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Introduction: Palmitoylation influences patients with obstructive sleep apnea 
(OSA) by modulating amyloid-β production. However, the involvement of 
palmitoylation-related genes (PRGs) in OSA remains unclear. This study aims to 
investigate this mechanism using bioinformatics approaches.
Methods: Datasets GSE38792 and GSE135917 were retrieved from the Gene 
Expression Omnibus (GEO) database. Differentially expressed PRGs (DE-PRGs) 
were identified through differential expression analysis and weighted gene co-
expression network analysis (WGCNA). Candidate genes were pinpointed using 
the max cluster centrality method in cytoHubba. Biomarkers were selected 
through machine learning algorithms, expression profiling, and ROC analysis, 
with diagnostic potential evaluated using a nomogram. Further insights into 
the role of biomarkers in OSA were provided through enrichment analysis, 
molecular regulatory network construction, and drug prediction.
Results: HIF1A and PDIA3 emerged as potential biomarkers, with the nomogram 
showing high predictive accuracy for OSA. Enrichment analysis revealed that 
HIF1A and PDIA3 were co-enriched in pathways such as “focal adhesion,” 
“olfactory transduction,” “RNA degradation,” “spliceosome,” and “ubiquitin-
mediated proteolysis.” A lncRNA-miRNA-mRNA regulatory network was 
constructed, featuring multiple regulatory pairs, including CYTOR-hsa-miR-1-
3p-HIF1A and CYTOR-hsa-miR-1-3p-PDIA3. Drug prediction analysis identified 
potential compounds targeting HIF1A, such as klugine, puupehenone, and 
isocephaeline.
Conclusion: HIF1A and PDIA3 were highlighted as significant potential 
biomarkers, providing valuable insights into the molecular mechanisms of 
palmitoylation in OSA and potential therapeutic targets.
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1 Introduction

Obstructive sleep apnea (OSA) is characterized by apnea and hypoventilation 
caused by the collapse and obstruction of the upper airway during sleep, often 
accompanied by symptoms such as snoring, disrupted sleep architecture, frequent 
occurrence of oxygen desaturation, and daytime sleepiness. Affecting nearly 1 billion 
individuals worldwide, OSA represents a significant global public health issue (1, 70). 
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The condition leads to intermittent hypoxia (IH), hypercapnia, 
sleep fragmentation, and reduced oxygen saturation during sleep 
(2), substantially increasing the risk of central nervous system 
dysfunction, including depression, anxiety, and memory deficits 
(3). Furthermore, it elevates the risk of cardiovascular diseases 
such as hypertension and abnormal heart rate variability (4). 
OSA also increasingly affects younger populations (5). Moreover, 
IH and fragmented sleep in OSA contribute to the development 
of cancer and type 2 diabetes, as well as metabolic disorders such 
as obesity, insulin resistance, and dyslipidemia (1, 2). Recurrent 
upper airway obstruction in OSA can exacerbate discomfort due 
to prolonged IH (6). Despite its high prevalence, treatment 
options for OSA remain limited. Currently, positive airway 
pressure remains the first-line therapy for moderate to severe 
cases, with continuous positive airway pressure being the most 
widely used. However, its tolerance is generally poor, leading to 
relatively low patient adherence. Other treatments, such as 
weight loss, positional therapy, exercise, dietary adjustments, 
surgery, oral appliances, and upper airway stimulation, also 
present significant limitations (7). Currently, therapeutic drugs, 
including antihypertensives, antidiabetic agents, anti-
inflammatory drugs, immunosuppressants, antidepressants, and 
synthetic cannabinoids, are used, but no drug has proven efficacy 
for OSA treatment (8). Consequently, advancing the 
understanding of the molecular mechanisms underlying OSA 
and identifying potential biomarkers are crucial for improving 
clinical treatment outcomes.

Protein palmitoylation is a reversible post-translational 
modification catalyzed by palmitoyltransferases and 
depalmitoyltransferases, playing a pivotal role in regulating 
protein localization, stability, and function (9). This modification 
is mediated by the zinc finger protein DHHC (ZDHHC) family, 
consisting of 23 distinct proteins in mammals that catalyze the 
reversible attachment of palmitate (10). In contrast, 
depalmitoylation is primarily driven by three distinct families, 
encompassing seven genes (9, 11). Palmitoylation involves the 
formation of thioester bonds between the palmitate moiety and 
the sulfhydryl group of cysteine residues, affecting over 4,000 
human proteins (11). As a reversible modification, protein 
palmitoylation participates in various biological processes related 
to multiple diseases, including cancer, diabetes, Alzheimer’s 
disease, and inflammation (9, 10, 12, 13). The hypopnea index in 
OSA is associated with 65 proteins, and analysis of 254 serum 
proteins from patients with OSA revealed a prominent insulin-
associated protein signature, alongside elevated insulin levels in 
their blood (15). Notably, several components involved in insulin 
secretion and action have been linked to palmitoylation (12). 
Additionally, amyloid-β expression in the cerebrospinal fluid of 
patients with OSA has been found to be increased (15, 16), with 
palmitoylation playing a role in amyloid-β production (17). 
These findings suggest that palmitoylation may significantly 
contribute to the development of OSA, but the precise biological 
mechanism underlying its role remains unclear.

This study utilized transcriptome sequencing data from public 
databases and applied bioinformatics approaches to analyze and 
identify palmitoylation-related genes (PRGs) in OSA. Potential 
biomarkers were explored, and their biological functions were 
investigated, providing new insights for early prevention and the 
development of clinical therapeutic strategies for patients with OSA.

2 Materials and Methods

2.1 Data extraction

The OSA-related datasets, GSE38792 and GSE135917, were 
retrieved from the Gene Expression Omnibus (GEO) database,1 with 
a sequencing platform of GPL6244. The GSE38792 dataset (training 
set) included visceral adipose tissue samples from 10 patients with 
OSA and 8 healthy controls. A total of 66 samples were included in the 
GSE135917 dataset (validation set). After excluding 48 treated 
samples, 10 untreated OSA samples and 8 normal control samples 
were retained for analysis. Detailed sample information of the two 
datasets is shown in Supplementary Table 1. Additionally, 30 PRGs 
were sourced from the literature (9, 18), comprising 23 palmitoyl 
acetyltransferase genes and 7 de-palmitoyl acetyltransferase genes.

2.2 Differential expression analysis

Differential expression analysis of the GSE38792 dataset was 
performed using the limma package (v 3.54.0) (19) to identify 
differentially expressed genes (DEGs) between OSA and normal 
groups, with criteria set at |log2foldchange (FC)| >0.5 and p < 0.05. 
Visualization of DEGs was achieved using the ggplot2 package (v 
3.4.1) (20) to generate a volcano plot. To further visualize the DEG 
trends, a heat map was created with the ComplexHeatmap package (v 
2.15.1) (21), highlighting the top  10 upregulated and 
downregulated genes.

2.3 Weighted gene co-expression network 
analysis

The single-sample gene set enrichment analysis (ssGSEA) 
algorithm from the GSVA package (v 1.42.0) (22) was applied to 
calculate PRG scores for the OSA and normal samples in the 
GSE38792 dataset. A Wilcoxon test was then conducted to assess the 
differences in PRG scores between OSA and normal samples 
(p < 0.05).

Next, weighted gene co-expression network analysis (WGCNA) 
was performed using the WGCNA package (v 1.70-3) (23) to identify 
key gene modules associated with PRGs. Initially, the GSE38792 
dataset was subjected to cluster analysis using the GoodSamplesGenes 
function to detect potential outlier samples. Outliers were excluded to 
ensure the accuracy and reliability of the subsequent analyses. The 
optimal soft threshold (β) was determined to ensure the gene 
interactions conformed to a scale-free network distribution, with a 
scale-free fit index (R2) of 0.85 and mean connectivity approaching 0. 
The dynamic tree-cutting algorithm was then applied, setting the 
minimum number of genes per module to 100 and mergeCutHeight 
to 0.4 (55% similarity), resulting in the clustering of genes into distinct 
modules. PRG scores were treated as phenotypic traits, and Pearson 
correlation analyses between gene modules and phenotypic traits were 
performed using the psych package (v 2.2.9) (24) with thresholds set 
at |r| > 0.4 and p < 0.05. Modules showing the highest positive and 

1  http://www.ncbi.nlm.nih.gov/geo/
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negative correlations with PRG scores were selected as key modules. 
The key module genes were identified by screening for |module 
membership (MM)| >0.8 and |gene significance (GS)| >0.2.

2.4 Identification of candidate genes

Differentially expressed PRGs (DE-PRGs) were identified by 
intersecting key module genes with DEGs using the VennDiagram 
package (v 1.7.1) (25). To explore the biological functions and signaling 
pathways associated with DE-PRGs, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were 
performed using the clusterProfiler package (v 4.2.2) (26), with 
significance set at p < 0.05. The GO system was divided into three 
categories: biological process (BP), molecular function (MF), and cellular 
component (CC). The enrichment results were visualized using the 
enrichplot package (v 1.18.3) (27). To better understand the protein-level 
interactions among DE-PRGs, a protein–protein interaction (PPI) 
network was constructed using the Search Tool for the Retrieval of 
Interacting Genes (STRING) database2 with a confidence score ≥ 0.4. The 
PPI network results were then imported into Cytoscape software (v 3.5.2) 
(28), and the maximum cluster centrality (MCC) algorithm in the 
cytoHubba plug-in was applied. The top  10 genes from the MCC 
algorithm were selected as candidate genes for further analysis.

2.5 Recognition and localization of 
biomarkers

Candidate genes were further analyzed using the least absolute 
shrinkage and selection operator (LASSO) regression, implemented with 
the glmnet package (v 4.1-2) (29). The optimal λ value was determined 
through 10-fold cross-validation to identify the most relevant feature 
genes. Simultaneously, the Support Vector Machine-Recursive Feature 
Elimination (SVM-RFE) algorithm, implemented with the e1071 package 
(v 1.7.13) (30), was used for additional gene selection. This approach 
ranked genes based on their significance and evaluated the error rate and 
accuracy for different gene combinations in each iteration. The optimal 
combination of genes was selected based on the lowest error rate, and the 
corresponding genes were identified as feature genes. Candidate 
biomarkers were determined by overlapping the results from LASSO and 
SVM-RFE analyses. These biomarkers were then validated through 
expression analysis and receiver operating characteristic (ROC) curve 
assessment. ROC analysis was performed using the pROC package (v 
1.18.0) (31). The ability of the candidate biomarkers to differentiate OSA 
samples from normal controls was evaluated based on the area under the 
curve (AUC) value in the ROC curve, with an AUC value >0.7 considered 
indicative of substantial predictive performance. Biomarkers were defined 
as such if they met the following criteria: (i) consistent expression trends 
in both the GSE38792 and GSE135917 datasets, (ii) significant expression 
differences between OSA and control groups in both datasets (p < 0.05), 
and (iii) AUC values exceeding 0.7  in both datasets. Finally, the 
chromosomal localization of the candidate biomarkers was visualized 
using the RCircos package (v 1.2.2) (32).

2  https://string-db.org/

2.6 Construction and validation of 
nomogram

The diagnostic potential of biomarkers for OSA was further assessed 
by constructing a nomogram as a diagnostic model using the rms package 
(v 6.7.1) (33) within the entire GSE38792 dataset. A calibration curve was 
plotted to evaluate the predictive performance of the nomogram, with 
better predictive accuracy indicated by closer alignment to the diagonal. 
A mean absolute error (MAE) of less than 0.1 indicated minimal 
discrepancy between actual and predicted disease risks, demonstrating 
high accuracy of the nomogram model in predicting OSA. Additionally, 
ROC curves, decision curves, and clinical impact curves (CIC) were 
created to further assess the nomogram’s predictive capability. Decision 
curves were generated using the ggDCA package (v 1.2).3

2.7 Functional enrichment analysis

Genes related to the function of the biomarkers were predicted using 
the GeneMANIA database.4 To explore the biological functions of the 
biomarkers potentially involved in OSA pathogenesis, patients in the 
GSE38792 dataset were stratified into high and low expression groups 
based on the median expression level of each biomarker. Differential 
expression analysis was then conducted using the limma package. Genes 
were ranked in descending order according to their logFC values. GSEA 
was performed for each biomarker using the “c2.cp.kegg.v7.5.0.symbols” 
gene set from the Molecular Signatures Database (MSigDB) as a reference, 
with thresholds set at a false discovery rate (FDR) <0.25, p < 0.05, and 
|normalized enrichment scores (NES)| >1.

2.8 Establishment of molecular regulatory 
networks and drug prediction

To further investigate the complex regulatory mechanisms 
underlying biomarker expression, the miRNet database5 was utilized 
to predict microRNAs (miRNAs) targeting the biomarkers. Core 
miRNAs were selected based on their targeting of multiple biomarkers, 
and their upstream long non-coding RNAs (lncRNAs) were 
subsequently predicted using the miRNet database. Cytoscape 
software was employed to construct lncRNA-miRNA-mRNA 
regulatory networks, retaining nodes with a degree ≥3. Additionally, 
drugs targeting these biomarkers were identified through the drug-
gene interaction database (DGIdb)6. Based on the interaction scores 
between biomarkers and drugs, the top 20 drugs were selected, and a 
biomarker-drug network was created.

2.9 Statistical analysis

Data processing and analysis were conducted using R software (v 
4.1.0). Differences between groups were analyzed using the Wilcoxon 

3  https://rdrr.io/github/yikeshu0611/ggDCA/

4  https://genemania.org/

5  https://www.mirnet.ca/

6  www.dgidb.org
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test, with a p-value <0.05 considered statistically significant. The 
overall analysis process of this study was shown in Figure 1.

3 Results

3.1 Identification of 367 DEGs and 2,303 
key module genes

In the GSE38792 dataset, 367 DEGs were identified between the 
OSA and normal groups, consisting of 187 up-regulated genes and 180 
down-regulated genes (|log2FC| >0.5 and p < 0.05) (Figures 2A,B). The 
Wilcoxon test revealed a significant difference in PRG scores between 
OSA and normal groups, with notably higher scores in the OSA group 
(p = 0.01) (Figure 2C), suggesting a link between palmitoylation and 
the development of OSA. WGCNA was performed to identify key 
module genes associated with PRGs. Clustering results showed no 
outlier samples in the GSE38792 dataset, enabling the continuation of 
analysis (Figure 2D). Using a soft threshold (β) of 30, determined 
based on R2 = 0.85 and connectivity approaching 0 (Figure 2E), six 
gene modules were identified through the dynamic tree cutting 
algorithm (Figure  2F). Further analysis identified the turquoise 

module [module eigengene (ME) turquoise; r = 0.91, p < 0.001] and 
brown module (ME brown; r = −0.67, p = 0.002) as key modules due 
to their strong correlations with PRG scores (Figure 2G). A total of 
2,303 key module genes were filtered (Figure 2H).

3.2 A total of 10 candidate genes were 
identified

By intersecting the 2,303 key module genes with the 367 
DEGs, 195 DE-PRGs were identified (Figure 3A). These DE-PRGs 
were significantly enriched in 135 GO biological functions (95 
BPs, 19 MFs, and 21 CCs) and 12 KEGG pathways. In GO-BP, the 
DE-PRGs were notably enriched in functions such as “regulation 
of transforming growth factor beta production,” “regulation of 
transforming growth factor beta1 production,” and “protein 
folding in the endoplasmic reticulum” (Figure 3B). In GO-CC, 
DE-PRGs were significantly involved in cellular processes like 
“endoplasmic reticulum lumen,” “proton-transporting V-type 
ATPase complex,” and “Golgi lumen” (Figure  3C). In GO-MF, 
DE-PRGs contributed to critical molecular functions including 
“disulfide oxidoreductase activity,” “protein-disulfide reductase 

FIGURE 1

The analysis process of this study.
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FIGURE 2

Identification of differentially expressed genes in OSA. (A) Volcano plot showing differentially expressed genes, with red indicating upregulated genes and 
blue indicating downregulated genes. The top 10 genes with the largest differences are labeled. (B) Heatmap displaying the differential expression of 
genes. (C) Differences in PRG scores between OSA and normal groups. (D) Cluster analysis of all samples in the training set, GSE38792. (E) Determination 
of the optimal soft threshold in WGCNA analysis. (F) Identification of six gene modules through dynamic tree cutting. (G) Heatmap of the correlation 
between gene modules and PRG scores. (H) Significance analysis of MEturquoise and MEbrown module members and their associated genes.
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activity,” and “oligosaccharide binding” (Figure  3D). KEGG 
pathway enrichment revealed significant involvement in pathways 
such as the “cytosolic DNA-sensing pathway,” “necroptosis,” and 
“protein export” (p < 0.05) (Figure 3E).

A PPI network was constructed, comprising 102 nodes and 57 
edges, with multiple genes interacting, including GPX8, HIF1A, 
ERO1A, and ACTB (Supplementary Figure 1). The MCC algorithm 
identified 10 candidate genes: PDIA3, RAB1A, TXN, DCN, HIF1A, 
ACTR10, LUM, DNAJC10, ATM, and GPX8 (Figure 3F).

3.3 HIF1A and PDIA3 were identified as 
biomarkers

When the lambda.min value in the LASSO algorithm was set at 
0.1723, four feature genes—HIF1A, LUM, PDIA3, and TXN—retained 
non-zero regression coefficients (Figure  4A). Additionally, the 
SVM-RFE algorithm identified PDIA3, RAB1A, TXN, DCN, HIF1A, 
ACTR10, LUM, DNAJC10, ATM, and GPX8 (Figure 4B). By overlapping 
the two sets of feature genes, four candidate biomarkers (HIF1A, LUM, 
PDIA3, and TXN) were selected (Figure  4C). Expression analysis 
confirmed consistent upregulation of HIF1A and PDIA3 in the OSA 
groups from both the GSE38792 (Figure 4D) and GSE135917 datasets 
(p < 0.05) (Figure 4E). In both datasets, AUC values for HIF1A and 
PDIA3 surpassed 0.8 (Figures 5A,B). However, LUM and TXN showed 
no significant differential expression between the OSA group and the 
control group in the GSE135917 dataset (p > 0.05), with their AUC 
values both below 0.7 (LUM: AUC = 0.650; TXN: AUC = 0.625) 
(Supplementary Figure 2). Therefore, LUM and TXN were excluded, 
and HIF1A and PDIA3 were selected as biomarkers. Chromosomal 
localization analysis revealed that HIF1A is located on chromosome 14, 
while PDIA3 is on chromosome 15 (Figure 5C).

3.4 A nomogram with excellent predictive 
ability for OSA was created

A nomogram based on HIF1A and PDIA3 was developed 
(Figure  6A). Extensive validation of the nomogram model 
demonstrated robust predictive performance. The calibration curve 
exhibited a minimal MAE of 0.047, indicating excellent concordance 
between predicted and observed outcomes (Figure  6B). The ROC 
curve showed an AUC of 0.89, highlighting the model’s strong 
discriminatory capability (Figure  6C). Decision curve analysis 
confirmed clinical utility, with net benefits exceeding zero (Figure 6D). 
Moreover, in the CIC, the “Number high risk” curve consistently 
outperformed the “Number high risk with event” curve (Figure 6E).

3.5 Recognition of biomarker enrichment 
pathways

Genes associated with the function of the biomarkers included 
ARNT, HIF1AN, VHL, CUL2, and others, with common roles in 
processes such as “cellular response to hypoxia,” “regulation of 
oxygen levels,” and “adaptation to decreased oxygen levels” 
(Figure  7A). GSEA indicated that HIF1A and PDIA3 were 
co-enriched in pathways like “focal adhesion,” “olfactory 

transduction,” “RNA degradation,” “spliceosome,” and “ubiquitin-
mediated proteolysis” (Figures 7B,C).

3.6 Biomarkers were modulated by 
multiple factors and drugs

Using the miRNet database, 220 miRNAs targeting the biomarkers 
were predicted, including a core subset of 15 miRNAs that 
simultaneously targeted both HIF1A and PDIA3. From these 15 core 
miRNAs, a broader network of 316 lncRNAs was identified. A 
lncRNA-miRNA-mRNA regulatory network was constructed with a 
degree threshold of ≥3, encompassing 2 biomarkers, 12 miRNAs, and 
82 lncRNAs. This network revealed various regulatory relationships, 
such as CYTOR-hsa-miR-1-3p-HIF1A, CYTOR-hsa-miR-1-3p-
PDIA3, NEAT1-hsa-miR-124-3p-HIF1A, and NEAT1-hsa-miR-124-
3p-PDIA3 (Figure 8A and Supplementary Table 2). In drug prediction 
analysis, only drugs targeting HIF1A were identified, including 
klugine, puupehenone, and isocephaeline (Figure 8B).

4 Discussion

OSA, a condition characterized by a range of pathological and 
physiological changes resulting from chronic hypoxia, increases the risk 
of cardiovascular diseases, diabetes, and malignancies (34). Despite its 
significant health impact, OSA diagnosis remains primarily clinical, 
relying heavily on nocturnal polysomnography (PSG), which limits 
diagnostic yield. Protein palmitoylation, a critical post-translational 
modification involved in numerous diseases, has been underexplored in 
the context of OSA (35). This study employed bioinformatics approaches 
to investigate the biological pathways and regulatory mechanisms 
involving PRGs, with a focus on HIF1A and PDIA3 as biomarkers, 
providing new avenues for OSA research and treatment.

Hypoxia-inducible factor 1-alpha (HIF1A) plays a pivotal role in 
mediating the transcriptional response to hypoxia, serving as a major 
regulator of the hypoxic response. HIF1A is also implicated in tumor 
immunity (36), angiogenesis, metabolic processes, and cell cycle 
regulation (37). HIF1A is recognized as a biomarker linked to cancer 
aggressiveness in OSA (38). HIF1A is a major regulator of oxygen 
metabolism homeostasis, while OSA is characterized by IH, in which 
case HIF1A may be activated, regulating the adaptive response of cells 
to hypoxia, which in turn affects the pathophysiological process of 
OSA (39, 40). Chronic IH, a hallmark of OSA, induces low-grade 
systemic inflammation, which in turn elevates HIF1A expression in 
patients with OSA (1, 42, 43). Elevated levels of HIF1A in the plasma 
of patients with OSA have been reported (44), corroborating the 
findings of this study. The consistent upregulation of HIF1A further 
supports its potential as a diagnostic biomarker for OSA. Although 
HIF1A is a common response to hypoxic environments, its 
non-specificity may affect its efficacy as a solitary biomarker. However, 
through further research on its variations in the early stages of OSA, 
its potential for early diagnosis of the disease may be discovered. 
Protein disulfide isomerase family A member 3 (PDIA3), a chaperone 
within the PDI family, is highly expressed in response to cellular stress 
and helps prevent apoptotic cell death associated with endoplasmic 
reticulum (ER) stress and protein misfolding. PDIA3 has emerged as 
a diagnostic marker for OSA (45). IH caused by OSA can lead to ER 
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FIGURE 3

Functional enrichment analysis of DE-PRGs. (A) A total of 195 DE-PRGs were obtained by intersecting 2,303 key module genes and 367 DEGs. (B) GO 
enrichment analysis: biological processes (BP) involving 95 pathways. (C) GO enrichment analysis: cellular components (CC) associated with 21 
pathways. (D) GO enrichment analysis: molecular functions (MF) linked to 19 pathways. (E) KEGG enrichment analysis revealing associated pathways. 
(F) Top 10 candidate genes identified by the maximum cluster centrality (MCC) algorithm from the PPI network.
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stress (47). PDIA3, as a molecular chaperone in the endoplasmic 
reticulum, facilitates the correct folding of proteins and alleviates ER 
stress (48, 49). By regulating the ER environment, PDIA3 may 
mitigate cellular dysfunction and metabolic impairment induced by 
OSA. And PDIA3 is frequently overexpressed in various tumors, 
serving as a potent pan-cancer prognostic biomarker (50). A meta-
analysis has suggested that OSA increases cancer risk (51). This 
indicates that PDIA3 may serve as part of a set of biomarkers, 
providing new insights for clinical diagnostic research of OSA. In 

clinical applications, the combined detection of HIF1A and PDIA3 
expression levels in blood or saliva samples may enhance the 
diagnostic capability for OSA: an increase in HIF1A may indicate 
acute hypoxic events, while sustained high expression of PDIA3 may 
reflect chronic pathological damage. Furthermore, alongside clinical 
symptoms such as nocturnal apnea and daytime sleepiness, this 
combined biomarker strategy is expected to simplify the stratified 
diagnosis of OSA. In the future, it is necessary to verify its sensitivity 
and specificity through prospective cohorts, explore its synergistic 

FIGURE 4

Identification of biomarkers. (A) The left side displays the LASSO coefficient plot,with the horizontal axis represents the logarithm of the lambda values 
and the vertical axis shows the variable coefficients. The right side presents the cross-validation results of the LASSO regression analysis, with the 
horizontal axis indicating log (lambda) and the vertical axis displaying model error. (B) SVM-RFE analysis for the 10 genes, with horizontal axis indicating 
the number of genes and vertical axis representing the error value. (C) Venn diagram showing the intersection of feature genes obtained from LASSO 
regression and SVM-RFE analyses. (D) Expression analysis of candidate biomarkers in the GSE38792 dataset. *p < 0.05 and **p < 0.01. (E) Expression 
analysis of candidate biomarkers in the GSE135917 dataset. *p < 0.05 and **p < 0.01.
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effect with other markers (such as inflammatory factors), design a 
joint diagnostic model, and develop a multi-biomarker combined 
detection strategy to optimize the individualized diagnosis and 
treatment pathway of OSA.

Based on GSEA results, HIF1A and PDIA3 shared five common 
enrichment pathways, including focal adhesion, olfactory 
transduction, RNA degradation, spliceosome, and ubiquitin-mediated 
proteolysis. In OSA, IH activates HIF1A, which in turn triggers 
pro-oxidase genes, leading to the production of reactive oxygen 
species (ROS) within cells (52). Excessive ROS can induce oxidative 
stress, which may alter cell morphology and function, including the 
formation of intracellular punctate focal adhesions (53). This finding 
aligns with the results of this study, which confirmed the up-regulation 
of HIF1A and PDIA3 in the focal adhesion pathway. OSA-related 
biomarkers are significantly enriched in olfactory pathways (55). In 
this study, olfactory transduction was predominantly associated with 
down-regulated genes, consistent with earlier findings (54, 56). 
However, the specific mechanisms linking the focal adhesion and 
olfactory pathways to OSA require further investigation. The 
ubiquitin-mediated proteolytic pathway has been linked to various 
diseases, including malignancies (14, 57), Parkinson’s disease (41), 
chronic obstructive pulmonary disease (46), insomnia (58), and 
arthritis (41), but its association with OSA has not been explored. This 
study is the first to identify a relationship between OSA and the “RNA 
degradation” and “spliceosome” pathways, with the underlying 
mechanisms warranting further research.

miRNAs are small, non-coding RNA molecules that regulate post-
transcriptional gene expression and influence a variety of physiological 
processes. The downregulation of miR-124-3p promotes cancer growth 

and metastasis across different tumor types (59), and the incidence of 
tumors is higher in patients with OSA (60). Additionally, miR-124-3p 
is up-regulated in the IH environment (59), suggesting that it may play 
a protective role in tumorigenesis and progression in OSA individuals 
with cancer. Furthermore, the upregulation of miR-1-3p inhibits solid 
tumor growth in various tissues, interacting with β-catenin (61). By 
inactivating the Wnt/β-catenin pathway, miR-1-3p may contribute to 
cognitive impairment in patients with OSA (62). The expression of 
miR-23b is elevated in patients with OSA and correlates positively with 
disease severity. HIF-1 is involved in the upregulation of miR-23b, 
which, in turn, regulates the feedback loop of HIF-1 expression (38). 
This illustrates the role of miRNAs in the progression of OSA and its 
association with tumor development. LncRNAs are large RNA 
transcripts that do not encode proteins but can mediate gene expression 
by interacting with DNA or chromatin regulators in the nucleus (63). 
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) 
and nuclear paraspeckle assembly transcript 1 (NEAT1) are both 
upregulated in the tissues of patients with OSA and play roles in 
apoptosis, inflammation, and oxidative stress induced by IH (64). 
NEAT1 aggravates endothelial cell injury in individuals exposed to IH 
through the Apelin/Nrf2/HO-1 signaling pathway (63), potentially 
exacerbating OSA. These findings suggest that lncRNAs are involved 
in the development of OSA.

This study also explored potential therapeutic agents for 
OSA. Antioxidants have been recognized as promising treatments for 
OSA (65). Puupehenone, a sesquiterpene quinone isolated from 
sponges, demonstrates strong antioxidant properties (66) and can 
inhibit human lipoxygenase (LOX). LOX promotes the production of 
ROS (67), which are significantly elevated in patients with OSA. LOX 

FIGURE 5

Identification of biomarkers. (A) ROC curve for HIF1A and PDIA3 in the GSE38792 dataset, with AUC >0.8. (B) ROC curve for HIF1A and PDIA3 in the 
GSE135917 dataset, with AUC >0.8. (C) Chromosomal localization analysis of HIF1A and PDIA3.
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is also involved in the synthesis of leukotrienes from arachidonic acid, 
a critical step in the inflammatory process (68). Thus, puupehenone’s 
antioxidant properties may help mitigate the inflammation induced 

by OSA-related hypoxia. Klugine and isocephaeline inhibit hypoxia-
induced HIF-1 activation by blocking the accumulation of HIF-1α 
protein, which is highly expressed in patients with OSA (69). These 

FIGURE 6

Nomogram with excellent predictive ability for OSA. (A) Construction of a nomogram for OSA prediction. (B) Calibration curve for the nomogram, with 
MAE = 0.047. The x-axis shows the predicted probability, and the y-axis shows the actual probability of OSA. (C) ROC curve for the nomogram model. 
(D) DCA for the nomogram model. (E) CIC showing the prediction effect of the nomogram model.
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two drugs may offer potential therapies for OSA. PX-478, an orally 
active HIF-1α inhibitor, has shown significant therapeutic effects in 
patients with OSA and tumors (60), suggesting its potential for future 
pharmacological treatment of OSA.

However, this study also has some limitations. Firstly, the sample 
size in the dataset obtained from public databases is limited, and the 
information about the samples is not sufficiently detailed, which may 
affect the accuracy and generalizability of the results. Secondly, the 
specific mechanisms of action and diagnostic value of HIF1A and 
PDIA3 in OSA require further experimental verification. Therefore, 
we plan to collaborate in the future to collect a larger scale of OSA 
patients and healthy control samples, while thoroughly documenting 
the clinical characteristics of patients (such as disease duration, 
severity, comorbidities, etc.) to enhance the representativeness of the 
data and the reliability of the results. At the same time, we will conduct 
cell and animal experiments to establish an OSA disease model, 

deeply explore the molecular regulatory pathways of HIF1A and 
PDIA3 in the occurrence and development of OSA, clarify their 
mechanisms of action through gene knockout and overexpression 
techniques, and integrate findings from a large clinical cohort to 
validate the efficacy of both as diagnostic markers, thereby providing 
a more solid basis for the diagnosis and treatment of OSA.

5 Conclusion

In this study, bioinformatics analysis identified two biomarkers 
associated with palmitoylation in OSA: HIF1A and PDIA3, which can 
serve as diagnostic biomarkers and therapeutic targets for 
OSA. Additionally, several potential targeted drugs were identified, 
which may have significant therapeutic effects on OSA. These findings 
provide new insights and directions for OSA treatment.

FIGURE 7

Biomarker enrichment pathways. (A) GeneMANIA network analysis of biomarkers. (B) GSEA analysis of hub gene: KEGG pathways enriched by HIF1A. 
(C) GSEA analysis of hub gene: KEGG pathways enriched by PDIA3.
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Glossary

OSA - Obstructive sleep apnea

PRGs - Palmitoylation related genes

DE-PRGs - Differentially expressed PRGs

IH - Intermittent hypoxia

ZDHHC - The zinc finger protein DHHC

GEO - The Gene Expression Omnibus

FC - Foldchange

ssGSEA - The single-sample gene set enrichment analysis

MM - Module membership

GS - Gene significance

GO - Gene Ontology

KEGG - Kyoto Encyclopedia of Genes and Genomes

BP - Biological process

MF - Molecular function

CC - Cellular component

STRING - The Search Tool for the Retrieval of Interacting Genes

PPI - Protein–protein interaction

MCC - The maximum cluster centrality

LASSO - Least absolute shrinkage and selection operator

SVM-RFE - The Support Vector Machine-Recursive 
Feature Elimination

ROC - Receiver operating characteristic

AUC - Area under the curve

MAE - A mean absolute error

CIC - Clinical impact curves

MSigDB - Molecular Signatures Database

FDR - False discovery rate

GSEA - Gene set enrichment analysis

NES - Normalized enrichment scores

miRNAs - microRNAs

lncRNAs - Long non-coding RNAs

DGIdb - Drug-gene interaction database

HIF1A - Hypoxia inducible factor 1 alpha

PDIA3 - Protein disulfide isomerase family A member 3

ER - Endoplasmic reticulum

ROS - Reactive oxygen species

MALAT1 - Metastasis-associated lung adenocarcinoma transcript 1

NEAT1 - Nuclear paraspeckle assembly transcript 1

LOX - Lipoxygenase
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