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Background: It is widely recognized that the Apolipoprotein E (ApoE) exhibits 
a significant association with dyslipidemia and atherosclerotic cardiovascular 
disease (ASCVD). The tortuous extracranial carotid artery (ECA) is a frequently 
encountered vascular morphological anomaly that may be  associated to 
ischemic cerebrovascular disease. The purpose of this study was to investigate 
the association between ApoE gene polymorphism and the tortuosity of ECA.

Methods: The clinical data and ApoE genetic test of inpatients who underwent 
head and neck DSA or CTA at our department between June 2020 and January 
2024, were retrospectively analyzed. The tortuosity index (TI) of the ECA was 
measured and calculated. The included patients were analyzed using two 
grouping methods based on TI of the ECA: three groups determined by the 
tertile distribution and two groups based on the median distribution. Multivariate 
logistic regression analysis and Spearman rank correlation analysis were 
employed to investigate the correlation between ApoE genotypes and ECA 
tortuosity.

Results: A total of 238 patients were included in the study. The lowest tertile, 
the middle tertile and the highest tertile of TI distribution encompassed 91 cases 
(38.2%), 65 cases (27.3%) and 82 cases (34.5%) respectively. On the other hand, 
there were 127 cases (53.4%) in the low median group and 111 cases (46.6%) in 
the high median group. Due to the rarity of the three genotypes (ε2/ε2, n = 4; 
ε2/ε4, n = 1; ε4/ε4, n = 1), they were excluded for further statistical analysis. 
After adjusting for all covariates, the genotype ε3/ε4 continued to show an 
independent correlation with ECA tortuosity in the tertile groups (adjusted odds 
ratio = 0.469, 95% confidence interval: 0.242–0.969, p = 0.025). The Spearman’s 
rank correlation analysis revealed a significant negative correlation between the 
TI of ECA and ApoE gene polymorphism (in sequential order: ε2/ε3, ε3/ε3, and 
ε3/ε4) (rS = − 0.149, p = 0.023).

Conclusion: Our study suggested that the ε2 allele may be associated with the 
increased tortuosity of ECA, whereas the ε4 allele may leads to be a protective 
factor. The ε3 allele, as the most prevalent wild-type in human, has not exert a 
significant influence on ECA tortuosity.
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Introduction

Apolipoprotein E (ApoE) is expressed primarily by the liver 
parenchymal cells in the human body and is a major apolipoprotein 
found in plasma. It exhibits genetic polymorphism, consisting of three 
alleles (ε2, ε3, and ε4), which combine to form six different genotypes 
(ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, and ε4/ε4) (1, 2). The above three 
alleles (ε2, ε3, and ε4) encode three ApoE isoforms (E2, E3, and E4), 
which play different roles in maintaining cholesterol metabolic balance. 
ApoE4 is associated with various diseases, including hyperlipidemia (3), 
atherosclerosis (4), Alzheimer’s disease (5, 6) coronary atherosclerotic 
heart disease, and ischemic stroke (7). Extracranial carotid artery (ECA) 
tortuosity is considered an age-related degenerative change, but its 
underlying mechanism is still incompletely clear. Previous study has 
shown severe ECA tortuosity is associated with hemodynamic changes 
and transient ischemic attack, which commonly arisen from 
atherosclerotic stenosis (8). Furthermore, the obvious ECA tortuosity 
increases the challenge of endovascular treatment (9), and may leads to 
poor prognosis of anterior circulation ischemic stroke patients who 
without undergoing interventional procedure (10).

Although ECA tortuosity and ApoE are both associated with 
cerebrovascular disease, the causal relationship between them is currently 
unknow yet. The aim of this study is to investigate the relationship 
between ECA tortuosity and ApoE gene polymorphism, and to providing 
more clues and evidence for the pathogenesis of ECA tortuosity.

Materials and methods

Patients

The clinical data and ApoE gene tests of inpatients, who 
underwent the head and neck digital subtraction angiography (DSA) 
or computed tomography angiography (CTA) in our department from 
June 2020 to January 2024, were retrospectively analyzed. The clinical 
data comprised demographic information and the cerebrovascular 
disease’s common risk factors. The tortuosity index (TI) of ECA for 
each patient were measured and calculated. Referring to the methods 
in previous literatures (11, 12), the included patients were divided into 
three groups based on the tertile distribution of ECA TI and two 
groups based on the median distribution. We compared the differences 
in clinical data and ApoE genotypes between these groups.

The inclusion criteria for this study were hospitalized patients who 
had completed both head and neck CTA/DSA and ApoE genotyping, 
without restriction based on disease entities. The exclusion criteria 
were defined as follows. (1) patients with poor imaging quality of CTA 
or DSA which could not complete the measure and calculate for the 
tortuosity index. (2) patients with the bilateral ECA occlusion. (3) 
patient is under 18 years old. This study was designed for retrospective 
research, and the formal consent from patients was not required. All 
research procedures involving human participants adhered to the 
ethical standards of the Declaration of Helsinki of 1964 and its 
subsequent amendments or similar ethical standards.

Acquisition of ECA imaging

The DSA was performed using an Allura xper FD20 X-ray system 
(Philips, Netherlands), while the CTA was performed using a 

Brilliance 64 row 128 slice spiral CT (Philips, Netherlands). The three-
dimensional volume rendering of the head and neck arteries were 
achieved using the Philips Extended Brilliance™ workstation (Philips, 
Netherlands). Both DSA and CTA procedures were all using non-ionic 
contrast agents (iohexol, iopamidol or iodixanol) for imaging. The 
informed consent form for DSA or CTA procedures were signed by 
the enrolled patients or their next of kin.

Quantification of tortuosity index

The DICOM document of CTA and DSA images were 
downloaded and collected from picture archiving and communication 
system (PACS). The tortuosity index of the ECA was measured and 
calculated by two independent experts in cerebrovascular disease 
imaging using Sante DICOM Viewer 3D software (Sante soft LTD, 
Nicosia, Cyprus). After loading DICOM files or selected JPEG format 
images into the Sante DICOM Viewer software, the anteroposterior 
view of 3D volume-rendered images for bilateral ECA were choose to 
measure. The proximal end for measure was the bifurcation point of 
the aortic arch in the left ECA or the brachiocephalic trunk in the 
right ECA. The distal end of measurement was the ECA located at the 
entrance of the carotid canal. A line measurement tool was used to 
measure the actual length from the proximal end to the distal end 
along the curvature of the ECA, and a linear distance tool was used to 
measure the straight length between the two points. The calculation 
formula for the TI of ECA is as follows. TI = [actual length/straight 
length−1] × 100. Since relative numbers cannot be  averaged, the 
higher value obtained from the bilateral ECA calculations was taken 
to represent the TI of the patient. The specific measurement and 
calculation methods refer to the previously published literature (13, 
14) (Figure 1).

Detection of ApoE genotype

After extracting DNA from venous blood of patients, the ApoE 
genotypes was detected and analyzed by Fascan-48E Multichannel 
Fluorescence Quantitative Analyzer and SNP-U4 Human ApoE Gene 
PCR Detection Kit (TIANLONG Technology Ltd., Xi’an city, CHN). 
The genotype of each subject was one of six possible results: three 
homozygotes (ε2/ε2, ε3/ε3, ε4/ε4) or three heterozygotes (ε2/ε3, ε2/
ε4, ε3/ε4).

Statistical analysis

All the data were statistically processed by using SPSS software 
(version 20.0, IBM Corporation, Armonk, NY). The Kolmogorov 
Smirnov test and Shapiro Wilk test was used to examine the normal 
distribution of continuous variables, and the Levene test is used to test 
the homogeneity of variance. The continuous variables that follow a 
normal distribution were described as Mean (SD), and inter group 
comparisons were performed by using the analysis of variance or the 
student’s t test. The continuous variables with skewed distribution 
were described as Median (IQR), and intergroup comparisons were 
performed by using Kruskal Wallis rank-sum test or Mann Whitney 
U test. The categorical variables were described as n (%), and inter 
group comparisons were conducted by using chi-square test, Fisher’s 
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exact test, or Kruskal Wallis rank-sum test. The multivariate analysis 
was performed by using the ordinal logistic regression and binary 
logistic regression. The odds ratio (OR) and 95% confidence interval 
(CI) were calculated to analyze the independent risk factors for ECA 
tortuosity. The spearman correlation coefficient (rs) was used to 
analyze the correlation between ApoE gene polymorphism and the 
degree of ECA tortuosity. p < 0.05 indicates the statistically significant.

Results

Univariate analysis

A total of 238 patients with ischemic cerebrovascular disease or 
those with its risk factors were included in this study. According to the 
tertile distribution of ECA TI, there were 91 cases (38.2%) in the TI < 13 
group, 65 cases (27.3%) in the TI 13–19 group, and 82 cases (34.5%) in 
the TI > 19 group. According to the median distribution of ECA TI, there 
were 127 cases (53.4%) in the TI ≤ 15 group and 111 cases (46.6%) in the 
TI > 15 group. The age, sex, hypertension, diabetes, total cholesterol 
(TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), 
atrial fibrillation, smoking history, drinking history, and previous stroke 
history were analyzed and compared.

Among the 238 patients included, the distribution of ApoE 
genotypes is as follows: 4 cases of ε2/ε2 (1.68%), 40 cases of ε2/ε3 
(16.8%), 1 case of ε2/ε4 (0.42%), 143 cases of ε3/ε3 (60.1%), 49 cases 
of ε3/ε4 (20.58%), and 1 case of ε4/ε4 (0.42%). Due to the rarity of 
genotypes ε2/ε2, ε2/ε4, and ε4/ε4, the six cases were excluded for 
further statistical analysis as refer to a previous research (15).

There were significant differences (p < 0.05) in age, female gender, 
and smoking history between the tertile groups and the median 
groups. In addition, there were significant differences in alcohol 

consumption between the median groups and in atrial fibrillation 
between the tertile groups. As for the genotypes of ApoE, ε3/ε4 
(p = 0.029) showed statistically difference in the tertile groups for ECA 
TI. In contrast, no statistically significant differences were observed in 
either grouping methods for ε2/ε3 and ε3/ε3 (Table 1).

Multivariate logistic regression analysis

The variables demonstrated with statistical differences in 
univariate analysis, including age, gender, smoking history, alcohol 
consumption history, and the two target independent variables (ApoE 
genotype ε2/ε3 and ε3/ε4), were utilized into ordinal 
multiclassification logistic regression and binary logistic regression 
analyses to investigate the risk factors associated with ECA tortuosity.

After adjusting for age, female gender, and smoking, the ordinal 
multiclassification logistic regression for the tertile groups revealed 
that ε2/ε3 (OR = 1.116, 95% CI 0.550–2.264; p = 0.76) did not emerge 
as an independent risk factor, while ε3/ε4 (OR = 0.469, 95% CI 0.242–
0.909; p = 0.025) demonstrated as a protective factor for ECA 
tortuosity. Neither ε2/ε3 (OR = 1.374, 95% CI 0.609–3.102; p = 0.444) 
nor ε3/ε4 (OR = 0.6, 95% CI 0.282–1.273; p = 0.183) showed the 
significant independent relationship to ECA tortuosity after adjusting 
for age, female gender, smoking, and alcohol consumption in binary 
logistic regression (Table 2).

Correlation analysis between ApoE gene 
polymorphism and ECA tortuosity

The distribution of the ECA tortuosity index in ApoE genotypes 
(ε2/ε3, ε3/ε3, and ε3/ε4) is displayed in Figure 2. The Spearman’s rank 

FIGURE 1

The actual length (white line) and straight length (yellow line) of the left ECA (A,B) and the right one (C). Based on the calculations using the formula 
(TI = [a/b−1] × 100), the tortuosity of ECA in A is mild (TI = 4), while that in B is moderate (TI = 15), and that in C is severe (TI = 36). ECA, extracranial 
carotid artery; TI, tortuosity index.
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correlation analysis revealed a significant negative correlation between 
the TI of ECA and ApoE genotypes (in sequential order: ε2/ε3, ε3/ε3, 
and ε3/ε4) (rS = −0.149, p = 0.023).

Discussion

In this study, we  have demonstrated a potential association 
between the ApoE gene polymorphism and the tortuosity of ECA in 

adult patients. Our findings indicated that individuals with the ApoE 
genotype ε3/ε4 exhibit an independent protective factor for ECA 
tortuosity. Furthermore, we  have revealed a significant negative 
correlation between ECA tortuosity and three genotypes of ApoE (in 
sequential order: ε2/ε3, ε3/ε3, and ε3/ε4). Specifically, these results 
suggest that the ε4 allele may exert a protective effect on the tortuosity 
of ECA, while as for the ε3 allele, the most common wild-type of 
ApoE, has no significant influence on ECA tortuosity. Although the 
ε2 allele did not show the statistical significance in the multivariate 

TABLE 1 The characteristics of clinical data and ApoE genotypes between the tertile and the median groups for ECA TI.

Factors The tertile groups of TI p value The median groups of TI p value

TI < 13 TI 13–19 TI > 19 TI ≤ 15 TI > 15

(n = 91) (n = 65) (n = 82) (n = 127) (n = 111)

Age in years, mean 

(SD)
63.9 (11.1) 69.4 (10.6) 71.7 (10.6) <0.001 65.2 (11.1) 71.4 (10.5) <0.001

Female, n(%) 18 (19.8) 21 (32.3) 57 (69.5) <0.001 29 (22.8) 67 (60.4) <0.001

Hypertension, n(%) 70 (76.9) 54 (83.1) 67 (81.7) 0.585 100 (78.7) 91 (82.0) 0.531

Diabetes mellitus, 

n(%)
34 (37.4) 32 (49.2) 27 (32.9) 0.121 53 (41.7) 40 (36.0) 0.369

TG, median (IQR) 1.33 (1.43) 1.3 (1.17) 1.29 (0.8) 0.923 1.30 (1.20) 1.29 (0.85) 0.710

TC, median (IQR) 4.46 (1.65) 4.28 (1.69) 4.42 (1.8) 0.214 4.46 (1.66) 4.36 (1.57) 0.966

LDL-C, median 

(IQR)
2.78 (0.97) 2.71 (1.34) 2.68 (1.44) 0.348 2.76 (1.00) 2.69 (1.23) 0.934

Atrial fibrillation, 

n(%)
7 (7.7) 0 (0) 5 (6.1) 0.048 7 (5.5) 5 (4.5) 0.775

Smoking, n(%) 51 (56.0) 25 (38.5) 13 (15.9) <0.001 66 (52.0) 23 (20.7) <0.001

Alcohol drinking, 

n(%)
23 (25.3) 15 (23.1) 7 (8.5) 0.978 32 (25.2) 13 (11.7) 0.008

Stroke history, n(%) 11 (12.1) 7 (10.8) 8 (9.8) 0.965 15 (11.8) 11 (9.9) 0.682

ApoE genotype, n(%)

  ε2/ε2 0 (0) 3 (4.6) 1 (1.2) / 1 (0.8) 3 (2.7) /

  ε2/ε3 12 (13.2) 9 (13.8) 19 (23.2) 0.177 16 (12.6) 24 (21.6) 0.082

  ε2/ε4 1 (1.1) 0 (0) 0 (0) / 1 (0.8) 0 (0) /

  ε3/ε3 54 (59.3) 37 (56.9) 52 (63.4) 0.715 78 (61.4) 65 (58.6) 0.653

  ε3/ε4 24 (26.4) 16 (24.6) 9 (11) 0.029 31 (24.4) 18 (16.2) 0.148

  ε4/ε4 0 (0) 0 (0) 1 (1.2) / 0 (0) 1 (0.9) /

SD, standard deviation; IQR, interquartile range; CA, carotid artery; TI, tortuosity index; TG, triglyceride; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; ApoE, 
Apolipoprotein E.

TABLE 2 Multivariate logistic regression for ECA tortuosity.

Factors The tertile groups of TI The median groups of TI

OR 95% CI p value OR 95% CI p value

Age 1.059 1.033–1.085 <0.001 1.059 1.029–1.090 <0.001

Female 4.345 2.286–8.258 <0.001 3.989 1.933–8.230 <0.001

Smoking 1.829 0.961–3.481 0.066 2.370 1.047–5.367 0.039

Alcoholism / / / 0.570 0.227–1.432 0.231

ApoE genotype

  ε2/ε3 1.116 0.550–2.264 0.760 1.374 0.609–3.102 0.444

  ε3/ε4 0.469 0.242–0.909 0.025 0.600 0.282–1.273 0.183

OR, odds ratio and CI, confidence interval.

https://doi.org/10.3389/fneur.2025.1498613
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1498613

Frontiers in Neurology 05 frontiersin.org

analysis, according to the Spearman correlation analysis, the ε2 allele 
carriers still may exist a potential promotive mechanism for 
ECA tortuosity.

Apolipoprotein E, a basic protein rich in arginine, is one of the 
main apolipoproteins in plasma. ApoE gene can lead to a variety of 
diseases by affecting the metabolism of lipids in serum (16). The ε4 
allele carriers have higher levels of cholesterol and low-density 
lipoprotein, while the ε2 allele carriers have lower levels of cholesterol 
and low-density lipoprotein. The ApoE2 isoform can reduce the level 
of low-density lipoprotein in plasma, so it is considered to play a 
protective role in atherosclerotic cardiovascular disease (ASCVD) (4). 
In addition, ApoE participates in regulating multiple information 
pathways in the central nervous system, including cholesterol/lipid 
homeostasis, synaptic function, glucose metabolism, neurogenesis, 
mitochondrial function, tau protein phosphorylation, neuronal 
atrophy, etc., thereby affecting cognitive function (17–19). The 
prevailing consensus suggests that ApoE4 serves as a critical genetic 
risk factor in the pathogenesis of neurodegenerative disorders, notably 
Alzheimer’s disease. On the contrary, ApoE2 is a genetic protective 
factor for Alzheimer’s disease (AD), and its exact mechanism is not 
yet clear (20). Furthermore, some previous studies related to 
neurodegenerative diseases suggest that ApoE2 may increases the risk 
of progressive supranuclear palsy (21, 22). In summary, the ApoE4 
may plays an important role in the development of Aging process, 
while ApoE2 is a protective isoform for ASCVD and AD.

Although the pathogenesis is currently unclear, there are 
evidences to suggest the ECA tortuosity may association with ischemic 
stroke (23, 24), arterial dissection (25, 26), white matter 
hyperintensities (27, 28), connective tissue disease (29), and 
intracranial aneurysm (30). Considering the significant relationship 
between ECA tortuosity and age, it may be classified as a type of 
vascular morphological anomaly attributed to the process of aging. 
However, our research results surprisingly showed that ECA tortuosity 
seems to be positively correlated with the ε2 allele, a protective genetic 
gene for atherosclerosis and AD, and be negatively correlated with the 
ε4 allele, which is considered as a risk gene. Although whether arterial 
tortuosity is an independent risk factor for ischemic stroke or related 

to atherosclerosis remains controversial (31–33), our research results 
also found that common risk factors of stroke, such as dyslipidemia, 
hypertension, diabetes, smoking and alcohol consumption, could not 
be confirmed as the independent risk factors of ECA tortuosity. Apart 
from the factor of age, female participants exhibited a more 
pronounced tortuosity of the ECA, which may be attributed to their 
comparatively shorter average height when compared to males. 
Furthermore, although some genetic arterial diseases, such as Loeys-
Dietz syndrome, Marfan syndrome, Aneurysm-osteoarthritis 
syndrome, can manifest as aortic or carotid artery tortuosity through 
the remodeling of vascular connective tissue (34), there are currently 
a lack of reports linking ApoE gene polymorphisms to these genetic 
connective tissue disorders. Overall, even though ECA tortuosity is 
considered to be associated with degenerative changes, there is still a 
significant discrepancy in the mechanism between ECA tortuosity and 
atherosclerosis. The underlying genetic factors and remodeling of 
vascular wall may both be  involved in the pathogenesis of ECA 
tortuosity. However, it is still unclear how ApoE gene polymorphism 
affects ECA tortuosity, and further in-depth research is needed to 
explore the pathogenesis of vascular tortuosity.

There are several limitations in our study. First of all, there is a 
possibility of congenital bias due to this study is retrospective. Second, 
our research is a single center study and did not include the race factor 
of participants. It is uncertain whether there are differences in the 
results between different racial populations. Finally, the proportion of 
patients with ApoE genotype ε2/ε3 and ε3/ε4 were relatively small, 
which leads to certain difference in sample size between the groups, 
and it is necessary to increase the sample size, preferably through 
further research on big data.

Conclusion

Our study suggested that the ApoE ε2 allele may be associated 
with increased tortuosity of ECA, whereas the ε4 allele may leads to 
be the protective factor. The ε3 allele, as the most prevalent wild-type 
in human, has not shown a significant influence on ECA tortuosity. 
The pathogenesis of ECA tortuosity may be associated with genetics 
and age-related vascular degenerative changes. In further research, 
we aim to verify the association between ApoE gene polymorphism 
and ECA tortuosity by expanding the sample size, conducting big data 
analysis, and including participants from diverse regions and ethnic 
backgrounds. Additionally, we anticipate more fundamental studies 
to elucidate the mechanisms underlying these research findings.
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FIGURE 2

The distribution of ECA tortuosity index in ApoE genotypes and 
suggested a significant negative correlation. ECA, extracranial carotid 
artery; rs, spearman correlation coefficient.
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