients. This process is 
optimized by leveraging GridSearchCV in conjunction with a five-fold 
cross-validation scheme, enabling us to determine the optimal 
regularization parameter λ. Finally, we harness the power of principal 
component analysis (PCA) for dimensionality reduction. PCA 
transforms the high-dimensional feature space derived from LASSO 
regression into a lower-dimensional space, specifically reducing it to 
10 principal components. These principal components encapsulate the 
majority of the variance present in the original dataset, thereby 
preserving essential information while significantly simplifying the 
data representation.

2.7 Model development and evaluation

Based on the 13 MRI sequences, 7 sequence groups were selected: 
structural MRI, DCE, DTI, structural MRI + DCE, structural 
MRI + DTI, DCE + DTI, structural MRI + DCE+ DTI. Support 
vector machine (SVM), Gaussian naive bayes (GaussianNB), adaboost, 
logistic regression (LR), random forest and k-nearest neighbor (KNN) 
were utilized to establish multiple radiomics classification models, the 
area under the receiver operating curve (AUC), accuracy (ACC), 

sensitivity (SENS), precision (PREC) and F1 score were utilized to 
compare the performance of different radiomics models. The model 
with the highest AUC on the test set was selected as the final model. 
Decision curve analysis (DCA) was used to evaluate the clinical value 
of different radiomics models.

Two radiologists with 1 year and 5 years-experience in neuro-
oncology imaging also evaluated MGMT promoter methylation status 
on the test dataset with all 13 sequences provided, as a comparison 
with multiple radiomics models. The study design of this research is 
shown in Figure 4.

2.8 Statistical analysis

To evaluate the normality of continuous variables, 
we  implemented the Kolmogorov–Smirnov normality test. 
Independent samples t-test was used to compare the difference of 
continuous variables between the training dataset and the test set. The 
chi-square test was used to assess the distribution of categorical 
variables between groups, such as gender and MGMT promoter 
methylation, for categorical variables. In this study, a p-value of 0.05 
or lower was considered statistically significant. Python 3.7.91 was 
used to conduct the statistical analysis.

3 Results

3.1 Baseline information

Table 1 shows a brief summary of the baseline characteristics of 
the 110 patients who participated enrolled in this research. There were 
no significant differences in age, gender, or MGMT promoter 
methylation status between the training and test datasets. We used 
stratified sampling, which led to the identical distribution of MGMT 
promoter methylation status in both the training set and the 
test dataset.

3.2 The performance of multiparametric 
MRI radiomics models to predict MGMT 
promoter methylation status of adult 
diffuse gliomas

On the training dataset, the modality combination structural 
MRI + DCE exhibited the highest performance with AUC of 0.906 
and ACC of 0.841. The metrics of the multiparametric MRI 
radiomics models were illustrated in Table 2 and Figure 5. The model 
structural MRI + DCE also showed the highest clinical value on the 
DCA curve.

On the test dataset, the modality combination structural 
MRI + DCE + DTI exhibited the highest performance with AUC of 
0.868 and ACC of 0.773. The metrics of the multiparametric MRI 
radiomics models were illustrated in Table 3 and Figure 5. The 1-year 
radiologist and 5-year radiologist achieved accuracy of 0.500 and 

1 http://www.python.org
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0.591, respectively. The combined model structural MRI + DCE + DTI 
also illustrated the highest clinical value on the DCA curve.

The performance of different machine learning methods to 
predict MGMT methylation status, based on the combination of 
structural MRI, DCE, and DTI modalities was illustrated in 
Supplementary Table S1. The SVM model showed the best performance.

4 Discussion

In this research, we explored the application of radiomic features 
based on pre-operative multiparametric MRI to establish multiple 
radiomics models to predict the MGMT promoter methylation status 
of adult diffuse gliomas. The results showed that on the test dataset, 

FIGURE 4

Study design of this research.

TABLE 1 Characteristics of training dataset and test dataset.

Characteristics Overall (n = 110) Training (n = 88) Test (n = 22) p-value

Age (years) 52.841 ± 14.709 50.636 ± 12.579 0.520a

Sex 0.924b

  Female 59 (53.6%) 47 (53.4%) 12 (54.5%)

  Male 51 (46.4%) 41 (46.6%) 10 (45.5%)

MGMT 1.000b

  Unmethylated 55 (50.0%) 44 (50.0%) 11 (50.0%)

  Methylated 55 (50.0%) 44 (50.0%) 11 (50.0%)

WHO grade 0.746b

  2 29 (26.4%) 24 (27.3%) 5 (22.8%)

  3 8 (7.3%) 7 (8.0%) 1 (4.5%)

  4 73 (66.3%) 57 (64.7%) 16 (72.7%)

MGMT, O6-methylguanine-DNA methyltransferase.
aIndependent samples t-test.
bChi-squared test.
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The combined model structural MRI + DCE + DTI achieved the 
highest performance with an AUC of 0.868 and ACC of 0.773, 
outperforming two radiologists with 1-year and 5-year of experience. 
The constructed radiomics models exhibited excellent predictive 
performance in the MGMT methylation detection task, which 
indicated promising clinical application. We also found that DCE and 
DTI combined with conventional structural MRI radiomics 
significantly improved the accuracy of MGMT methylation status 
prediction compared to conventional structural MRI radiomics alone, 
which is expected to be applied in future clinical scenarios.

To our knowledge, this is the first study to investigate the value of 
combining multimodal radiomics features in the prediction of MGMT 
methylation status based on 13 sequences from conventional MRI, 
DCE, and DTI. In several previous studies, the value of features from 
structural MRI in predicting MGMT promoter methylation status was 
controversial. Kim et  al. (20) evaluated 420 models trained with 
structural MRI from a publicly available dataset to detect MGMT 
promoter status, from which approximately 80% of models obtained 
no significant difference with the chance level of 50%. Another 
research conducted by Robinet et al. (21) explored different input 
configurations, algorithms as well as exact methylation percentages, 
and got the conclusion that current deep learning methods cannot 
determine MGMT promoter methylation status from merely 
structural MRI. In our study, the structural MRI model achieved an 
AUC of 0.694 and ACC of 0.591 on the test dataset, consistent with 
previous negative results, which further proved the limited 
effectiveness of structural MRI in detecting MGMT promoter 
methylation. The negative results pushed us to explore the value of 
other advanced MRI techniques like DCE and DTI in MGMT 
methylation prediction.

DCE is capable of quantitatively assessing vascular permeability, 
perfusion, and other hemodynamic parameters, such as Ktrans and 
Ve, by continuously monitoring the changes in signal intensity in 
tissues after intravenous injection of contrast agents (22). These 
parameters are critical for understanding tumor angiogenesis, 
assessing treatment efficacy and predicting disease progression (23). 
A study delved into the value of the application of DCE imaging 
technology in the assessment of MGMT promoter methylation status 
in glioblastoma (24). The results showed that GBM patients who 
developed MGMT methylated patients exhibited significantly higher 
Ktrans values compared to MGMT unmethylated, a finding that not 
only revealed a strong association between DCE imaging parameters 
and MGMT methylation status but also by setting Ktrans >0.086 as 
the optimal cut-off value, with an AUC of just 0.756. Another research 
explored the DCE histogram analysis of glioma and discovered that 

the 90th percentile Ve provided the highest differential efficacy for 
MGMT with an AUC of 0.816, sensitivity of 0.84, and specificity of 
0.79 (25).

DTI is a non-invasive MRI technique providing quantitative 
information about the anisotropy and diffusivity of major white 
matter (26). Lots of studies have proven that DTI parameters FA and 
MD are associated with cellular physiology and tissue microstructure, 
which can reflect the genetic changes of tumors (27). In a previous 
study, researchers attempted to combine diffusion kurtosis imaging 
(DKI) and DTI modalities to build a model for predicting MGMT 
methylation status and revealed that adding DTI and DKI radiomics 
features cannot improve the performance for predicting MGMT 
methylation (28). Tan et al. (28) recruited 40 patients with insula 
gliomas, and showed that neither FA or MD histogram parameters 
predicted MGMT methylation status. In our study, on test dataset, the 
model structural MRI + DTI achieved an AUC of 0.727, while the 
model structural MRI achieved an AUC of 0.694. Adding DTI 
radiomics features only slightly improved the model performance, 
which is consistent with previous studies. While DTI provides valuable 
information on tissue anisotropy and diffusion patterns, the 
contribution of these features to predicting MGMT methylation may 
be relatively small compared to structural MRI and DCE parameters, 
which offer more direct information related to tumor morphology and 
vascularity. Moreover, the integration of multiple modalities, including 
structural MRI and DCE, could already encapsulate much of the 
relevant information, leaving less room for DTI features to 
contribute significantly.

Given the current inadequate performance demonstrated by a 
single modality in assessing the methylation status of the MGMT 
promoter, this study reflects deeply and recognizes that relying on 
the imaging data of one particular modality alone does have 
significant shortcomings in comprehensively capturing and 
resolving the complex brain tumor features (29, 30). We successfully 
revealed the significant advantages of multimodal data fusion in the 
prediction of MGMT methylation status by constructing and 
evaluating a combined multimodality imaging model including 
structural MRI, DCE, and DTI. Compared with methods relying 
on a single modality or any two-modality combination, the 
combined multimodal model was able to more accurately capture 
the complex relationship between data and reduce the risk of 
overfitting in the training process but also maintained a stable and 
significantly improved prediction performance in the test set 
validation, which fully verified the superiority of the multimodal 
data fusion strategy in improving the model reliability and 
prediction accuracy.

TABLE 2 Performance of different radiomics models to predict MGMT methylation status on training dataset.

Sequence group AUC ACC SEN PREC F1 score

Structural MRI 0.820 0.671 0.477 0.778 0.592

DCE 0.786 0.716 0.727 0.711 0.720

DTI 0.844 0.784 0.750 0.805 0.777

Structural MRI + DCE 0.906 0.841 0.864 0.826 0.844

Structural MRI + DTI 0.913 0.818 0.636 1.000 0.778

DCE + DTI 0.822 0.750 0.750 0.750 0.750

Structural MRI + DCE + DTI 0.902 0.807 0.841 0.787 0.813

AUC, area under the curve; ACC, accuracy; SENS, sensitivity; PREC, precision; DCE, dynamic contrast enhanced; DTI, diffusion tensor imaging.
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There were also several limitations in this study. First, this is a 
single-institutional retrospective study lacking independent external test 
dataset from other hospitals, introducing potential biases related to 
patient populations and imaging protocols, which may influence the 

reproducibility of the models in different hospitals and different imaging 
settings. Secondly, the small sample size, especially the relatively small 
size of the test dataset, limits the generalizability of the findings. We will 
employ larger, multi-canter cohorts to explore the generalizability in the 

FIGURE 5

ROC curves, DAC curves for the training set (A,B) and test set (C,D) of different combined radiomics models in predicting MGMT methylation status.

TABLE 3 Performance of different radiomics models and radiologists to predict MGMT methylation status on test dataset.

Sequence group AUC ACC SEN PREC F1 score

Structural MRI 0.694 0.591 0.364 0.667 0.471

DCE 0.715 0.636 0.546 0.667 0.600

DTI 0.649 0.591 0.636 0.583 0.609

Structural MRI + DCE 0.843 0.682 0.546 0.750 0.632

Structural MRI + DTI 0.727 0.546 0.182 0.667 0.286

DCE + DTI 0.711 0.546 0.636 0.538 0.583

Structural MRI + DCE + DTI 0.868 0.773 0.773 0.800 0.762

1-year radiologist — 0.500 0.546 0.500 0.522

5-year radiologist — 0.591 0.545 0.600 0.571

AUC, area under the curve; ACC, accuracy; SENS, sensitivity; PREC, precision; DCE, dynamic contrast enhanced; DTI, diffusion tensor imaging.
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future. Additionally, we chose the classic machine learning model SVM 
to conduct different experiments without incorporating more 
complicated deep learning structures like convolutional neural networks 
and vision transformers. Deep learning models offer advantages over 
traditional machine learning models, such as scalability, non-linearity 
and potentially higher accuracy. We will further investigate this research 
by employing deep learning models in the future.

5 Conclusion

In conclusion, we  developed and validated radiomics models 
which obtained promising performance in predicting MGMT 
promoter methylation status. Adding DCE and DTI features can 
provide extra information to structural MRI in detecting MGMT 
promoter methylation.
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