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Objectives: To harness the U2-Net deep learning framework for automated 
quantification of collateral circulation in acute ischemic stroke (AIS) via 
computed tomography angiography (CTA) images, comparing its performance 
against traditional visual collateral scores (vCS).

Methods: A cohort of 118 confirmed AIS cases was assembled and stratified 
into 94 development and 24 test cases. CTA images underwent preprocessing 
and annotation. The U2-Net was trained to segment collateral vessels, yielding 
a quantitative collateral score (qCS) based on vessel volume ratios between 
affected and healthy hemispheres. Performance was assessed via Dice Similarity 
Coefficient (DSC), Spearman correlation, Intraclass Correlation Coefficient 
(ICC), and accuracy, with comparisons to vCS (Tan and Menon score) and 
ground truth.

Result: The U2-Net demonstrated robust segmentation capabilities, achieving 
a mean DSC of 0.75 in the test set. The qCS showed a strong correlation with 
vCS with ρ ranging from 0.78 to 0.92. When compared to the more refined six-
class Menon score, the qCS exhibited stronger consistency (development set: 
ICC = 0.83, test set: ICC = 0.93) than when compared to the four-class Tan score 
(development set: ICC = 0.76, test set: ICC = 0.79). In terms of classification 
accuracy, the AI model achieved 0.83 and 0.71 against ground truth and vCS, 
respectively, for four-class classification. This accuracy escalated to 0.88 and 
0.83 for binary classification, emphasizing its proficiency in differentiating 
collateral status.

Conclusion: Our U2-Net AI model offers a reliable, objective tool for quantifying 
collateral circulation in AIS. The qCS aligns well with vCS and demonstrates the 
feasibility of automated collateral assessment, which may enhance diagnostic 
accuracy and therapeutic decision-making.

KEYWORDS

quantitative collateral score, visual collateral score, acute ischemic stroke, deep 
learning, U2-Net

OPEN ACCESS

EDITED BY

Shang-Ming Zhou,  
University of Plymouth, United Kingdom

REVIEWED BY

Yikang Liu,  
United Imaging Intelligence, United States
Janhavi Modak,  
Baptist Health Medical Center, United States

*CORRESPONDENCE

Yuning Pan  
 fyypanyuning@nbu.edu.cn

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 26 September 2024
ACCEPTED 24 April 2025
PUBLISHED 12 May 2025

CITATION

Lu Q, Chen H, Fu J, Zheng X, Xu Y and 
Pan Y (2025) Automatic collateral 
quantification in acute ischemic stroke using 
U2-net.
Front. Neurol. 16:1502382.
doi: 10.3389/fneur.2025.1502382

COPYRIGHT

© 2025 Lu, Chen, Fu, Zheng, Xu and Pan. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 12 May 2025
DOI 10.3389/fneur.2025.1502382

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1502382&domain=pdf&date_stamp=2025-05-12
https://www.frontiersin.org/articles/10.3389/fneur.2025.1502382/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1502382/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1502382/full
mailto:fyypanyuning@nbu.edu.cn
https://doi.org/10.3389/fneur.2025.1502382
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1502382


Lu et al. 10.3389/fneur.2025.1502382

Frontiers in Neurology 02 frontiersin.org

1 Introduction

In the realm of acute ischemic stroke (AIS) management, 
collateral circulation stands as a pivotal determinant of clinical 
outcomes, serving as a crucial benchmark for assessing the feasibility 
of mechanical thrombectomy beyond time window (1, 2). Among the 
myriad of imaging modalities, computed tomography angiography 
(CTA) has firmly established itself as the most common method, 
owing to its convenience, and unparalleled temporal and spatial 
resolution which enables meticulous delineation of collateral vessel 
architecture. Despite the proliferation of CTA-based collateral scoring 
systems, a universally accepted and superior methodology remains 
elusive (3), with conventional visual scoring methods beset by notable 
intra-and inter-observer variability, spanning a range of 0.49 to 0.97 
(4, 5). This variability, exacerbated by the heterogeneity in physician 
expertise and research foci within the context of clinical emergencies 
(6, 7), underscores the urgent need for an objective, quantifiable 
assessment approach.

Moreover, expediting imaging evaluation and facilitating early 
reperfusion holds the promise of significantly enhancing neurological 
recovery among AIS patients (1). However, the prerequisite manual 
scoring process, which necessitates time-consuming 3D reconstruction 
and maximum intensity projection (MIP) post-processing, can 
consume up to nearly 5 min per case (8), thereby exacerbating the 
burden on emergency imaging services. Consequently, the development 
of automated, objective, quantitative, and time-efficient methods for 
collateral circulation assessment is paramount in clinical practice.

Artificial intelligence (AI), with its unparalleled ability in self-
learning feature extraction, presents a promising avenue to address 
this challenge. By automating both input and output processes, AI 
catapults diagnostic and therapeutic workflows into a new era of rapid 
processing speeds (9, 10). Recognizing the intricacies involved in 
secondary collateral vessel segmentation, the advent of the U2-Net 
architecture, renowned for its exceptional segmentation prowess, 
offers a compelling opportunity. Thus, this study aims to harness the 
power of U2-Net, utilizing CTA images, to automatically quantify 
collateral circulation and demonstrate its superior performance by 
comparing it with traditional visual collateral scores (vCS), thereby 
advancing the precision and efficiency of AIS management.

2 Materials and methods

2.1 Study population

From February 2018 to February 2021, we  retrospectively 
reviewed AIS cases admitted to the emergency department of our 
hospital within 24 h of onset. This study was reviewed and approved 

by the local institutional review board (Approval no. 2023-no.187-01), 
and the need for written informed consent was waived owing to the 
retrospective design of the study and anonymization of the data. The 
inclusion criteria were as follows: (1) patients aged 18 years or older; 
(2) premorbid modified Rankin Scale (mRS) score ≤ 2; and (3) CTA 
confirmed occlusions in the intracranial internal carotid artery (ICA), 
M1 or proximal M2 segment of the middle cerebral artery (MCA), or 
tandem lesions. The exclusion criteria were as follows: (1) intracranial 
hemorrhage identified by non-contrast computerized tomography 
(NCCT); (2) occlusion of other intracranial arteries or stenosis of 
MCA; (3) a history of a moderate to large stroke in the contralateral 
hemisphere resulting in a measurable decrease in vasculature; (4) 
moyamoya disease; and (5) CTA images exhibiting obvious motion 
artifacts or improper phases.

2.2 Image acquisition

Images were obtained using a 64-multislice CT scanner 
(Discovery CT750 HD, GE Healthcare), and a NCCT of the head was 
performed to exclude hemorrhage initially, followed by CTA of the 
head and neck. Single-phase CTA was performed during the 
administration of 80 mL of nonionic iodine contrast agent (ioversol 
320 mgI/mL, Jiangsu Hengrui Medicine Co., Ltd. China) at the rate of 
4 mL/s, followed by the administration of 40 mL of saline at the same 
rate. Bolus tracking technology was utilized, with the monitoring 
point positioned at the aortic arch and a trigger threshold set at 
100HU, utilizing a standard reconstruction algorithm. The scanning 
parameters were as follows: tube voltage 140 kV, tube current 630 mA, 
pitch 1.375, field of view 24 cm × 24 cm, slice thickness 0.625 mm 
with no slice interval, rotation time 0.5 s, reconstruction matrix 
512 × 512, and a scan range extending from the aortic arch to the 
vertex of the skull.

2.3 AI-derived quantitative collateral score 
(qCS)

The dataset was randomly stratified into an 80% provisional 
cohort for model development (with 5-fold cross-validation 
maintaining class distribution) and a 20% independent hold-out test 
cohort. The construction process of the AI-based collateral circulation 
quantitative assessment model is illustrated in Figure 1. A total of 280 
single-phase CTA images were selected, extending from the cranial 
vertex to the cranial base, all of which underwent standardized 
preprocessing protocols comprising rigid registration and intensity 
normalization. Vascular annotations were created by three annotators: 
the first author and two experienced neuroradiologists. All 
annotations in both the model development cohort and hold-out test 
cohort underwent iterative quality control supervised by a senior 
cerebrovascular neuroradiologist with seven years of subspecialty 
experience. Arterial vessels in the MCA territories were manually 
segmented on consecutive axial slices using ITK-SNAP (version 
3.8.0), with a uniform window width (600 HU) and level (100 HU) 
(see Figure  1 for examples of vascular annotation). Bilateral 
annotations systematically traced arteries from Circle of Willis origins 
to cortical branches, guided by anatomical landmarks including 
sylvian fissure and insular cortex, as previously mentioned (11). 

Abbreviations: AIS, acute ischemic stroke; CTA, computed tomography 

angiography; MIP, maximum intensity projection; AI, artificial intelligence; vCS, 

visual collateral score; mRS, modified Rankin Scale; ICA, internal carotid artery; 

MCA, middle cerebral artery; NCCT, non-contrast computerized tomography; 

qCS, quantitative collateral score; GT, ground truth; DSC, Dice Similarity Coefficient; 

MCC, Matthews Correlation Coefficient; ROC, receiver operating characteristic; 

AUC, the area under the receiver operating characteristic curve; rLMC, regional 

leptomeningeal collateral; ICC, intraclass correlation efficient.
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Differentiation between arteries and veins was achieved based on 
vessel courses and convergence directions.

The AI-based quantitative assessment model for collateral 
circulation leverages the U2-Net architecture (12) for vessel 
segmentation. U2-Net embodies a two-level nested U-shaped 
structure, where each larger U-shaped structure is filled with a well-
configured residual U-block, enabling more efficient extraction of 
intra-stage multi-scale features and aggregation of inter-stage multi-
level features. With clinical symptoms serving as the known input, the 
affected hemisphere can be inferred. Subsequently, based on the maps 
of the left and right cerebral hemispheres, the vascular volumes within 
the MCA territories of both hemispheres are calculated. The qCS is 
then defined as the percentage of vascular volume in the MCA 
territory of the affected hemisphere relative to that of the healthy 
hemisphere, formulated as follows:

 
( ) = × ≤% 100 0 qCSaffected

healthy

V
qCS

V
,

Based on the Tan score (13) thresholds (0, 50, and 100%) and 
clinical expertise, we systematically evaluated accuracy, sensitivity, and 
specificity across adjacent percentage intervals (1% increments 
spanning 10 percentage points around each threshold) to refine and 
optimize model performance (detailed results are provided in 
Supplementary File 1). The final thresholds of 5, 49, and 95% were 
selected as critical cutoffs. The results were categorized into the 
following binary and multi-class classifications:

Binary classification: a qCS ≤ 49% indicates poor collateral 
circulation, whereas a qCS > 49% signifies good collateral circulation.

Quaternary classification (0–3 point): 0 = qCS ≤ 5%; 
1 = 5% < qCS ≤ 49%; 2 = 49% < qCS ≤ 95%; 3 = qCS > 95%.

Aligned with the Menon score (14) criteria and empirical 
observations, the thresholds were defined as:

Six-class classification (0–5 point): 0 = qCS ≤ 5%; 
1 = 5% < qCS ≤ 25%; 2 = 25% < qCS ≤ 49%; 3 = 49% < qCS ≤ 75%; 
4 = 75% < qCS ≤ 95%; 5 = qCS > 95%.

2.4 Development protocol

The U2-Net model was implemented using PyTorch and executed 
on a Linux workstation with an Intel(R) Core(TM) i9-10900X CPU 
and an NVIDIA Geforce GTX 3090 GPU. During 5-fold cross-
validation, we performed hyperparameter tuning through grid search, 
evaluating learning rates (1e-3, 1e-4, 1e-5) and batch sizes (8, 16, 32). 
Model selection was guided by optimizing the validation Dice 
similarity coefficient (DSC). The final model was selected based on the 
fold demonstrating the highest mean validation DSC across all splits 
during 5-fold cross-validation. U2-Net performs best at 10^(−4) initial 
learning rate with a batch size of 8. Development employed the Adam 
optimizer for 500 epochs with early stopping after 20 epochs of 
validation DSC plateauing, alongside data augmentation strategies 
such as horizontal/vertical flipping (p = 0.5), brightness (±20%) and 
contrast (0.8–1.2) adjustments, and mild rotation (±10°) and zoom 
(0.9–1.1).

2.5 The performance of our AI model for 
collateral circulation assessment

2.5.1 Compared with ground truth (GT)
For segmentation performance, the DSC was employed as the 

primary metric using manual segmentation as the GT. For 

FIGURE 1

Block diagram outlining the process flow of our AI model for the quantitative assessment of cerebral collateral circulation. AI, Artificial intelligence; 
CTA, computed tomography angiography; qCS, quantitative collateral score.
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classification performance, accuracy, F1 score, sensitivity, specificity, 
Matthews Correlation Coefficient (MCC), and the area under the 
receiver operating characteristic curve (AUC) were calculated.

2.5.2 Compared with vCS
The collateral assessment was conducted using the Tan (13), Menon 

(14), and regional leptomeningeal collateral (rLMC) (15) scales for 
manual visual scoring. Regarding CTA imaging, MIP reconstructions 
were executed in the axial, coronal, and sagittal planes, with customized 
slice thicknesses: 20 mm for Tan and Menon score, and 40 mm for 
rLMC score, ensuring no interslice gaps. To ensure methodological 
rigor and avoid bias, visual scoring was conducted by an independent 
team comprising two seasoned radiologists (with 5-and 6-year 
experience of cerebrovascular disease) and one senior neuroimaging 
expert (with 10 years of cerebrovascular disease experience), distinct 
from the manual segmentation group. The radiologists independently 
evaluated the images under blinded conditions, unaware of the original 
reports, clinical histories, segmentation data and subsequent imaging 
findings, with the exception of the vascular occlusion location. The 
intraclass correlation coefficient (ICC) for consistency between the two 
observers in the Tan, Menon, and rLMC scores were 0.837, 0.901, and 
0.928, respectively (all p < 0.001). In instances of disagreement between 
the initial two assessors, the senior expert performed an independent 
and definitive evaluation.

2.6 Statistical analysis

Continuous variables were presented as mean ± standard 
deviation or median (interquartile range). Categorical variables were 
expressed as frequency and percentage. The independent samples t 
test, Mann–Whitney U-test, Chi-square or Fisher’s exact test was used 
to compare the differences between development and testset. 

Spearman’s rank correlation coefficients were performed to compare 
qCS and vCS. ICC with absolute agreement two-way random model 
(single measure) were used to determine the agreement. Receiver 
operating characteristic (ROC) analysis were performed to compare 
the performance of qCS and vCS. A p value of <0.05 was considered 
statistically significant. Statistical analysis was performed using the 
IBM SPSS Statistics software (Version: 26.0.0.0).

3 Results

3.1 Patient demographic data

Figure 2 presents patient flowchart of the selection process and a 
total of 118 cases were ultimately enrolled. An 8:2 ratio yielded 94 
cases for the development set and 24 for the test set. Given the 
relatively low number of cases with minimal collateral circulation, 
these were identified as a distinct subgroup and underwent separate 
randomization to ensure a comprehensive evaluation of model 
performance during test, while the remaining cases were randomly 
assigned in a unified manner. No statistically significant differences 
were observed between the development and test set in terms of age, 
occlusion location, Trial of Org10172  in Acute Stroke Treatment 
classification, baseline National Institute of Health stroke scale score, 
and collateral score (Table 1), indicating good clinical consistency 
and comparability between the two sets.

3.2 The performance of our AI model 
compared with GT

Table 2 and Figure 3 comprehensively present the performance 
metrics of our model, while Figure 4 provides an illustrative case to 

FIGURE 2

Flow chart of enrolled patients. AIS, acute ischemic stroke; ICA, internal carotid artery.
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further demonstrate its capabilities. Our model exhibited 
robust image segmentation capabilities, achieving a mean DSC of 
0.72 for the development set and 0.75 for the test set. Notably, 
the mean qCS derived from our AI model yielded values of 
63.80% for both development and test cohorts, closely approximating 
but slightly lower (by approximately 5%) than the GT values, which 
were 69.01% for the development set and 69.11% for the test set.

Regarding classification accuracy, our model achieved 0.80 and 0.83 
for the four-class output in the development and test sets, respectively. 
Notably, when transitioning to binary-class outputs, these accuracies 
underwent a marked improvement, reaching 0.87 and 0.88, respectively. 
In the binary classification context, our model demonstrated a sensitivity 
of 0.86 and 0.93 for the development and test sets, respectively. 
Furthermore, the F1 score, which indicates a strong balance between 
precision and recall, ranged from 0.90 to 0.91 across the development and 
test sets. Lastly, the AUC values of 0.89 and 0.86 achieved in the 
development and test sets, respectively, further validate the model’s 
effectiveness in discriminating between classes.

3.3 The performance of our AI model 
compared with vCS

The correlation analysis between the qCS and the manual visual 
assessments (Tan, Menon, and rLMC scores) is illustrated in Figure 5. The 
qCS demonstrated strong correlations with vCS, with p values ranging from 
0.78 to 0.92 (all p < 0.001). It correlated even more strongly with the Menon 
score (development set: ρ = 0.84; test set: ρ = 0.91) and the rLMC score 
(development set: ρ = 0.84; test set: ρ = 0.92) than with the Tan score 
(ρ = 0.78 and 0.80, respectively for the development and test sets).

The categorical results derived from qCS demonstrated stronger 
agreement with the Menon score (development set: ICC = 0.83, 
p < 0.001; test set: ICC = 0.93, p < 0.001) compared to the Tan score 
(development set: ICC = 0.76, p < 0.001; test set: ICC = 0.79, p < 0.001). 
Table  2 and Figure  6 comprehensively encapsulate the model’s 
performance metrics, while Figure 7 elaborates on the class-by-class 
agreement specifics. When using the visual Tan score as the benchmark, 
qCS achieved an accuracy of 0.72 and 0.71 in the development and test 

TABLE 1 Clinical characteristics of subjects.

Characteristics All (n = 118) Development set 
(n = 94)

Test set (n = 24) p value

Age, years 73.00 (60.75, 80.00) 74.00 (60.00, 80.00) 68.00 ± 13.23 0.32

Male 78 (66.10%) 61 (64.89%) 17 (70.83%) 0.58

Site of occlusion 0.22

  Intracranial ICA 9 (7.63%) 5 (5.32%) 4 (16.67%)

  Tandem lesion 14 (11.86%) 11 (11.70%) 3 (12.50%)

  M1 81 (68.64%) 65 (69.15%) 16 (66.67%)

  Proximal M2 14 (11.86%) 13 (13.83%) 1 (4.17%)

TOAST type 0.05

 LAA 51 (43.22%) 43 (45.74%) 8 (33.33%)

  Cardioembolism 49 (41.53%) 41 (43.62%) 8 (33.33%)

  other etiology 11 (9.32%) 6 (6.38%) 5 (20.83%)

  small-vessel 1 (0.85%) 1 (1.06%) 0 (0%)

 undetermined etiology 6 (5.08%) 3 (3.19%) 3 (12.50%)

 NIHSS score 12.00 (7.00, 17.00) 12.50 (7.75, 17.00) 11.00 (5.25, 16.00) 0.58

Tan score 0.86

  0 4 (3.39%) 3 (3.19%) 1 (4.17%)

  1 35 (29.67%) 28 (29.79%) 7 (29.17%)

  2 50 (42.37%) 41 (43.62%) 9 (37.50%)

  3 29 (24.58%) 22 (23.40%) 7 (29.17%)

Menon score 0.98

  0 4 (3.39%) 3 (3.19%) 1 (4.17%)

  1 12 (10.17%) 9 (9.57%) 3 (12.50%)

  2 12 (10.17%) 10 (10.64%) 2 (8.33%)

  3 35 (29.66%) 28 (29.78%) 7 (29.17%)

  4 34 (28.81%) 28 (29.78%) 6 (25.00%)

  5 21 (17.80%) 16 (17.02%) 5 (20.83%)

rLMC score 14.50 (10.00,17.00) 14.50 (10.00–17.00) 13.45 ± 5.01 0.99

Continuous variables were presented as mean ± standard deviation or median (interquartile range). Categorical variables were expressed as frequency and percentage.  
ICA, internal carotid artery; TOAST, trial of Org10172 in acute stroke treatment; LAA, large-artery atherosclerosis; NIHSS, National Institute of Health stroke scale; rLMC, regional 
leptomeningeal collateral.

https://doi.org/10.3389/fneur.2025.1502382
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lu et al. 10.3389/fneur.2025.1502382

Frontiers in Neurology 06 frontiersin.org

cohorts, respectively, for a four-category classification, with a relatively 
low sensitivity in the grade of 3 (as depicted in Figure 6). Notably, in a 
binary classification framework, this accuracy increased to 0.87 
(development set) and 0.83 (test set), respectively. Importantly, the 
discrepancies between the qCS-based scoring and the Tan score were 
minimal, confined within a 1-point margin, with no instances 
exceeding a 2-or 3-point difference (see Figure 7).

In the development set, the AI model exhibited underestimation in 
19/94 (20.21%) cases and overestimation in 7/94 (7.45%) cases. 
Analogously, in the test set, underestimation was observed in 5/24 
(20.83%) cases, while overestimation amounted to 2/24 (8.33%) cases. 
However, when adopting a Tan score threshold of ≥2 as indicative of 
favorable collateral circulation, the underestimation rate was remarkably 
decreased, misclassifying only 5/94 (5.32%) cases in the development 
set and 2/24 (8.33%) cases in the test set into the poor category.

4 Discussion

In the current study, we  have successfully employed the deep 
learning framework of U2-Net to derive a quantitative collateral index, 
qCS, which exhibits strong correlation and excellent agreement with 
manual visual assessment, as evidenced by the high correlation 
coefficients ranging from 0.78 to 0.92 and ICCs spanning 0.76 to 0.93. 
This pivotal finding underscores the immense potential of AI-driven 
quantification in furnishing reliable and objective metrics for the 
assessment of cerebral collateral circulation.

Previous endeavors in quantifying collateral status have yielded 
promising results, albeit with varying degrees of accuracy. Boers et al.’s 
groundbreaking work, which correlated their qCS derived from 

Hessian-based enhancement filters with the visually determined Tan 
score, yielded a significant strong association (ρ = 0.75, p < 0.001) (16), 
mirroring our own findings (ρ = 0.78, p < 0.001). This convergence 
underscores the reliability of computational methods in mirroring expert 
visual assessments. Building upon this progress, Wolff et  al. (17) 
innovated by upgrading and integrating this algorithm into a Web-based 
AI platform, StrokeViewer, intended for broader multi-center 
applications. However, when scaled up, their results revealed limitations 
in scalability and potential variability across institutions, as evidenced by 
a moderate inter-rater agreement (ICC = 0.60) and a modest four-class 
accuracy of 0.59. In contrast, our study surpasses these benchmarks, 
achieving a higher ICC of 0.79 and a more robust four-class accuracy of 
0.71. This enhanced performance points to a reduced bias in our AI 
model, though it is pertinent to acknowledge that our single-center 
design may have contributed to these favorable outcomes.

Su et  al. (18) employed a 3D U-Net to quantify collateral 
circulation. Although their model achieved a respectable binary 
accuracy of 0.90, the average DSC of 0.56 indicates room for 
improvement in segmentation precision. In response, our U2-Net 
model, with a DSC of 0.75, outperforms by incorporating pooling in 
residual U-blocks, enhancing network depth and feature extraction, 
leading to more accurate segmentation of collateral vessels. Turning to 
alternative input images, several studies used MIP images for collateral 
assessment to avoid manual annotation. For example, Fortunati et al. 
(19) used a Siamese model achieving a four-class classification accuracy 
of 0.64 and a two-class classification accuracy of 0.86. Kuang et al. (8) 
presented a hybrid CNN and Transformer model, MPViT, 
demonstrating a robust ICC of 0.77 for a three-point collateral score 
classification but a relatively low sensitivity of 0.61 in dichotomized 
analysis, Aktar et al. (20) found that EfficientNet B0 shines in 2-class 
classification but faces sample size constraints (n = 83). Although these 
models represent significant strides in collateral classification, they are 
unable to produce specific quantified results, which is a pivotal step 
towards a deeper comprehension of collateral status and its influence 
on patient outcomes.

In this study, qCS showed stronger correlation and higher 
concordance with more refined Menon score (test set: ρ = 0.91, 
ICC = 0.93) than with Tan score (test set: ρ = 0.80, ICC = 0.79), 
underscoring the precision of our assessment. This disparity further 
highlights the potential limitations of the Tan score’s four-category 
system, which employs relatively wide intervals (50% between classes), 
resulting in a coarser assessment. In contrast, the Menon and rLMC 
scores encompass a broader point range and finer grading, thereby 
offering a more precise predictor of imaging and clinical outcomes. 
Additionally, Yang et al. (21) also compared the qCS against both the 
conventional Tan’s score and a refined six-category Tan’s score (based on 
25% intervals), finding a slightly higher correlation with the refined 
version (ρ = 0.78) than the conventional (ρ = 0.76), echoing our findings. 
Our results further emphasize that while the Tan score offers simplicity 
and convenience, its validity is compromised. Despite demonstrating 
stronger correlations with qCS, the intricate assessment procedures of the 
Menon and rLMC scores pose accessibility and feasibility challenges, 
making them most suitable for experienced neuroradiologists. Therefore, 
the development of our model aims to enhance the accuracy of collateral 
assessment among physicians, particularly those in early career stages.

Our AI model, when generating four-category results, exhibits 
a tendency to underestimate collateral circulation, frequently 
misclassifying scores of 3 as 2, resulting in a lower sensitivity for 

TABLE 2 Classification performance of our AI model.

Characteristics Development set 
(n = 94)

Test set 
(n = 24)

Compared to GT

Four-class

  Accuracy 0.80 0.83

Two-class

  Accuracy 0.87 0.88

  F1 score 0.91 0.90

  MCC 0.70 0.73

  AUC 0.89 (0.80–0.97) p < 0.001 0.86 (0.68–1.00) 

p = 0.004

Compared to Tan

Four-class

  Accuracy 0.72 0.71

Two-class

  Accuracy 0.87 0.83

  F1 score 0.91 0.88

  MCC 0.71 0.63

  AUC 0.84 (0.74–0.94) p < 0.001 0.81 (0.61–1.00) 

p = 0.014

AI, artificial intelligence; GT, ground truth; MCC, Matthews correlation coefficient; AUC, 
area under the receiver operating characteristic curve.
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score 3 classifications. Nevertheless, this bias does not significantly 
alter clinical decision-making as a score of 2 still signifies robust 
collaterals, maintaining the viability of endovascular therapy. 
Conversely, in binary outcomes, the model tends towards 
overestimation, ensuring that more patients are considered for 
endovascular therapy eligibility by minimizing the risk of exclusion. 
Notably, Fortunati et al. (19) also observed their model’s greatest 
confusion resided between scores 2 and 3, with minimal ambiguity 
between 0 and 1. Mair’s evaluation of commercial software e-CTA 
reported similar underestimation (6%) and overestimation (7%) 

rates, with the underestimation closely aligning with our results 
(5–8%) (22). Su et  al. (18), leveraging the visual Tan score as a 
benchmark, achieved an 80% accuracy in four-valued classification 
and a remarkable 90% in binary classification. The substantial boost 
in binary accuracy suggests a primary discrepancy arising from the 
Tan score range, particularly between scores 0–1 and 2–3. Similarly, 
in our study, we observed a remarkable surge in binary classification 
accuracy, a 12.50% increase, primarily due to underestimating Tan 
score 3 cases as 2. This phenomenon may stem from the inherent 
difference between the precision of qCS and the subjective nature 

FIGURE 3

Confusion matrices and performance of our AI model compared with ground truth on the development (top) and test (bottom) dataset. AI, Artificial 
Intelligence.

FIGURE 4

An example of collateral circulation quantification using our AI model. (A) shows AI-predicted vessel segmentations on axial CTA images, while (B,C) 
display 3D visualizations. The case achieved a DSC of 0.80 and a qCS of 88.49%, closely matching the GT (90.99%). AI, Artificial Intelligence; CTA, 
computed tomography angiography; DSC, Dice Similarity Coefficient; qCS, quantitative Collateral Score; ground truth, GT.
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of visual assessments, as the 95% threshold utilized by qCS may not 
adequately differentiate between visual scores 2 and 3.

Our study had some limitations. First, artificial bias may 
be introduced in the annotation of collateral vessels. To minimize 

this bias, repeated training and practice were conducted before 
annotation until the approval from the senior neuroradiologist. 
Second, its single-center design and lack of external validation 
may limit the generalizability and robustness of the findings. 

FIGURE 5

Correlation analysis between the qCS and three manual visual scoring methods in the development set (A–C) and test set (D–F), respectively. qCS, 
quantitative collateral score; rLMC, regional leptomeningeal collateral.

FIGURE 6

Confusion matrices and performance of our AI model compared with visual Tan score on the development (top) and test (bottom) dataset. AI, Artificial 
Intelligence.
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Third, the model demonstrates reduced sensitivity for 3-point 
collateral scores. This limitation could be addressed in future 
studies by exploring alternative network architectures and 
expanding the training dataset with additional 3-point cases, 
potentially through multicenter collaborations, to improve model 
generalizability. Finally, the relationship between qCS and clinical 
treatment decision as well as patient outcomes remains 
underexplored, necessitating further research to fully elucidate 
their significance.

5 Conclusion

In conclusion, our U2-Net model, designed to predict 
collateral scores from acute stroke CTA images, achieves 
exceptional segmentation performance with a DSC of 0.75. The 
qCS index shows strong agreement with visual assessment 
(accuracy = 0.83), establishing the technical feasibility of 
automated collateral quantification. While further validation is 
required to determine clinical utility, this framework provides a 
methodological foundation for subsequent research exploring 
quantitative collateral metrics in treatment decision-making and 
outcome prediction.
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