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A growing body of research suggests that impacts to the head, including

sub-concussive impacts, carry risks for long-term detrimental e�ects

on cognition and brain health. Despite the potential for negative health

consequences associated with sub-concussive impacts, there is currently

no reliable and objective method used in clinical practice to assess whether

a particular sub-concussive impact a�ected the brain. In this preliminary

study, we developed a machine-learning classifier to detect changes in brain

electrophysiological activity following sub-concussive impacts that occur

during soccer ball heading. We recorded EEG from soccer players before and

after they repeatedly headed a soccer ball, and trained classifiers to distinguish

between an individual’s EEG patterns before and after these sub-concussive

impacts. The classifiers were able to identify post-impact EEG recordings with

significantly higher accuracy than would be expected by chance, both 1 h

and 24 h after the impacts occurred. After controlling for electrophysiological

changes attributed to exercise, changes to brain activity attributable to soccer

heading were detectable at 24 h post-heading, but not at 1-h post-heading.

The observed time-course of EEG changes mirrors a similar pattern seen in

traumatic brain injury, in which an inflammatory cascade is manifest 24 to 48-h

post-injury; we suggest that EEG changes following sub-concussive impacts

may stem from inflammation or some other physiological process that unfolds

on a similar timescale. These results are an important step toward developing

an EEG-based tool that can assess whether electrophysiological consequences

are present following sub-concussive head impacts.

KEYWORDS

electroencephalography, traumatic brain injury, concussion, sub-concussive impact,

repetitive head impacts, sports injury

1 Introduction

Traumatic brain injury (TBI) has been dubbed a “silent epidemic” (1), leading to

50,000 deaths and 80,000 permanent disabilities in the United States every year (2).

While it’s clear that TBIs pose a serious public health concern, less is known about the

risks and effects of sub-concussive impacts—those that do not trigger clinical symptoms
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of concussion or TBI (3). There is not currently any widely used

test available to detect the potential consequences of sub-concussive

impacts on brain electrophysiology. With the goal of advancing

the medical community’s ability to accurately study and identify

potential consequences of sub-concussive impacts, we investigated

the use of electroencephalography (EEG) to detect changes in brain

activity associated with soccer ball heading.

TBI triggers a cascade of neurological damage mediated by

changes in cerebral blood flow, cerebral metabolic dysfunction,

neuroinflammation, blood-brain barrier disruption, and

impairment of cerebrovascular autoregulation (4–6). TBI

damage has shown to be cumulative, such that repeated TBIs can

lead to decreased neuropsychological performance (7) and adverse

cellular changes (8, 9). These effects are particularly evident in

retired American football players with a history of multiple mild

TBIs (mTBIs), who exhibit increased rates of cognitive impairment

(10) and greater incidence of chronic traumatic encephalopathy

(CTE) (11–13). A history of repeated head impacts has also been

found to correspond to cumulative neurological damage in boxing

(14, 15), ice hockey (12, 16), rugby (17), and soccer (18, 19).

Recent studies suggest that repetitive head impacts may be

a cause for concern even when they do not result in symptoms

of concussion (20, 21). Sub-concussive impacts do not trigger

the same immediate outward signs of neurological dysfunction as

mTBI, but they may cause microstructural and functional changes

in the brain (3, 20). The effects of sub-concussive impacts might

accumulate over time, leading to neurological impairment and

lowering the threshold for sustaining future TBIs (22).

Athletes can experience several hundred to more than a

thousand sub-concussive impacts each year (22). Even when no

symptoms are present, effects of sub-concussive impacts may be

apparent in neuropsychological testing, structural and functional

brain imaging, and autopsy; these methods reveal signs of brain

damage in individuals who had no history of concussion, but

who were engaged in contact sports or exposed to repeated

explosive blasts during military service (22). Furthermore, PET

scans reveal accumulation of amyloid proteins in otherwise healthy

military instructors who were exposed to repeated sub-concussive

blasts (23).

Despite the potential risks associated with sub-concussive

impacts, the condition remains ill-defined, and there is a lack

of reliable, sensitive, and specific measures to determine whether

a sub-concussive head impact affected the brain. Standard

assessments for TBI often rely on subjective measures and are

prone to under-reporting (24), and their long-term usefulness is

questionable (25). Furthermore, these assessments for TBI might

not be sensitive enough to detect sub-concussive impacts that

cause changes in brain electrophysiology without causing overt

symptoms (24). Also, standard clinical assessments for TBI are

typically limited by requiring a baseline measurement to be

acquired prior to the injury (26).

EEG has emerged as a potential diagnostic tool for several

different neurological disorders beyond epilepsy (27). For example,

researchers have developed EEG classifiers to detect and grade

the severity of dementia (28–30). TBIs have been associated with

a variety of changes in EEG activity, including increased alpha-

band (7.5–10 Hz) power and decreased theta-band (3.5–7.5 Hz)

power (31). Sub-concussive impacts have also been associated with

changes in EEG activity (32–34). For instance, spectral features of

EEG depend on the number of sub-concussive impacts experienced

during a kickboxing match (35), and a variety of event-related

potential (ERP) components predict the number of sub-concussive

impacts experienced by amateur hockey players (32). Based on

these existing data, the objective of this study was to determine if

an accurate classification model for sub-concussive impacts could

be built using resting EEG data.

In the present study, we recorded EEG from soccer players

before and after they experienced sub-concussive impacts by

heading a soccer ball. We then trained a classifier to distinguish

between an individual’s EEG patterns before and after these sub-

concussive impacts. We hypothesize that EEG signals contain

information that can be used to identify whether participants have

experienced sub-concussive impacts. This technology represents

a preliminary step toward improved abilities to identify brain

electrophysiological consequences that may result from sub-

concussive impacts.

2 Materials and methods

We recorded resting EEG before, 1 h after, and 24 h after

participants performed a ball-passing task using their head (i.e.,

repeatedly headed a soccer ball). We then tested whether machine

learning classifiers could identify a given recording as having

occurred before or after the sub-concussive impacts.

2.1 Participants

We recruited participants who had at least 1 year of experience

playing soccer and considered themselves to be active players (N

= 36; 22 males and 14 females; mean age 28.2 years, median

age 28 years, range 19–38). Participants were non-smokers and

reported no prior history of TBI in the preceding 12 months, and

no history of vestibular, ocular, or vision dysfunction. Participants

were asked to refrain from using recreational drugs or alcohol for

24 h before each study session, and were instructed to not engage in

any activities outside of the study that may result in head impacts.

Participants were recruited using flyers and online postings

at the Mayo Clinic in Arizona and the surrounding community.

Recruitment flyers were shared with two local adult community

soccer leagues. Participants were compensated $200 upon

completing the study.

The study was approved by the Mayo Clinic Institutional

Review Board and each participant completed an informed consent

process including signing informed consent forms. The study was

pre-registered at clinicaltrials.gov (NCT05562544).

2.2 Experimental procedures

Half of the participants (n = 18) began by performing a

ball-passing task with their feet (“kicking task”; Figure 1). The

remaining participants began the study without performing the
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FIGURE 1

Experimental procedures: Participants began by providing informed consent and completing intake surveys. Those participants who had been

assigned to the “kicking” group then performed a passing task by kicking the soccer ball. All subjects then performed the same procedures from that

point on, starting with an EEG measurement session (pre-heading EEG). Next, participants performed a passing task by heading a soccer ball. After

waiting 1 h, participants performed a second EEG measurement session. Approximately 24 h later, participants returned to the lab to perform a final

EEG measurement session.

kicking task. Participants were randomized into one of the two

groups by alternating the group that each successive subject was

assigned to. From this stage on, the experimental procedures were

identical for both groups of participants.

All participants underwent a measurement session prior to

performing the soccer ball heading task. The measurement session

included resting-state EEG, the King Devick Test (KDT), and an

eye-tracking task. Data from the eye-tracking task have not been

analyzed. We collected the KDT because this test is widely used to

identify concussions in athletes (24). The KDT results are presented

in the Supplementary material.

Following this pre-heading measurement session, participants

performed a ball-passing task with their head (“heading task”). One

h after the heading task they underwent a second measurement

session which was identical to the pre-heading measurement

session. The next day, approximately 24 h after the heading task,

participants returned for a final measurement session. All three

sessions of EEG data were recorded from all 36 participants.

2.3 Ball passing task

In this study, we used two versions of a ball-passing task. In one

version, participants passed the ball with their feet (“kicking task”).

In the other version, participants passed the ball with their head

(“heading task”). The heading task served as a model of repetitive

sub-concussive impact, and the kicking task served as a control to

avoid the potential of confounding due to exercise.

In both versions of the ball-passing task, a soccer ball launcher

was placed on a field. A spot was marked 40 feet away from the

launcher and in line with the ball trajectory. Soccer balls were

inflated to 1.1 kg/cm2 consistent with the official guidelines from

the International Football Association Board (36). The launcher

was calibrated to eject balls at 25 mph (40.2 km/h) using a

radar-based speed gun (Velocity Speed Gun, Bushnell Corp.;

Overland Park, USA); speed measurements were performed from

immediately behind the ball launcher. The launch angle was

calibrated for each subject so that the balls were thrown at a

comfortable height for the subject to pass back to the experimenter

by heading the ball.

Subjects were instructed to pass the ball as accurately as they

could to an experimenter standing on a mark 20 feet (6.1 m) from

the subject. In the kicking task, participants were instructed to

pass the ball with their feet. In the heading task, participants were

instructed to pass the ball by bumping it with their head. When

the participant verbally confirmed they were ready, they took their

position on the mark, and the researchers began launching balls

toward the subject at a rate of 1 ball every 30 seconds until the

subject headed or kicked the ball 20 times.

Similar soccer-heading paradigms appear in the literature (37,

38), and present only a fraction of the heading a soccer player

typically engages in during normal practice and gameplay. Both

amateur and collegiate soccer players often perform hundreds or

even thousands of headers per season (39, 40). In a soccer game,

players might voluntarily head balls moving at 43–53 mph (70–85

km/h), with most opportunities for heading occurring at velocities

below 40 mph (65 km/h) (41). Our study, therefore, examines the

effects of impacts that are in the normal range of soccer practice

and gameplayx.

2.4 EEG recordings

In each of the three EEG sessions (pre-impact, 1 h post-

impact, and 24 h post-impact), we recorded data under two

crossed conditions: with eyes open and closed, and while sitting

and standing. A trained EEG technician fit the subject with a

cap containing 32 Ag/AgCl electrodes placed according to the

international 10–10 system and ensured that electrode impedances

remained below 10 k. EEG was recorded in a room with minimal

distractions and digitized at 512 Hz using the ANT Neuro

eego-sports 32-channel amplifier system (https://www.ant-neuro.

com/products/eego_sports). Subjects were instructed to minimize

movements and remain in a relaxed but wakeful state. We recorded

8 blocks of EEG, each 2.5 min in duration. EEG was recorded in

the following order: sitting with eyes open, sitting with eyes closed,
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standing with eyes open, standing with eyes closed (followed by

another cycle of these four blocks).

2.5 EEG analysis

EEG analyses were performed using the mne library and

custom-written code in Python.

2.5.1 Preprocessing
EEG data were band-pass filtered from 0.1–50 Hz and re-

referenced to the average of all channels. Activity related to eye-

movements was then automatically removed using independent

component analysis (ICA), rejecting any components that matched

either a horizontal or vertical eye-movement template. Finally,

we automatically excluded jumps in the raw data by finding the

maximum peak-to-trough amplitude in a sliding 0.5 s window. We

excluded any segments with a peak-to-trough amplitude greater

than 15 standard deviations from the mean, along with 0.5 s before

and after those segments.

2.5.2 Feature computation
We then summarized the spectra of each block of EEG data

using band-power analyses. We computed these features separately

for each experimental block. Features were averaged over each task,

yielding four sets of features for each EEG session: eyes open while

sitting, eyes closed while sitting, eyes open while standing, and eyes

closed while standing.

To derive band-power features, we took the average power

within a frequency band separately for each channel. Spectra were

computed using Welch’s method (NFFT = 512, giving a window

length of 1 s, overlapping by 0.5 s). Band-power was computed

for the following frequency bands: delta (1–4 Hz), theta (4–8

Hz), alpha (8–13 Hz), beta 1 (13–20 Hz), beta 2 (20–30 Hz), and

gamma (30–50 Hz).

These analyses yielded one feature for every combination of

task (eyes open/closed), posture (sitting/standing), EEG channel,

and frequency band. For example, one feature holds the delta power

at channel F3 for the eyes-open-while-sitting block.

2.6 Classifier analysis

We used XGBOOST (https://xgboost.readthedocs.io/)

classifiers to predict whether a particular EEG session was recorded

before the heading task (baseline) or after the heading task (post-

impact) on the basis of pre-computed EEG features. Before the

EEG features were passed to the XGBOOST models, we performed

feature selection within cross-validation based on each feature’s

F-score. XGBOOST models were trained with 100 estimators,

the “gbtree” booster, the “hist” tree method, the binary logistic

objective function, the “logloss” evaluation metric, and gamma set

to 1. We computed the balanced accuracy of each model using

cross-validation (CV) with k = 5. CV was grouped by subject to

prevent data leakage (42); the model score is therefore an estimate

of the model’s performance on a new participant. Each model

is trained after specifying a random seed, which determines the

random selection of features and observations that are used in

training each estimator tree within an XGBOOST model.

Model selection was performed using Tree-Parzen

estimators (“hyperopt” method) over 64 search trials, using

the tune_sklearn library. Models were selected based on their

mean balanced accuracy across CV folds. This process searched for

an optimal combination of the following model hyperparameters

(using the accompanying distributions): maximum tree depth

(uniform distribution of integers between 2 and 8), alpha

regularization (log-uniform from 10−15–1), lambda regularization

(log-uniform from 10−15–100), the proportion of observations

selected to train each tree (uniform from 0.1–1.0), the proportion

of columns selected to train each tree (uniform from 0.2–1.0),

the learning rate (log-uniform from 0.01–1.0), and the number of

features selected before passing the data to the XGBOOST classifier

(uniform from 10 to the number of features in the dataset).

2.7 Randomization tests

Model-selection can introduce positive bias into the estimates

of model performance by evaluating multiple models and choosing

the one with the highest performance. To account for this

bias and test whether a model’s performance is greater than

the performance that would be expected by chance, we used a

randomization procedure. First, we fit eachmodel-selection process

100 times with different random seeds, giving a distribution of

cross-validated classification performance. Then, we performed

another 100 model-searches, shuffling the target labels before each

search. This procedure allowed us to test whether the model’s

true performance was greater than the performance that would be

expected by chance (when the labels have been randomly shuffled).

We tested for statistical significance by comparing the distributions

of performance with true and shuffled labels using two-tailed

Welch’s t-tests of independent samples.

3 Results

In this study, we aimed to test whether resting EEG recordings

provide information that can identify whether participants

experienced sub-concussive impacts. To address this goal, we

trained classifiers to distinguish between pre-impact and post-

impact resting EEG. Classifiers were provided with the average

power within canonical frequency bands (delta, theta, alpha, beta1,

beta2, and gamma) for each of four tasks (sitting with eyes open,

sitting with eyes closed, standing with eyes open, and standing

with eyes closed). We trained one classifier to distinguish between

pre-impact and 1-h post-impact EEG, and another classifier to

distinguish between pre-impact and 24-h post-impact EEG. We

assessed chance levels of performance using a randomization

procedure, and found that the balanced accuracy was significantly

higher than would be expected by chance for both the pre- vs. 1-h

[t(156.5) = 11.33, p = 4.2 × 10−22] and the pre- vs. 24-h classifiers

[t(134.8) = 9.43, p = 1.6× 10−16; Figure 2].

To determine if the electrophysiological changes following sub-

concussive impacts vary over time, we tested whether classifiers
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FIGURE 2

Balanced accuracy of classifiers trained to distinguish between

pre-sub-concussive-impact and post-sub-concussive impact EEG

features (N = 36 at each lag). Each point shows the mean

cross-validated balanced accuracy across 100 models trained with

di�erent random seeds, and error bars show the standard error.

Columns show results for di�erent classifier models (“1 h”:

pre-impact vs. 1 h post-impact; “24 h”: pre-impact vs. 24 h

post-impact). Blue points show results computed with the true

labels, and red points show results computed with shu	ed labels

(chance performance). ∗∗∗: p < 0.001.

trained on EEG recorded at one lag (e.g., 1 h post-heading) could

successfully identify EEG recorded at the other recording lag (e.g.,

24 h post-heading). To avoid data-leakage, we used cross-validation

to assess performance when classifiers were trained and tested on

the same lag. Since the pre-impact observations were identical

between the 1-h and 24-h comparisons, we only compared model

performance on the post-impact sessions. As a consequence of the

fact that the classifiers in this analysis are only tested on post-

impact observations (which are treated as positive labels), it was not

possible to calculate specificity or balanced accuracy. We therefore

report the classifier sensitivity.

When classifiers are trained to distinguish between pre-impact

and 1 h post-impact, they do not perform above chance levels

at identifying EEG recorded 24 h post-impact (sensitivity = 0.49,

t(155.7) = 0.78, p = 0.44). Performance at the non-trained lag (24

h) is significantly lower than performance at the trained lag (1 h;

Figure 3; t(174.4) = 16.16, p = 1.7× 10−36).

When classifiers are trained to distinguish between pre-impact

and 24 h post-impact, they perform significantly lower than chance

levels at identifying EEG recorded 1 h post-impact (sensitivity =

0.29, t(166.9) = −10.38, p = 8.6 × 10−20). Performance at the

non-trained lag (1 h) is significantly lower than performance at the

trained lag (24 h; Figure 3; t(181.5)=30.67, p = 1.0 × 10−73). This

result suggests that EEG recorded 1 h after sub-concussive impact

is more similar to pre-impact EEG than to EEG recorded 24 h after

impact. The electrophysiological consequences of sub-concussive

impacts, therefore, continue to develop over at least the first 24 h

after impact.

These classifiers show above-chance classification performance

when distinguishing pre-impact from post-impact EEG at a given

delay. To test whether exercise affects model performance, we

examined cross-validated balanced accuracy separately within

FIGURE 3

EEG patterns supporting successful classification were di�erent

across the two post-impact recording lags (1 h, 24 h; N = 36 at each

lag). Models were trained to distinguish between pre-impact and

one of the two lags, and tested on the same lag used in training, as

well as on the other lag. In this analysis, only the positive

(post-impact) cases were used, because the negative (pre-impact)

cases were identical across the two comparisons; performance is

therefore reported using the classifier sensitivity. Each point shows

the sensitivity for models trained on one lag (pre-impact vs. 1 h, or

pre-impact vs. 24 h), and tested on the same or the other lag. Points

show the mean cross-validated sensitivity across 100 models with

di�erent random seeds. Error bars show the standard error of the

mean. ∗∗∗: p < 0.001; ns: not significant (p > 0.05). Significance

annotations with black bars refer to di�erences between models

that used true labels versus models that used shu	ed labels (the

randomization procedure). Annotations with blue bars refer to

di�erences between models that were tested on di�erent lags (e.g.,

1 h vs. 24 h).

participants who began the study with a kicking task (“kicking

group”), and those who began the study without the kicking task

(“non-kicking group”).

In the non-kicking group, participants did not exercise

before their pre-impact EEG session. As a consequence, above-

chance classification performance could reflect the combined brain

electrophysiological consequences of sub-concussive impacts and

exercise. The non-kicking group shows balanced accuracy that is

above the chance levels obtained with shuffled labels, both 1 h after

sub-concussive impacts [t(154.3) = 9.69, p = 1.2 × 10−17] and 24

h after sub-concussive impacts [t(180.3) = 13.26, p = 1.9 × 10−28;

Figure 4].

In the kicking group, participants exercised before their pre-

impact EEG session. Above-chance classification performance

in this group, therefore, should primarily reflect the brain

electrophysiological consequences of sub-concussive impacts. One

h after sub-concussive impacts, the classifiers did not identify post-

impact EEG at greater than chance levels [t(179.1) = 0.46, p = 0.65].

At the later EEG session, 24 h after sub-concussive impacts, the

classifiers performed at above-chance levels [t(172.3) = 2.25, p =

0.026; Figure 4].

These results demonstrate that it is possible to detect the

electrophysiological consequences of sub-concussive impacts. We

also found that classifiers are influenced by the effects of exercise on

EEG signals. This is important because sub-concussive impacts will
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FIGURE 4

Classifier accuracy plotted separately for participants who performed the kicking task before their baseline EEG session (“Kicking + Heading”) and

participants who did not perform any task before their baseline (“Heading Only”). The left panel shows results for the pre-impact vs. 1 h post-impact

classifier, and the right panel shows results for the pre-impact vs. 24 h post-impact classifier. Points, error bars, and colors as in Figure 2. ∗∗∗:

p < 0.001; ∗: p < 0.05; ns: not significant (p > 0.05).

often occur in the context of physical exercise. Future studies can be

designed to accommodate the influence of exercise when training

these classifiers.

4 Discussion

4.1 Overview

There is increasing awareness that sub-concussive impacts

have long-term detrimental consequences on the structure and

function of the brain. In this study, we developed a preliminary

EEG classifier that identifies people who are experiencing early

brain electrophysiological effects of these sub-concussive impacts.

Consequences of impacts due to soccer ball heading were detectable

at 24 h, but not at 1 h, following heading. These results demonstrate

that it is possible to use EEG to detect the functional consequences

of sub-concussive impacts. Future studies could expand on this

work by developing a classifier that can partial out the effects

of exercise, to help identify the potential early consequences of

repetitive sub-concussive head impacts.

4.2 Potential consequences of repetitive
sub-concussive impacts during soccer on
brain function

Several studies provide evidence that repetitive sub-concussive

impacts from soccer ball heading can affect brain function. Many

of these studies include testing of cognitive function and a few

include imaging measurements of brain function. Although a

comprehensive review of all such studies is beyond the scope of this

paper, a few examples are included below.

Cognitive dysfunction has been identified amongst active

soccer players, with such deficits associating with the frequency of

soccer ball heading (43–46). For example, one study of amateur

soccer players demonstrated that higher levels of heading during

a two-week period was associated with worse performance on tests

of psychomotor speed and attention (46). A study of professional

soccer players found that the number of headers during one soccer

season was inversely related to poorer attention and visual/verbal

memory (45). A recently published investigation of working

memory found that among amateur soccer players, greater 12-

month heading exposure was associated with lower rates of learning

among women (but not men) (47). There is controversy about

whether cognitive deficits persist after exposure to head impacts

has resolved, such as in retired soccer players. Although there are

several studies suggesting that deficits persist, other studies did not

identify persistent cognitive deficits (48–52).

Imaging studies have identified objective measures of atypical

brain function amongst soccer players. A functional near infrared

spectroscopy imaging (fNIRS) study of twenty soccer players

who each headed a soccer ball 10 times, identified changes

in pre-heading to post-heading brain oxygenation and entropy

in prefrontal and motor cortex (53). Another study found

changes in resting state blink-related oscillations (an EEG-

measured neurological response following blinking) amongst a

group of ten female soccer players after a single season (34).

Furthermore, there was an association between the number of

experienced head impacts with increases in delta and beta spectral

power post-blinking.

Magnetic resonance spectroscopy (MRS) studies comparing

soccer players to healthy controls have demonstrated altered

brain regional metabolism. For example, one study found

lower N-acetylaspartate/creatinine and higher glutamine and

glutamate/creatinine in soccer players (54), perhaps consistent
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with neuronal injury. A second study found increases in

choline (perhaps related to axonal injury, demyelination, or

neuroinflammation), and increases in myo-inositol (a marker of

glial activation) in soccer players, and showed that these changes in

brain metabolism correlated with estimates of the number of recent

and lifetime soccer ball headers (55).

An event-related brain potential (ERP) study of soccer

players demonstrated that those with repetitive sub-concussive

impacts had amplitude reduction in indices of attentional resource

allocation and attentional orienting compared with non-contact

sport athletes (56).

These studies demonstrate that soccer ball heading likely leads

to at least transient alterations in brain function in at least some

soccer players. The results from our study demonstrate that the

classification of such changes, at 24 h after repetitive soccer ball

heading, is feasible with EEG.

4.3 Benefits of EEG classifiers over other
techniques to identify physiological
consequences of repetitive head impacts

EEG classifier models have a number of important benefits over

other methods that could be deployed to identify the effects of sub-

concussive impacts. First, EEG classifiers do not require a baseline

measurement when generating a prediction. This makes an EEG

classifier more practical, allowing it to be applied as needed to

patients who did not expect to experience head impacts or did not

have the opportunity to have baseline testing. Second, classifiers

based on resting EEG are not influenced by practice effects, unlike

behavioral tests used for detecting TBI. EEG classifiers can therefore

be repeatedly administered to monitor brain health over the course

of a sports season or a military deployment. Third, EEG classifiers

are affordable and portable, compared with detectionmethods such

as functional MRI (57). Furthermore, MRI is impossible in people

who are likely to have ferromagnetic shrapnel embedded in their

bodies (such as soldiers who have experienced a close-range blast

during training).

4.4 EEG patterns supporting classification
are delayed after sub-concussive impacts

In our study, the electrophysiological consequences of sub-

concussive impacts were detectable 24 h after heading a soccer

ball, but not 1 h after heading. This delay is consistent with the

timing of the inflammatory cascade following TBI. The brain’s acute

inflammatory response to TBI unfolds over 24–48 h after head

trauma (58, 59), and brain physiologic changes continue to develop

over the next several days (59–61). Considered alongside our EEG

results, this delay suggests that the electrophysiological changes

that follow sub-concussive impacts do not reflect the immediate

effects of neural damage. Instead, EEG changes may reflect other

consequences of TBI, such as neuroinflammation, disruption of the

blood-brain barrier, or the cumulative effect of injury cascades that

occur immediately after impact.

4.5 Limitations

There are several limitations of our study, some of which

could be addressed by future research. Our classifier picks up

on effects of exercise in addition to the direct effects of sub-

concussive impact. There may be sex-specific differences in the

effects of soccer ball heading or other repetitive sub-concussive

impacts on brain function (47, 62). Our study did not have an

adequate sample size to perform meaningful subgroup analyses by

sex. It is difficult to account for each research participant’s skill with

soccer ball heading. Although not quantified, we observed that the

soccer players in our study used different techniques for soccer ball

heading, including striking the ball with different parts of their head

and with differing amounts of neck movements. These differences

in heading technique may have affected how much impact soccer

ball heading had on brain function. Finally, since there is not yet

a gold-standard measurement technique for detecting changes in

brain function due to repetitive sub-concussive events, we were

forced to calculate our classification accuracy assuming that all

research participants had changes in brain function following

the soccer ball heading task. However, some participants might

not have actually experienced such changes. In that case, the

classifier’s inability to differentiate post-heading and pre-heading

EEG data in some of the subjects would be consistent with accurate

classification. Thus, our results demonstrate that the aftereffects of

sub-concussive events can be detected with our EEG classifier, but

the exact accuracy is unknown.
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