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Fluorescence lifetime imaging ophthalmoscopy (FLIO) has emerged as an innovative 
advancement in retinal imaging, with the potential to provide in vivo non-invasive 
insights into the mitochondrial metabolism of the retina. Traditional retinal imaging, 
such as optical coherence tomography (OCT) and fundus autofluorescence (FAF) 
intensity imaging, focus solely on structural changes to the retina. In contrast, FLIO 
provides data that may reflect retinal fluorophore activity, some of which may 
indicate mitochondrial metabolism. This review builds upon the existing literature 
to describe the principles of FLIO and established uses in retinal diseases while 
introducing the potential for FLIO in neurodegenerative conditions.
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1 Introduction

Although fundus photography and intravenous fluorescein angiography were originally 
developed for retinal diseases, these imaging techniques have provided valuable insights into 
the diagnosis, treatment, and pathogenesis of neurological and neuro-ophthalmic conditions 
(1–9). These observations have validated the hypothesis that the retina is as much a part of the 
central nervous system as the optic nerves, chiasm, and structures merging visual information 
with memory, depth perception, and other higher cortical functions.

Spectral-domain optical coherence tomography (OCT) and optical coherence tomography 
angiography (OCT-A), the most widely used retinal imaging technologies in both clinical 
practice and clinical trials, have revealed previously hidden details of the structure of retinal 
layers as well as the retinal microvascular circulation (10–14). For some years, fundus 
autofluorescence (FAF) intensity imaging was used to evaluate the metabolic status of the 
retina indirectly. However, fundus autofluorescence intensity measurements are prone to 
media opacities, high image noise, low contrast, and do not allow the assignment of the signal 
to specific chemical compounds. Furthermore, compounds with bright autofluorescence, such 
as lipofuscin, might overwhelm the fluorescence signal of other compounds (15). Thus, these 
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methods have significant limitations in evaluating the in  vivo 
metabolism of the healthy retina or the retina afflicted with primary 
ophthalmic or neurological diseases.

Approximately 10 years ago, peer-reviewed reports described and 
defined fluorescence lifetime imaging ophthalmoscopy (FLIO), the 
clinical equivalent of fluorescence lifetime imaging microscopy 
(FLIM). FLIO offers non-invasive, non-contact, and reproducible 
insights into the metabolic activity of the retina through fluorophores 
such as flavin adenine dinucleotide (FAD), lipofuscin, lutein, 
zeaxanthin, and meso-zeaxanthin. However, further validation is 
required for its broader clinical applications (15–17). Just as positron 
emission tomography (PET) scanning adds metabolic dimensions to 
MRI, we  believe that FLIO offers the in  vivo physiological 
counterpart to OCT.

FLIO measures the fluorescence decay over time of metabolically 
active tissues without fluorescent dyes (16, 18) (Figure 1). Different 
molecules within each subcellular structure display unique auto-
fluorescent signatures depending upon the molecular environment. 
However, the measured lifetime may represent contributions from 
multiple fluorophores, and the attribution of fluorescence lifetimes to 
specific molecules requires further investigation. FLIO can potentially 
provide valuable insights into mitochondrial oxidative metabolism 
and lysosomal function. However, isolating specific retinal 
fluorophores from these organelles in vivo remains challenging due to 
overlapping emission spectra. Advanced in vitro techniques such as 
FLIM may aid in validating and isolating specific signals (17, 19). 
Although standard FLIO currently does not allow for the 

differentiation of signal sources based on retinal layer dependence, 
future integration with spectral domain OCT may enable the 
identification of layer-specific fluorescence lifetime signals, providing 
greater insight into the localization of fluorophores within the retina. 
Using FLIO and spectral domain OCT, we expect to fulfill the critical 
paradigm of merging function with structure.

In the early 2000s, FLIO was first investigated by Dietrich 
Schweitzer and Martin Hammer using a prototype device to image the 
human retina (20–25). The technology Schweitzer and Hammer 
developed was advanced by Heidelberg Engineering in Germany and 
Switzerland in 2012 (16). In dermatology, fluorescence lifetime 
imaging has already enabled the detection of metabolic changes 
within basal cell carcinomas and surrounding tissue compared to 
healthy surrounding tissue (26). In cardiology, fluorescence lifetime 
imaging has been used to define the heterogeneity of atherosclerotic 
plaques and identify plaque disruption in coronary heart disease 
(16, 27–29).

2 Principles of FLIO

2.1 Basic principles of fluorescence

Fluorescence is defined as the emission of visible or invisible 
electromagnetic radiation by a substance after exposure to external 
radiation of a shorter wavelength, such as X-rays or ultraviolet light. 
In other words, fluorophore, a chemical compound or molecule, 

FIGURE 1

Schematic of FLIO imaging. The technical description of FLIO equipment in this review is on the Heidelberg Spectralis based FLIO instrument. The 
machine uses two hybrid photon-counting detectors (HPM-100-40, Becker&Hickl GmbH, Berlin, Germany) to record fluorescence photons from each 
pixel across 1,024 time channels. This design generates two separate photon arrival histograms for each pixel, one for each spectral channel. The 
photon arrival histograms are then used to calculate fluorescence lifetimes. This equipment was used in almost all cited studies. This figure was 
created with BioRender.com.
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absorbs light of short wavelengths and emits light of longer 
wavelengths. When a fluorophore absorbs a photon of one 
wavelength, it raises the molecule to an excited state for a short 
period before losing the energy as the emission of a photon, creating 
fluorescence as the molecule returns to its ground state. An individual 
“fluorophore lifetime” is the average time a molecule remains excited 
before emitting a photon and returning to its ground state. 
Fluorescence can be characterized by its intensity and lifetime. The 
fluorescence intensity signal is sensitive to several factors, including 
photobleaching, which do not affect the lifetime measurements.

Fluorescence lifetimes are depicted graphically in a log-linear 
fashion where shorter lifetimes exhibit a faster decay with a steeper 
slope, and longer lifetimes exhibit a more gradual slope. Various 
endogenous molecules contain specific fluorophores that emit 
fluorescence when excited. The fluorescence lifetime can be measured 
for individual fluorophores in isolation in vitro. In retinal tissues and 
the eye, autofluorescence is composed of many fluorophores, each 
with a different fluorescence lifetime, producing multiexponential 
decays. A simple measure of the multiexponential decay is the mean 
fluorescence lifetime, τm.

2.2 FLIM and fluorescence

FLIO has evolved from FLIM, which evaluates biological 
mechanisms at the molecular level in various tissues or cells on the 
microscope stage (19). In FLIM studies, both autofluorescence lifetime 
and the lifetime of fluorescent dyes/fluorescent proteins introduced to 
the sample to monitor specific parameters such as glucose, ATP, or 
Ca2+ can be  studied (30–35). FLIM can be  performed in the time 
domain and frequency domain. FLIM can record fluorescence lifetimes 
using the time domain technique, time-correlated single-photon 

counting (TCSPC) (36, 37). An example of retina autofluorescence 
FLIM is shown in Figure 2 (38).

Fluorescent substances are excited with a short pulse laser, and the 
time interval it takes for molecules to excite and emit a photon is 
captured by a detector, allowing the calculation of the fluorescence 
lifetime. Multiple pulses of light excite the tissue, with the emission of 
a photon being recorded. The time interval recorded will not always 
be the same each time a molecule is hit with a light pulse. Given these 
differences in photon emission behaviors, the lifetimes from each 
pulse are recorded and sorted by interval duration, which can 
be graphically depicted on a histogram showing the time-dependent 
emission of multiple fluorophores in the tissue.

Combining TCSPC-FLIM and two-photon excitation, the 
generation of three-dimensional imaging of tissue is accomplished 
(21). This technique allows for acquiring detailed spatial and 
molecular information from molecule-specific fluorescent lifetimes. 
Its use has been illustrated in age-related macular degeneration 
(AMD) and imaging of the retina and choroid (39, 40). One study 
using two-photon FLIM measured the fluorescence lifetimes in retinal 
pigment epithelium (RPE) in the porcine retina, showing that the 
fluorescence lifetimes were relatively short due to melanin fluorescence 
(41). While fluorescence lifetimes of specific fluorophores can 
be measured in vitro using FLIM, these lifetimes are influenced by 
various environmental factors, such as pH and oxidation state (17, 20, 
42–44). The in vivo analysis becomes more challenging due to multiple 
fluorophores within a tissue sample, complicating the interpretation 
of fluorescence lifetimes compared to the single-fluorophore analysis 
possible with in vitro FLIM.

While TCSPC-FLIM techniques plot information on a 
histogram depicting the time-dependent emission of multiple 
fluorophores, lifetimes depicted through phasor analysis may be an 
easier approach for visualizing fluorescence lifetime images of 

FIGURE 2

(A) Autofluorescence image of the retina. (B) Fluorescence lifetime image showing cyan/blue color corresponds with flavin adenine dinucleotide (FAD). 
RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer 
nuclear layer; IS, photoreceptor inner segment; OS, photoreceptor outer segment; RPE, retinal pigment epithelium. Adapted from Kesavamoorthy et al. 
(38).
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different fluorophores (45, 46). In phasor analysis, fluorescence 
lifetime data at each pixel can be converted into a coordinate pair 
known as a phasor (47). Decay data within individual pixels are 
plotted based on phase and amplitude (47). The phase is defined as 
the angle of the pointer. While the mathematics of phasor analysis 
is beyond the scope of this review, the phasor approach uses a rapid 
Fourier analysis that translates fluorescence lifetime information 
into a graphical representation called a phasor plot where lifetime 
differences across various image regions can be distinguished (46). 
This translation is shown in Figure 3. Phasor plots visualize the 
representation of the distribution of lifetime values by clustering 
pixels with similar lifetime properties together in a specific plot area 
(46). The phasor approach allows for the visual representation of 
fluorescence lifetimes in entire cells or tissues, providing insight 
into the state of metabolism or oxidative stress in diseases, as seen 
in Figure 4 (48). The position of a point on the phasor plot can help 
differentiate groups of fluorescence lifetimes. For example, lifetimes 
corresponding to the healthy fovea and macula appear within the 
semicircle on the shorter-lifetime side (far right side of the phasor 
plot). In contrast, lifetimes from the optic nerve, which are longer 
than those from the macula, are located in a distinct cluster on the 
phasor plot (left of the macula cluster). Phasor plots are currently 
being incorporated into the analysis of FLIO data.

3 Technical aspects of FLIO

FLIO separates itself from FAF intensity imaging by identifying 
signals dependent on the properties of each fluorophore since each 
fluorophore has a unique autofluorescence lifetime. In addition, FLIO 

is not reliant on fluorescence intensity. The differences between FAF 
intensity imaging and FLIO are shown in Table 1. Current FLIO uses 
a 473-nm excitation pulsed diode laser, generating pulses at a 
frequency of 80 MHz with a full width at half maximum of 89 
picoseconds (ps). The fiber-coupled laser has an average power of 
200 μW, and its safety has been previously studied, fulfilling all safety 
regulations for a class 1 laser (49, 50).

The current system of FLIO measures fluorescence decay across 
two spectral wavelength channels: a short spectral channel (SSC) 
ranging from 498 to 560 nm, and a long spectral channel (LSC) 
ranging from 560 to 720 nm. Although it would be  beneficial to 
obtain FLIO images from other wavelength ranges, the current 
two-channel system may be practical in clinical settings, as diseases 
can show changes in one or both spectral channels, providing distinct 
information about the retina. Additionally, the SSC is somewhat 
influenced by lens fluorescence, whereas the LSC is relatively 
unaffected (15, 16, 51). Previous studies have suggested that FAD is 
detectable within the SSC, while lipofuscin contributes predominantly 
to the LSC (15, 51, 52). However, these attributions may not fully 
account for the complexity of in vivo fluorescence signals within the 
retina. Importantly, FAD fluorescence lifetimes are influenced by its 
role in oxidative metabolism, providing potential insights into 
mitochondrial activity (21). However, the in  vivo fluorescence 
lifetime may be  affected by other endogenous fluorophores or 
changes in the cellular and subcellular environment that share the 
same emission spectrum as FAD, highlighting the need for 
further investigation.

Current FLIO technologies record fluorescence lifetimes using 
the time domain technique, TCSPC (36, 37). FLIO captures images 
with a resolution of 256 by 256 pixels, covering a 9 by 9 mm area on 

FIGURE 3

Translation between fluorescence lifetime decay curve (left) and phasor (right). A phasor point directly on the semicircle indicates a single lifetime 
species. Phasor points of species with multiple fluorescence lifetimes appear inside the semicircle. Adapted from Becker et al. (47).
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the retina (35 μm × 35 μm/pixel), which can be focused on the fovea 
or any other area of the retina (15, 16). The device compensates for 
eye movements with a high-contrast confocal infrared reflectance 
image. This technology ensures that each fluorescence photon is 
accurately registered at its corresponding spatial location on the 
retina. A minimum signal threshold of approximately 1,000 photons 
per pixel is used to achieve good-quality FLIO images with an 
acquisition time of 2–3 min per eye.

SPCImage (Becker&Hickl GmbH), the most common software 
for analyzing FLIO data, uses a triexponential approach to fit the 
fluorescence decay curve at each pixel (15, 20, 53). During data 
acquisition, thousands of data points are collected for each pixel, 
representing the decay of fluorescence over time. The triexponential 
approach simplifies the data collected by fitting it all into three 
distinct exponential decay components, each with its own lifetime 
(τ1, τ2, τ3) and corresponding amplitude, which reflects the relative 
contribution of individual lifetimes to the total fluorescence decay. At 
least three points are necessary for the mathematical reconstruction 
of a decay. The final analysis shows an image where each pixel 
contains three lifetimes and their relative contributions, which can 
be visualized in color-coded heat maps. Standardized grids such as 
the Early Treatment Diabetic Retinopathy Study (ETDRS) grid can 
segment the images to analyze specific regions (16, 51). FLIO can 
detect the shortest lifetimes of approximately 30 ps (49). Currently, 
FLIO-reader and FLIMX are common software packages that can 
enhance the analysis, image processing, and identification of lifetimes 

over specific areas of interest within the eye (15). The FLIO output of 
a healthy retina using SPCImage analysis is shown in Figure 5. In the 
healthy retina shown in Figure 5, the SSC and LSC histograms display 
uniform, single peaks, with the SSC exhibiting shorter lifetimes than 
the LSC. This pattern suggests a more homogeneous distribution of 
fluorophores contributing to the signal. In contrast, in the conditions 
discussed later, the peaks in both the SSC and LSC shift toward longer 
lifetimes and broaden, suggesting increased heterogeneity in the 
contributing fluorophores (Figure 6).

3.1 Fluorescence lifetimes of retinal 
fluorophores

Previous studies have identified multiple retinal fluorophore 
properties and fluorescence lifetimes in the context of FLIM (15, 17, 
20, 24, 38, 49, 54, 55). FLIO captures fluorescence signals from various 
retinal layers, including the outer retinal layers, retinal pigment 
epithelium (RPE), and possibly the choroid (50). The following 
fluorescence lifetime characteristics of different retinal fluorophores 
are important in understanding the qualitative and quantitative 
changes in fluorescence that occur in the retina in various 
disease settings.

Nicotinamide adenine dinucleotide (NADH) and FAD, important 
electron carriers in mitochondrial respiration, may impact 
fluorescence lifetimes because their properties change depending on 

FIGURE 4

FLIM image (left) with histogram (middle) and corresponding phasor plot (right). The clusters in the phasor plot differentiate pixels of different 
fluorescence lifetimes in the image. Adapted from Becker et al. (47).

TABLE 1 Comparison between fundus autofluorescence (FAF) intensity imaging and fluorescence lifetime imaging ophthalmoscopy (FLIO).

Feature FAF FLIO

Principle Measures fluorescence intensity Measures the time difference from fluorophore excitation to emission (a lifetime)

Use Assess spatial accumulation of lipofuscin in the retina  • SSC: Oxidative metabolism molecules (FAD)

 • LSC: Lipofuscin

Image Intensity-based grayscale image Color “heat” map representing different fluorescence lifetimes

Assessment of the retina Shows where lipofuscin accumulates Shows the metabolic state of the retina

Time of acquisition per eye A few seconds 2–3 min
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the mitochondrial metabolic activity of a tissue (56–60). A FAD 
lifetime depends on its bound state versus free state. Protein-bound 
FAD has a lifetime of approximately 0.1–0.35 ns, while free FAD has 
a lifetime of approximately 2.3–2.9 ns due to structural differences in 
protein-bound and free forms (17, 61–63). A decrease in oxidative 
metabolism results in a shift toward the free form and so increases the 

FAD lifetime. FAD fluorescence lifetimes may provide insight into the 
redox state of the tissue. The emission spectrum of FAD overlaps with 
the wavelength range of the SSC of FLIO (15, 16).

Lipofuscin fluorescence has been characterized in previous 
studies and is believed to significantly contribute to retinal 
autofluorescence due to its brightness (43, 50). In the eye, lipofuscin 

FIGURE 5

FLIO image of a healthy control after acquisition in the (A) short spectral channel (SSC) and (B) long spectral channel (LSC). The SSC (498–560 nm) 
detects fluorescence from multiple fluorophores, including FAD, while the LSC (560–720 nm) captures fluorescence from fluorophores such as 
lipofuscin. These channels provide information about the metabolic status of the retina.
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is mainly found within the RPE and is a product of photoreceptor 
outer segment degradation (64). Lipofuscin accumulates with age; 
therefore, it is prevalent in higher amounts in older individuals (53, 
65). The main component of lipofuscin, bis-retinoid N-retinyl-N-
retinylidene ethanolamine (A2E), has an excitation maximum at 
446 nm, an emission maximum at 600 nm, and a mean 
autofluorescence lifetime of approximately 189 ps (15, 18). Lipofuscin 
emission is effectively detected by the LSC of FLIO (15, 16). However, 
multiple overlapping fluorophores may contribute to the fluorescence 
lifetimes observed in the LSC, and further studies are needed to 
confirm the specific contributions of lipofuscin and other compounds 
within the LSC.

Carotenoids, such as lutein, zeaxanthin, and meso-zeaxanthin, 
comprise the macular pigment (MP) (66, 67). These pigments are 
found in higher concentrations within the Müller cells and Henle fiber 
layer of the retina (68, 69). Accumulation of MP within a circular area 
centered around the fovea is attributed to xanthophyll-binding 
proteins (70–76). The high amounts of MP serve as antioxidants and 
help protect the macula from damage, especially in the blue-light 
range (70, 77, 78). It has been proposed that MP acts to quench free 
radicals and absorb blue light before it can reach photoreceptors, 
helping to preserve photoreceptors (69, 79–81). Recent studies using 
FLIO have demonstrated that the retinal carotenoids of the MP 
produce a detectable fluorescent signal (49, 51, 70). Unlike FAF 
intensity imaging, FLIO measures the fluorescence lifetime rather 
than the intensity of fluorescence. As a result, even carotenoids with 

weaker fluorescence intensity can still produce a measurable 
fluorescence lifetime signal.

4 FLIO in ophthalmic and neurologic 
conditions

For comprehensive and in-depth studies of retinal conditions, 
such as AMD, geographic atrophy, diabetic retinopathy, central serous 
chorioretinopathy, choroideremia, retinitis pigmentosa, macular 
holes, and other ophthalmic conditions previously investigated with 
FLIO, we refer the readers to recent literature (55, 82–97). This review 
assessed the eyes of healthy individuals in different age groups and 
selected eye-specific diseases, including macular telangiectasia, 
Stargardt disease, neuromyelitis optica spectrum disorder, and 
common neurodegenerative diseases, such as Alzheimer’s disease and 
Parkinson’s disease.

4.1 Healthy eye

In several studies, Schweitzer et al. evaluated the fluorescence 
lifetimes in healthy eyes (20, 21, 24). Their first device used an 
excitation laser of 446 nm and collected fluorescence lifetime 
information of a 25-year-old healthy adult in two spectral channels: 
510–560 nm and 560–700 nm. Their study showed short fluorescence 

FIGURE 6

(A) Photomicrographs depicting the different retina layers. (B) Staining for cytochrome C oxidase, showing the distribution of mitochondria throughout 
the various layers of the retina. NFL, nerve fiber layer; GC, ganglion cells; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; 
ONL, outer nuclear layer; PR, photoreceptors; RPE, retinal pigment epithelium. Adapted from Andrews et al. (60).
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lifetimes at the macula (150 ps) and longest lifetimes near the optic 
disc (250 ps) (20). A study by Dysli et al. in healthy eyes later identified 
a similar pattern of fluorescence lifetimes, showing the shortest mean 
fluorescence lifetimes at the macula (SSC: 208 ps; LSC: 239 ps), with 
increased lifetimes further away from the center of the retina (53). 
Their study investigated a group of patients with a mean age of 
35 years. Fluorescence lifetimes were obtained within the ETDRS grid. 
The longest lifetimes were found at the optic disc, consistent with a 
previous study by Schweitzer et  al. Sauer et  al. investigated the 
fluorescence lifetimes of patients with an average age of 24 years, 
identifying the shortest lifetimes occurring at the fovea (SSC: 82 ps; 
LSC: 126 ps) (49). The differences in values of fluorescence lifetimes 
can be attributed to using a biexponential approach in the study by 
Dysli et al. and a triexponential approach by Sauer et al. (49, 53). In 
these studies, lifetimes appear to prolong with age in both the SSC and 
LSC, but especially within the LSC; this pattern is consistent with the 
accumulation of lipofuscin with age, which prolongs lifetimes 
recorded in the LSC, where lipofuscin is primarily detectable (20, 
49, 53).

Across previously described studies assessing the fluorescence 
lifetimes of healthy eyes, the shortest lifetimes appear to be at the 
foveal and macular regions, with the longest lifetimes appearing at the 
optic disc. Figure 7 displays the lifetime patterns seen in healthy eyes. 
Studies have suggested that the long lifetimes detected by FLIO within 
the LSC at the optic disc are primarily due to the higher concentration 
of connective tissue, such as collagen and elastin, within the optic disc 
(20). The shortest lifetimes are located at the fovea and central macula, 
likely due to the influence of macular pigment (MP) and carotenoids 
(15, 51). As previously mentioned, in the early 2000s, it was 
hypothesized that MP did not emit fluorescence but could only absorb 
it. However, subsequent studies showed that MP can emit fluorescence, 
with later FLIO studies identifying a correlation between MP and 
short foveal fluorescence lifetimes (51, 82, 98). The contribution of 
various retinal molecules correlates to different patterns of 
fluorescence lifetimes across different areas of the retina. These 
patterns later helped identify changes in fluorescence lifetimes in 
different ophthalmic and neurologic diseases.

4.2 Macular telangiectasia type 2 (MacTel)

Macular Telangiectasia Type 2, an inherited disease, causes 
bilateral central vision loss, usually between the fourth and sixth 
decades of life (16, 99). While classically presenting later in life, some 
case reports have reported patients being diagnosed in their 20s (100). 
MacTel is primarily a retinal degenerative disease affecting the Müller 
Cells with secondary vascular changes. Visual loss progresses slowly, 
with patients frequently reporting problems with reading and 
experiencing diminished visual acuity (101). Structurally, MacTel has 
been described as degeneration of the ellipsoid zone (EZ) starting in 
the temporal parafoveal area (101). Around the fovea, a characteristic 
pattern is seen in MacTel with FLIO. This pattern is an oval-shaped 
area, 9 degrees horizontal and 5 degrees vertical, centered at the fovea 
(100, 101). This area with FLIO shows a ring or crescent shape of 
prolonged lifetimes (100). In one study investigating the use of FLIO 
in MacTel, researchers found prolonged lifetimes of the inner temporal 
area on the ETDRS grid in MacTel patients (SSC: 382 ps) when 
compared to control, healthy eyes (SSC: 298 ps) (100).

In another study, FLIO was used to investigate early changes in 
retinal disease in the children of MacTel patients (102). This study 
found the characteristic temporal parafoveal prolonged lifetimes 
within the SSC in MacTel patients and in over one-third of 
unaffected children of these MacTel patients (102). As MacTel is a 
progressive disease, studies have investigated the speed of 
progression of the disease as it correlates to FLIO lifetimes. One 
study found a 22% prolongation of SSC lifetimes over 2.1 years in a 
group of four patients with MacTel (103). Another study identified 
33 patients with MacTel and found an annual progression of 9 ps in 
the SSC and 8 ps in the LSC lifetimes, compared to controls (101). 
A more recent study identifying 49 eyes with MacTel confirmed the 
unique temporal crescent pattern of prolonged fluorescence 
lifetimes around the fovea, especially in the SSC, while other retinal 
diseases tend to prolong lifetimes in the LSC (104). In one study 
investigating cases of MacTel, FLIO demonstrated a sensitivity of 
96% and a specificity of 100% (105). The findings from studies 
investigating MacTel reiterate the benefit of FLIO as an accurate 
diagnostic tool and a potential screening tool in early disease 
detection before patients experience visual changes. Early detection 
may aid in the advancement of future therapies and 
gene investigation.

4.3 Stargardt disease

Stargardt disease, an inherited retinal dystrophy, usually presents 
in childhood with bilateral severe vision loss (106–108). Mutations 
in the ABCA4 gene, which codes for an ATP-binding cassette protein 
that aids in transporting N-retinylidene-phosphatidylethanolamine 
from the photoreceptor disk lumen to the cytoplasm, form the 
genetic basis for this disease (108). Visual cycle molecules such as 
bis-retinoids and lipofuscin accumulate in this disease (109–111). 
FAF intensity imaging shows increased signal even in areas with 
seemingly normal functioning photoreceptors (111). The increase in 
FAF intensity is attributed to the accumulation of lipofuscin in the 
RPE rather than direct dysfunction of the photoreceptors themselves 
(110–113). As the disease progresses, yellow spots appear on the 
retina, termed retinal “flecks” (113). Retinal flecks are thought to 
be areas of retinal degeneration (113). In the study of 16 patients with 
Stargardt disease, Dysli et al. found that the retinal flecks showed 
both short and prolonged FLIO lifetimes depending on the age of the 
flecks (112). Retinal flecks with short (242 ps) lifetimes in the LSC 
were believed to be new onset flecks attributed to compounds of 
degenerating photoreceptors, while flecks with long (474 ps) lifetimes 
were presumed to be flecks present for longer periods, influenced by 
lipofuscin and A2E (112). Throughout the disease, there is a gradual 
progression from short to long FLIO lifetimes in the LSC (113). In 
Stargardt disease, FLIO shows potential in monitoring disease 
progression and may eventually track treatment responses. A 
representative example of a patient with Stargardt disease is shown in 
Figure 8.

4.4 Alzheimer’s disease (AD)

The rationale to study FLIO in AD evolved from the importance 
of vision changes and the retina’s role as an extension of the central 
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FIGURE 7

FAF intensity and FLIO images of the healthy eye. Both the SSC (498–560 nm) and LSC (560–720 nm) are shown. (A–C) Are individual pixels with 
lifetime decay curves shown. Phasor plots for SSC and LSC are shown as well.
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nervous system, as intriguing OCT and FAF data have shown retinal 
degeneration and retinal nerve fiber layer thinning (114–117). 
Jentsch et al. investigated the use of FLIO in 16 patients with AD 
finding FLIO parameters of amplitudes (α) and relative contributions 
(Q) within the LSC correlated significantly with the mini-mental 
status exam score (Q2, R = −0.757, p = 0.007; α2, R = −0.618, 

p = 0.043), as well as p-tau-181 concentration in CSF (Q2, R = 0.919, 
p = 0.009; α2, R = 0.881, p = 0.020) (118). While FLIO lifetimes were 
not necessarily prolonged, the changes identified in this study 
suggest a potential role for FLIO as a valuable tool in the early 
diagnosis of AD-associated changes within the retina (118). Another 
pilot study investigated FLIO in patients with preclinical AD (7 AD, 

FIGURE 8

FLIO images from a patient with a long history of Stargardt disease with corresponding phasor plots. Images of both (A) SSC and (B) LSC are shown. 
The FLIO images show blue “flecks” that have been present for a longer period (113). Yellow “flecks” are not presented here as they are present in the 
acute phase of Stargardt disease (113).

https://doi.org/10.3389/fneur.2025.1493876
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Markowitz et al. 10.3389/fneur.2025.1493876

Frontiers in Neurology 11 frontiersin.org

8 control) (119). In phakic patients, investigators showed that 
patients with AD, when compared to controls, had significantly 
prolonged mean fluorescence lifetimes within the SSC (AD: 593.9 ps; 
control: 475.0 ps; p = 0.036) and LSC (AD: 454.4 ps; control: 
394.1 ps; p = 0.024) (119). They also found that amyloid β, tau in 
CSF, and ganglion cell layer plus inner plexiform layer thickness (as 
determined by OCT) were correlated with mean fluorescence 
lifetimes in phakic subjects (r = −0.611–0.562, p < 0.05) (119). A 
recent study presented at the 2024 Alzheimer’s Association 
International Conference showed that patients with AD (11 patients) 
demonstrated prolonged lifetimes in both the SSC and LSC when 
compared to controls (11 patients) (120). Although these studies had 
a limited number of patients, the initial findings suggest that FLIO 
may detect fluorophores linked to mitochondrial metabolic 
impairments in AD, pending further investigation to accurately 
identify the source of these signals. Representative examples of 
patients with AD are shown in Figure 9.

4.5 Parkinson’s disease (PD)

Parkinson’s disease has many motor and non-motor 
manifestations, especially in the visual system, including 
abnormalities in eye movements, visual acuity, color vision, and 
contrast sensitivity (121–123). Mitochondrial pathogenic factors have 
also been identified in the initiation and progression of PD. (124–
126). Multiple studies investigating OCT in PD have shown retinal 

nuclear layer thinning, reduced retinal nerve fiber layer, and reduced 
macular volume (127, 128). While OCT helps to assess structural 
changes in PD after they have already occurred, understanding early 
metabolic changes may help identify the disease before the clinical 
onset of visual changes.

In a pilot study presented at the 2023 International Congress of 
Parkinson’s Disease and Movement Disorders, Shivok et al. showed 
nine PD patients experiencing visual disturbances and compared 
them to nine controls (129). Their data showed that PD patients had 
prolonged mean fluorescence lifetimes within the SSC in the right eye 
and both SSC and LSC in the left eye when compared to controls 
(129). At the 2024 ARVO annual meeting, another study showed that 
lifetimes were prolonged within the SSC of PD patients (19 patients 
without apparent retinal disease) when compared to controls (20 
patients) (130). At the 2024 International Congress of Parkinson’s 
Disease and Movement Disorders, investigators showed that 27 PD 
patients had prolonged mean fluorescence lifetimes in both the SSC 
and LSC compared to 9 controls (131).

These initial FLIO pilot studies observed prolonged fluorescence 
lifetimes in PD patients, suggesting complex in  vivo metabolic 
changes in the retina. The longer FLIO lifetimes seen in patients with 
PD may be influenced by the cumulative impact of neurodegenerative 
changes, oxidative stress, or other mechanisms. Further studies with 
FLIO are needed to show that metabolic changes may occur, and 
these changes may occur before the onset of visual symptoms 
associated with the disease. A representative example of a patient 
with PD is shown in Figure 10.

FIGURE 9

FLIO images and phasor plots of a patient with a 2-year diagnosis of AD showing both the (A) SSC and (B) LSC. Also shown is a patient with a 4-year 
diagnosis of AD showing both the (C) SSC and (D) LSC.
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4.6 Neuromyelitis optica spectrum disorder 
(NMOSD)

NMOSD, an antibody-mediated inflammatory disease directed 
against aquaporin 4 (AQP4) water channels, may result in severe 
vision loss. AQP4 has been shown to co-localize and interact with 
inwardly rectifying potassium channels within the retina (132). These 
potassium channels aid in spatial buffering of retinal potassium, a 

process mediated by retinal astrocytes (Müller cells) (132–134). 
Müller cells assist in the balance of fluid movement within the retina 
and span from the inner retina to the inner segments of the 
photoreceptors. Müller cell footplates have high concentrations of 
AQP4 channels that co-localize with potassium channels and AQP4 
channels scattered on the surface of Müller cells (132). The Müller cell 
foot processes surround retinal vessels in the superficial and deep 
vascular layers of the retina (132). In NMOSD, these interactions are 

FIGURE 10

FLIO images and phasor plots of a patient with PD. Both (A) SSC and (B) LSC are shown.
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disrupted, leading to retinal swelling and edema, potentially resulting 
in permanent visual loss (135). These structural retinal changes have 
traditionally been visualized with OCT, but FLIO provides insight into 
the metabolic changes occurring within the retina in patients 
with NMOSD.

Recent studies have suggested that mitochondrial dysfunction 
contributes to the pathophysiology of NMOSD (136, 137). 
Mitochondrial dysfunction has been implicated in motor and 
cognitive symptoms of NMOSD (136). In an animal model of 
NMOSD, researchers showed that etomoxir, a drug that interferes 
with mitochondrial fatty acid oxidation, can modulate mitochondrial 
function and ameliorate astrocyte pathology associated with NMOSD 
(137). While astrocytes with mitochondrial dysfunction can still 
survive, they lose their neuroprotective functions, a crucial factor in 
NMOSD (137). Their study suggests that mitochondrial dysfunction 
in astrocytes and retinal Müller cells may exacerbate retinal swelling 
and visual damage from disruptions in metabolic activity and 
oxidative stress.

In a pilot study, Cappellani et  al. investigated FLIO in nine 
patients (18 eyes) with NMOSD and compared them with 12 
controls (24 eyes) (138). The study found significantly prolonged 
mean FLIO lifetimes (τm) in the SSC in patients with NMOSD 
compared to controls (NMOSD: 181.71 ps, controls: 118.46 ps, 
p = 0.004) (138). OCT showed significant differences in retinal 
nerve fiber layer (RNFL) thickness average (NMOSD: 80.5 μm, 
controls: 96.2 μm, p = 0.046), ganglion cell layer (GCL) volume 
(NMOSD: 0.86 mm3, controls: 1.07 mm3, p = 0.0009), and GCL 
thickness at the 3 mm nasal area (NMOSD: 37.1 μm, controls: 
53.2 μm, p = 0.000245) (138). The pilot study suggested that both 
structural and functional changes are seen in NMOSD, with 
functional changes detected by FLIO and structural changes seen on 
OCT, specifically in the GCL. Given that the GCL is an area highly 
concentrated in AQP4 channels at the retinal capillary-Müller cell 
junction, supplied from the central retinal artery, these findings 
suggest that central retinal artery ischemic changes to Müller cells 
contribute to metabolic dysfunction and permanent visual loss in 
NMOSD (138). A representative example of NMOSD is shown in 
Figure 11.

5 Summary and conclusion

 1 FLIO provides a unique, non-invasive method with the 
potential to monitor fluorescence signals linked to the 
metabolic state of the retina and to reveal their alterations in 
various ophthalmic and neurologic conditions. Acquiring data 
with FLIO is fast and may be effective in a clinical setting.

 2 Deciphering FLIO data with phasor plots in the clinical setting 
may allow for the rapid and more specific interpretation of 
data, aiding in the diagnosis and assessment of disease. 
Correlating FLIO findings with OCT might provide qualitative 
and quantitative data on the structural and metabolic state of 
the retina in various diseases, potentially improving 
personalized disease management.

 3 Upon validation of the molecular components of FLIO data, 
which can be achieved by complementing FLIM studies, FLIO 
could allow for understanding the metabolic state of specific 
fluorophores within the retina. Future advancements in 

two-photon excitation FLIO can potentially expand the depth 
and scope of information beyond what the current setup of 
FLIO offers, enabling the detection of other important 
molecules such as NADH. The current understanding of FLIO 
requires further investigation through molecular imaging and 
pharmacological validation to accurately link fluorescence 
lifetimes to specific retinal molecules in vivo.

 4 The use of FLIO in MacTel and Stargardt disease shows early 
potential to document metabolic changes before symptoms of 
vision change begin, aiding in the early detection of disease. 
Thus, FLIO technology has shown potential in detecting 
functional changes from the studies outlined in this review, 
sometimes preceding structural changes observed by 
traditional imaging modalities.

 5 Based upon preliminary data, FLIO may have a role in the early 
detection of broad neurodegenerative conditions such as AD 
and PD and may also be useful in other conditions such as 
neuroinflammation exemplified by NMOSD.

 6 The retina provides at least a window, and maybe a microcosm, 
into the central nervous system, and the use of FLIO in 
neurology and neuro-ophthalmology is increasing.

 7 Classifying diseases based on abnormal FLIO signals requires 
disease-specific pattern recognition in fluorescence lifetimes. 
These patterns can be  qualitative, as demonstrated by the 
distinct spatial patterns of lifetimes observed in Stargardt 
disease and MacTel type 2, which can be differentiated from 
one another based on their unique FLIO findings. These 
patterns can also be  quantitative, such as the prolonged 
lifetimes observed in many conditions discussed in this review. 
For example, FLIO can already help differentiate new flecks 
from older flecks in Stargardt disease (112, 113). In the future, 
the spatial distribution of fluorescence lifetimes across different 
retinal layers may further aid in classifying disease, as many 
diseases affect specific layers of the retina differently. 
Additionally, the use of FLIO technology with multiple 
excitation and emission wavelengths in the future may help to 
establish disease-specific patterns of fluorescence lifetimes by 
capturing a broader range of fluorophore contributions.

 8 Future strategies may involve developing disease-specific 
reference databases and using artificial intelligence (AI) to 
analyze fluorescence lifetime images, histograms, and phasor 
plots, enabling automated detection of disease-related 
abnormalities that are diagnostically accurate and 
reproducible. Additionally, integrating FLIO with imaging 
modalities, such as OCT, could improve disease classification 
by correlating metabolic abnormalities with retinal layer-
specific structural changes. Recent advancements in FLIO 
analysis include the integration of AI, such as support vector 
machines, which have successfully differentiated fluorescence 
lifetimes between non-smokers and heavy smokers with an 
accuracy of 80% (139). Adaptive optics fluorescence lifetime 
imaging ophthalmoscopy (AOFLIO) is a technical 
enhancement of FLIO, acquiring fluorescence lifetimes with 
higher resolution and primarily from the RPE (140). This 
advancement of FLIO found prolonged lifetimes in patients 
with pentosan polysulfate toxicity, emphasizing subtle outer 
retina changes that are not visible with standard imaging 
modalities (140). Near-infrared AOFLIO is another technique 
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that has enhanced standard FLIO technology to visualize the 
RPE cellular mosaic (141). These advancements highlight the 
potential of AI-assisted and AOFLIO techniques to enhance 
diagnostic accuracy and expand FLIO in ophthalmic and 
neurodegenerative diseases. FLIO has the potential to become 
a valuable tool for the early detection and monitoring of 
disease progression and for measuring the impact of 
experimental therapies on disease.
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FIGURE 11

FLIO images and phasor plots of a patient with NMOSD. Both (A) SSC and (B) LSC are shown.
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