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Introduction: Dynamic survival analysis has become an e�ective approach for

predicting time-to-event outcomes based on longitudinal data in neurology,

cognitive health, and other health-related domains. With advancements in

machine learning, several new methods have been introduced, often using a

two-stage approach: first extracting features from longitudinal trajectories and

then using these to predict survival probabilities.

Methods: This work compares several combinations of longitudinal and

survival models, assessing their predictive performance across di�erent training

strategies. Using synthetic and real-world cognitive health data from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), we explore the strengths and

limitations of each model.

Results: Among the considered survival models, the Random Survival Forest

consistently delivered strong results across di�erent datasets, longitudinal

models, and training strategies. On the ADNI dataset the best performing

method was Random Survival Forest with the last visit benchmark and super

landmarking with an average tdAUC of 0.96 and brier score of 0.07. Several other

methods, includingCox Proportional Hazards and the RecurrentNeural Network,

achieve similar scores. While the tested longitudinal models often struggled

to outperform simple benchmarks, neural network models showed some

improvement in simulated scenarios with su�ciently informative longitudinal

trajectories.

Discussion: Our findings underscore the importance of aligningmodel selection

and training strategies with the specific characteristics of the data and the target

application, providing valuable insights that can inform future developments in

dynamic survival analysis.

KEYWORDS

survival analysis, dynamic prediction, longitudinal data, landmarking, machine learning,

ADNI

1 Introduction

Survival analysis has been a cornerstone in medical research for decades, enabling

researchers to uncover valuable insights into the prognosis of patients in neurology,

cognitive health and health-related domains. Traditionally, the Cox proportional hazards

model has been the go-to tool for survival analysis, offering valuable insights into the effects

of covariates on time-to-event outcomes.

Recent advancements in machine learning and the collection of more longitudinal data

have offered a novel set of approaches for the dynamic prediction of survival outcomes

(1–4). With these methods, risk predictions can be updated as new information becomes

available, reflecting the evolving nature of patient health data. These machine learning

techniques bring the promise of improved predictive accuracy and the potential to unravel

complex relationships within cognitive health and other healthcare datasets.

However, there exists a critical need for comprehensive comparison studies that

delve into these methods’ efficacy and potential shortcomings. One of the inherent

challenges in such comparative studies lies in the lack of consistency and transparency
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in methodology implementation. It is not always clear how

various machine learning models are implemented, leading

to potential discrepancies in results. Furthermore, the metrics

employed for performance assessment often differ between studies,

making it challenging to draw meaningful conclusions from

these comparisons. Lastly, some machine learning-based survival

analysis methods introduce a multitude of new components

and hyperparameters, raising questions about which of these

components truly drive improvements in predictive performance.

Combined, these challenges have led to a lack of clarity on the

effectiveness of each introduced modelling component, which

complicates the selection of the most suitable model for a given

healthcare application.

This paper aims to bridge these gaps by presenting a

comprehensive study comparing various machine learning

methods for dynamic survival analysis. We seek to provide

researchers and practitioners in the field of cognitive health,

and healthcare in general, with a clearer understanding of the

strengths and weaknesses of these methods and the nuances of

their implementation.

By employing a two-stage modeling approach, we can

effectively combine different longitudinal and survival models,

allowing for a more nuanced comparison of their strengths and

weaknesses. In addition, we investigate different training strategies.

Using synthetic data with specific characteristics, we aim to assess

the relative performance of various models and identify the key

factors contributing to their success or limitations.

Our work is motivated by challenges in cognitive health,

specifically the prediction of dementia risk. Dementia is an

escalating global concern for which risk reduction strategies are

crucial, especially given the lack of available curative treatments

(5). Several modifiable risk factors have been identified that, if

addressed early, could prevent or delay the onset of the disease

(6). Improving predictive methods for dementia risk could offer

valuable guidance for early interventions and behavioral changes,

ultimately helping to reduce the global burden of dementia.

To demonstrate the applicability of the considered methods

within neurology, we look at dementia risk prediction using data

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

The main contributions of this study are (i) the comparison

of methods for dynamic survival analysis across diverse scenarios,

including both statistical approaches, such as MFPCA, and neural

network-based methods, (ii) the separate investigation of the

contributions to the system performance of longitudinal and

survival models by testing multiple combinations and (iii) the

comparison of several landmarking strategies that can be used

during model training.

This article is structured as follows. In Section 2, we introduce

the dynamic prediction problem and provide a description of the

relevant methods and datasets. In Section 3, we present the results

on synthetic data and data from the ADNI study. In Section 4, we

further discuss the results and conclude our work.

2 Materials and methods

This section covers the description of the dynamic prediction

problem, landmarking techniques, the learning methods used, a

description of the synthetic data and the real-world data studied,

and the way we evaluate the various approaches. We go through

these topics in the order given, but we start with a brief subsection

on notation.

2.1 Notation

The data consists of a set of N subjects with Q covariates

measured at multiple time points. Each subject i has a set of

covariates Yiq(tij) measured at each visit j, at measurement time

tij, for a total of Ji visits. Each subject is observed until either the

time of the event of interest (T∗
i ) or the time at which the subject is

censored (Ci). The observed event time is Ti = min(T∗
i ,Ci) and the

event indicator δi identifies whether the event occurred (δi = 1) or

the subject was censored (δi = 0).

Our goal is to make a prediction of the probability of survival

from so-called landmark times l to future prediction times t >

l, conditional on survival at landmark time l, based on the data

up until time l. We will use Y
(l)
i to indicate the subset of the

measurements of subject i up until time l. The conditional survival

function is then given by:

S(t|Y
(l)
i ) = P(T∗

i > t|T∗
i > l,Y

(l)
i ). (1)

Some models instead estimate the hazard function λ(t), which

is the instantaneous risk that the event will occur. The hazard

function is related to the survival function, so that

S(t) = exp[−

∫ t

0
λ(u)du]. (2)

2.2 Dynamic prediction

Rather than a static prediction at a single landmark time,

we want dynamically updated predictions at the next landmark

times, as more covariate measurements become available for the

subject. Two popular strategies in dynamic survival analysis are

landmarking and joint modeling (7, 8).

Landmarking (9) offers a straightforward approach by building

separate survival models at pre-defined landmark times. For each

landmark l a survival model is fit using the subjects that are still

at risk at that time. In the traditional landmarking approach only

the last available measurement of each subject is included (7). This

method is easy to implement and execute, since it only involves

fitting normal survival models, and avoids making assumptions

about the joint distribution of longitudinal and survival data.

However, it ignores information that could be available in the

history of the covariates.

Joint modeling integrates the longitudinal and survival

processes by simultaneously modeling the time-dependent

covariates and the event times using shared random effects

(10, 11). This method accounts for the direct relationship between

longitudinal measurements and survival, often leading to more

accurate risk predictions if the models are correctly specified.

Unfortunately, including multiple longitudinal covariates in a

joint model is computationally difficult, because of the increasing

dimensionality in the random effects (12).
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To address the limitations of both strategies, a two-stage

approach has emerged that combines the flexibility of landmarking

and the comprehensive nature of jointmodeling (13, 14). In the first

stage, a longitudinal model is used to model the trajectories of the

time-varying covariates. In the second stage, the predictions of the

longitudinal model are incorporated into a survival model. With

this approach, dynamic risk estimates can be obtained without

the computational complexity associated with joint modeling. This

strategy can be found in many recent works on dynamic survival

analysis (1, 3, 15, 16) and will also be used here. An additional

advantage of this two-stage approach is that it allows for the

independent evaluation of the benefits of specific longitudinal and

survival methods. The longitudinal and survival models examined

in this study will be detailed in Sections 2.4, 2.5, respectively.

To evaluate a model’s accuracy in dynamically predicting

survival probabilities, performance is typically assessed at multiple

landmark times. This approach reflects real-world scenarios, where

patients visit a doctor at different points in their life. For each

landmark time, predictions are made for future time points using

only the subjects who are still at risk at that landmark time and

who were not used to train the model. Only the longitudinal data

available up to the landmark time is used for these predictions.

However, in the context of this two-stage approach, the best way

to handle these landmark times during training remains unclear.

Some studies fit a single two-stage model for all landmark times,

training it on the complete longitudinal trajectories (15, 17). In

contrast, Gomon et al. (16) argued that the more appropriate

method is to fit a separate model for each landmark, similar to the

traditional landmarking approach. In this work, we further explore

the differences between these strategies and introduce alternative

methods for handling landmarking during training.

2.3 Landmarking methods

This section describes the two landmarking methods

formalized by Gomon et al. (16) and expands on their work by

introducing two additional approaches. Following Gomon et al.

(16), we refer to the process of selecting subjects that are still at

risk at time l (Ti > l) and truncating their data to obtain Y
(l)
i as

landmarking the data at time l.

2.3.1 No landmarking
With this approach, a single model is trained for all landmark

times, using the entire longitudinal history Y
(Ji)
i for each subject. By

incorporating all available data, themodel has themost information

to learn from. However, as Gomon et al. (16) demonstrated, this

strategy, which they refer to as relaxed landmarking, can introduce

bias due to discrepancies between the training and evaluation data.

Specifically, at later landmark times, the training data includes

subjects who have already experienced the event. This could create

a mismatch between the training and evaluation population, since

during evaluation only subjects still at risk are included.

Another concern is that models trained on entire longitudinal

trajectories can use information that is not available during

evaluation. Observational data typically includes measurements

until shortly before an event or censoring occurs. Without

landmarking, the training data may therefore contain information

up to the event time T and there is nothing that prevents a model

during training to mainly use the latest available information for

prediction. As a result, it is unclear what happens during evaluation

if these measurements close to T are unavailable. There is at least

little reason to believe that the trained model has also learned how

to deal with this limited-information scenario.

2.3.2 Strict landmarking
With the strict landmarking approach a separate model is

trained for each landmark time l, where the data is landmarked at

time l (16). In this case, the training data is processed the same

way as the evaluation data, reducing the risk of bias caused by

differences between the two sets.

However, landmarking the training set removes a substantial

amount of data, making it harder to learn robust patterns. At

early landmark points, truncating the training data could discard

relevant patterns that emerge later in these longitudinal trajectories.

At later landmark times, excluding subjects who have already

experienced the event can greatly reduce the number of training

samples, increasing model variance. Although these subjects are

no longer at risk, their early trajectories may still hold valuable

insights for prediction. In observational datasets, subjects typically

enter the study at different stages of disease progression. Thismeans

that subjects may not be directly comparable at baseline or at

any chosen landmark time. Therefore, patterns from one subject’s

earlier trajectory may provide useful insights into a later stage of

another subject’s trajectory. Consequently, this strict landmarking

approach risks discarding important data that could improve

prediction accuracy during evaluation.

2.3.3 Super landmarking
In Van Houwelingen and Putter (18), the use of a super

landmarking dataset is proposed as an extension of the traditional

landmarking strategy. With this method, a separate landmarked

dataset is created for each chosen landmark time and the resulting

subsets are combined into a single dataset. As a result, subjects are

repeatedly included in the dataset, as long as they remain at risk

at each landmark time, with an increasing number of longitudinal

measurements at later landmarks. This approach eliminates the

need to train a separate model for each landmark time.

Although this method was introduced for traditional

landmarking some time ago, we have not yet seen any applications

for two-stage methods. Nevertheless, it could strike a good balance

between retaining enough information to learn relevant patterns

and avoiding the overfitting issues that arise when no landmarking

method is used.

A potential drawback of this approach is the increased size of

the training dataset, especially when many landmark points are

used. This could result in longer training times, particularly since

some models take over twice as long to train when the dataset

doubles in size.
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2.3.4 Random landmarking
In many real-world scenarios a risk prediction for a patient

could be desired at any of their visits. If we wish to create a model

that performs well for each possible visit time it might be necessary

to choose a large set of landmark times. For strict landmarking

this would lead to a large set of models, some of which will be

trained on a small amount of data. For super landmarking this

would result in a large training set with many similar samples. The

iterative training process of neural networks offers another option

for landmarking, where the training set is transformed differently

for each iteration. This novel design is inspired by the use of on-

the-fly data augmentation (19), where a random transformation

is applied to the data during each training iteration. In this case,

in each iteration and for each subject i we sample a random

number l between 1 and Ji. We then temporarily truncate the

longitudinal data for this subject to Y
(l)
i , thereby allowing the model

to learn from variable input lengths and time frames. This iterative

approach ensures that the model is not overfit to any specific time

point or landmark, resulting in a more flexible model capable of

generalizing across different stages of longitudinal data.

The advantages of the random landmarking method become

particularly evident when predictions are required for a large set

of landmark points. By training a single model on a standard-

sized training set this method avoids the computational burden

of handling either an excessively large dataset or multiple models.

This not only reduces training time but also simplifies the

implementation process. Additionally, the random selection of visit

times in the training set enables the model to generalize across

the entire data distribution, rather than specializing in specific

landmark points. This combination of computational efficiency

and robust predictive performance makes this method especially

valuable in large-scale or resource-constrained settings. However,

this approach does come with potential trade-offs. First, the

inclusion of all subjects, irrespective of their event time, may still

create a mismatch between the population used for training and

the population used for evaluation. Moreover, while this general

model can be more flexible, when evaluated at specific landmark

times it could be less effective than a model trained for that specific

landmark time.

2.4 Longitudinal models

As already mentioned in Section 2.2, we use a two-stage

approach for dynamically predicting survival probabilities. Here we

will describe the first stage, where one of four longitudinal models

will be used to summarize subject trajectories into an encoding Z.

In the second stage, this encoding is used to train a survival model.

These survival models will be described in the next section.

We include a varied set of methods that represent different

approaches to encoding longitudinal data. We include two

benchmark methods: baseline and last visit. In addition, we include

Multivariate Functional Principal Component Analysis (MFPCA),

a dimensionality reduction technique which has recently become

popular for dynamic survival analysis (4, 15–17). Lastly, we include

a Recurrent Neural Network (RNN), as a neural network approach

that is suitable for smaller datasets with sequential data (Mienye et

al., 2024). The RNN has previously been used for dynamic survival

analysis in Lee et al. (1).

2.4.1 Benchmarks
To explore the added value of incorporating longitudinal data,

we introduce two benchmark models. The first is termed Baseline,

which selects the measurements taken at the first time point. This

benchmark serves as a reference for traditional survival analysis

without the integration of longitudinal data. For the baseline model

the encoding for subject i is given by

Zi = Yi(ti0). (3)

The second benchmark, labeled Last Visit, selects the

measurements taken at the last available time point at or before

the landmark time. This approach aligns with the traditional

landmarking strategy. For this benchmark the encoding of subject i

is given by

Zi = Yi(max{tij|tij <= l}). (4)

2.4.2 MFPCA
Multivariate Functional Principal Component Analysis

(MFPCA) is a method that captures the temporal dynamics of

longitudinal data by representing them in a lower-dimensional

space using functional principal component analysis techniques

(20). Similar to traditional principal component analysis, MFPCA

decomposes longitudinal trajectories into principal components,

allowing for dimensionality reduction while preserving the key

features of the data. Several earlier works have used this method

to extract features from longitudinal data that can be used in a

survival model (4, 16, 17).

For a single longitudinal variable q the trajectory Yiq(t) can be

approximated using the following decomposition

Yiq(t) = µq(t)+

Mq
∑

m=1

ξiqmφqm(t), (5)

where µq(t) is the mean function, ξiqm are the FPC scores,

with nonincreasing variance λqm, and φqm are the eigenfunctions.

The scores ξqm have traditionally been estimated by numerical

integration, but this is often not a good approximation if there

are only a few measurements available for each subject. Therefore

the Principal Analysis by Conditional Estimation algorithm is used,

which, under Gaussian assumptions, obtains a better estimation of

the FPC scores ξqm (21).

For multiple longitudinal variables, a two-step approach is

used, as described in Happ and Greven (22). In the first step,

univariate FPCA is estimated for each variable. Every instance is

then represented by all its univariate FPC scores. Subsequently, in

a second step, the multivariate FPC scores are obtained through

a principal component decomposition of these initial univariate

FPC scores. With this process, we can transform the Q sets of Mq

univariate scores of a subject to one set of M multivariate scores

ρim.

We fit the model using the training set to obtain estimates of

λ̂qm, φ̂qm, 6̂−1
Yiq

and µ̂q. The scores ξiqm can then be obtained for
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any longitudinal covariate Yiq in the training set or evaluation set

using.

ξiqm = E[ξiqm|Yiq] = λ̂qmφ̂iqm6̂−1
Yiq

(Yiq − µ̂q). (6)

These can then be transformed to obtain the multivariate scores

ρim. Combined with the baseline variables these scores form the

encoding that will be used for the survival prediction. For subject i

this results in

Zi = [Yi,baseline(ti0), ρi]. (7)

2.4.3 RNN
Longitudinal data can be represented as sequences, with the set

of measurements at each time point corresponding to a step in the

sequence. Recurrent Neural Networks (RNNs) are a class of neural

networks well-suited for sequential data analysis, making them

a natural choice for modeling longitudinal data. RNNs maintain

a hidden state that evolves over time, allowing them to capture

temporal dependencies in the data.

In this work, we opted to utilize a traditional RNN,

specifically a multi-layer Elman RNN (23), instead of more

complex architectures like Long Short-Term Memory (LSTM)

networks (24). This decision was driven by the desire to focus on

more elementary versions of the models, allowing for a clearer

comparison of their performance and capabilities.

For each visit j, each layer n of the RNN computes the following

function

hnj = tanh(hn−1,j) ·W
T
n0 + bn0 + hn,j−1 ·W

T
n1 + bn1). (8)

For the first layer hn−1,j = Y(tj), the covariate measurements

of a subject at time point j, and for each subsequent layer it is

the output of the previous layer. Wn and bn are the weights and

bias of the n-th layer and hn,j−1 is the hidden state at the previous

time point. The final hidden states are combined with the baseline

variables and used to make both a longitudinal and a survival

prediction. For the following we use hij to indicate the final hidden

state of subject i at time tij.

For the longitudinal prediction, a feed-forward neural network

is used to predict the input variables of the next time point Ŷi(ti,j+1)

from the hidden state hij:

Ŷi(ti,j+1) = FNN(hij,Xi,baseline(ti0)) (9)

For the survival prediction, we extract the hidden state hiJi at

the last time point Ji for each subject i. This is combined with the

baseline variables to obtain the following encoding for subject i

Zi = [Xi,baseline(ti0), hiJi ]. (10)

To train the RNN model we use a combined loss function L =

Llong + Lsurv. The longitudinal loss Llong is the mean squared error

between the predicted input variables Ŷi(tij) and the data Yi(ti,j+1):

Llong =
1

N · Q

N
∑

i=1

Q
∑

q=1

1

Ji

Ji
∑

j=2

(Ŷiq(tij)− Yiq(tij))
2 (11)

The survival loss Lsurv is the negative log-likelihood of the time-to-

event predictions, which we will formalize in Section 2.5.3.

Unlike the MFPCA model that does not incorporate survival

information, the combined loss function used to train the RNN

allows the model to prioritize features from the longitudinal

trajectories that are more relevant for survival prediction. To

investigate its benefit further, we also train a version of the

RNN model using only the longitudinal loss, which will be called

RNN_long.

2.5 Survival models

With each of the longitudinal methods we can transform the

longitudinal covariates Yi(tij) of a subject into an encoding Zi.

Subsequently, a survival method is used to predict the conditional

survival function from this encoding. For this second-stage model,

we consider Cox proportional hazard model, Random Survival

Forest (RSF) and a neural network, as these are the most common

survival models used in the literature on two-stage methods (4, 15,

16, 25).

2.5.1 Cox Proportional Hazards model
The Cox Proportional Hazards (CPH) model (26) is a classical

survival analysis method that estimates the hazard function as a

function of covariates while assuming proportional hazards over

time. It has been widely used in medical research due to its

interpretability and simplicity. In the Cox Proportional hazards

model the hazard for subject i is defined as

λi(t) = λ0(t) exp(Zi · β). (12)

Here Zi is the encoding of subject i given by the longitudinal

model.

During training, estimates for β are obtained by minimizing

the negative partial log-likelihood on the training data (27). During

evaluation, a prediction of the survival function for subject i is

obtained using

S(t|Zi) = S0(t)
exp(Zi·β), (13)

where S0(t) is the estimate of the baseline survival function,

obtained using Breslow’s estimator (28).

2.5.2 Random Survival Forest
Random Survival Forest (RSF) (29) is an ensemble learning

method that extends the traditional random forest algorithm to

survival analysis tasks. Instead of decision trees the RSF uses

survival trees, which maximize the survival difference between

groups. RSF constructs a large number of survival trees on

bootstrapped samples of the dataset.

During training, each tree is grown using a bootstrap sample

drawn from the training data. At each node of the tree the samples

are divided in two groups using the log-rank splitting rule. For this

split a random subset of the variables is searched to find the value

of one of these variables that maximizes the survival differences

between the groups.
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During evaluation a prediction of the survival function for

subject i is obtained for each tree by determining the leaf node

for the encoding Zi and then estimating the survival function of

the bootstrap samples in this leaf node using the Kaplan-Meier

estimator. The ensemble survival function is obtained by averaging

the predictions of all trees.

By aggregating predictions from individual trees, RSF provides

robust estimates of survival probabilities and handles complex,

nonlinear relationships between features and survival outcomes.

2.5.3 Neural network
For the RNN longitudinal models we also use a feed-forward

neural network that is trained with a negative log-likelihood loss

function. This network takes the encoding from the longitudinal

model as input and, after a softmax layer, outputs a vector of

probabilities P̂(T = t|Zi) for each subject. This indicates the

probability of subject i having the event of interest during the time

interval [t, t + 1).

From these probabilities, we can compute the failure function

at time τ as follows

F̂(τ ) =

∑

l<t≤τ P̂(T = t)

1−
∑l

t=0 P̂(T = t)
=

∑

l<t≤τ

P̂(T = t)

P̂(T > l)

=
∑

l<t≤τ

P̂(T = t|T > l) (14)

and the survival function is then given by Ŝ(t) = 1− F̂(t).

These predictions are subsequently used to calculate the

following negative log-likelihood loss function

LNLL = −

N
∑

i=1

δi · log(P̂(T = Ti|Zi))+ (1−δi) · log(Ŝ(Ti|Zi,T > l)),

(15)

where Ti indicates the time interval in which an event is observed

for subject i. In Zadeh and Schmid (30), it is shown that this

loss function results in well-calibrated optimization of the survival

probabilities.

2.6 Simulation study

We developed several simulation scenarios for observational

data, inspired by the simulation study described in Lin et al.

(15). Through these specific scenarios, we investigate the impact

of model misspecification on survival models and examine how

effectively longitudinal models can accommodate variations in

longitudinal trajectories.

For each scenario, we use N subjects with K baseline

covariates Bik and Q longitudinal covariates Yiq(tij) measured over

a maximum of Ji = 21 visits equally spread between times

[0, 10]. The measured longitudinal covariates are given by the true

underlying value Xiq(tij) and measurement error as follows

Yiq(tij) = Xiq(tij)+ ǫijq, (16)

where ǫijq was sampled from a standard normal distribution

N(0, 1). In the subsections below, we provide a further specification

of the different scenarios, where we make our choice of covariates

and hazard functions precise.

Once we define the hazard the survival function can be obtained

using

Si(t) = exp[−

∫ t

0
λi(u)du]. (17)

The survival time for every subject is determined by generating

u from the standard uniform distribution and determining the first

visit time t at which Si(t) < u. In addition, we independently

simulate censoring times from the uniform distribution U(1, 22).

The observed event time is then the minimum of the survival and

censoring times.

2.6.1 Scenario 1
In this baseline scenario, based on Lin et al. (15), we consider

covariates that evolve linearly over time, and proportional hazards.

For the longitudinal covariates the following submodel is used:

Xiq(tij) = β0q + β1qxiq + β2qtij + biq

We create 3 covariates with coefficients β0 = [1.5, 2, 0.5], β1 =

[2,−1, 1] and β2 = [1.5,−1, 0.6], scalar covariate xiq ∼ N(3, 1) and

subject-specific random effects biq ∼ N(0,6), where

6 =







σ 2
1 η12σ1σ2 η13σ1σ3

σ 2
2 η23σ2σ3

σ 2
3






,

with σ = [1, 1.5, 2] and [η12, η13, η23] = [−0.2, 0.1,−0.3].

The hazard function for this scenario is given by

λi(t) = λ0(t) exp[γBi +

3
∑

q=1

αqXiq(tij)].

Where the baseline hazard λ0(t) = exp(−7). We use two

baseline covariates, with γ = [−4, 2] and Bi = [zi1, zi2], with z1 ∼

Bin(p = 0.5) and z2 ∼ N(0, 1). For the longitudinal trajectories we

set α = [0.2,−0.2, 0.4].

2.6.2 Scenario 2
Similar to Lin et al. (15), in the second scenario, an interaction

term is added to the baseline covariates to investigate the effect

of model misspecification. In this case the baseline covariates are

defined by Bi = [zi1, zi2, zi1 · zi2] with γ = [−4, 2, 4], where the

interaction term is not used as a predictor in the models.

2.6.3 Scenario 3
Although the scenarios given above incorporate several

longitudinal covariates, these covariates follow similar trajectories

for all subjects. In fact, for these scenarios it is possible to model

the time-varying component within the baseline hazard function.

It would therefore be possible to learn the model of scenario 1

using a Cox Proportional Hazard model fitted with the values of

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2025.1504535
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


de Swart et al. 10.3389/fneur.2025.1504535

the covariates at baseline [Bi and Xi(0)]. The derivation for this can

be found in the Supplementary material.

Since the measurements of the observed longitudinal covariates

Yiq(tij) contain independently sampled measurement error ǫijq,

having access to multiple of these measurement could improve

the estimate of the underlying covariates Xiq(tij). Still, longitudinal

models that are capable of extracting information about how

covariates change over time do not have a large advantage in these

first scenarios.

To investigate how well the different methods can model

differences over time we make a modification to the submodel

for the longitudinal covariates by combining the subject specific

random effects in the time-dependent component. For each subject

the covariates will still have a constant slope, but this slope now

does differ per subject:

Xiq(tij) = β0q + β1qxiq + (βtq + biq)tij.

2.6.4 Scenario 4
In the previous scenarios all longitudinal covariates have a

direct, immediate effect on the hazard. Additionally, the values

of these covariates change linearly over time, making it relatively

easy to predict future values. In our last scenario we increase the

complexity of the data generating process by adding a longitudinal

covariate with random values, which has a delayed effect on the

hazard. The random nature of this covariate makes it impossible to

accurately predict future values. By delaying the effect on the hazard

it is still possible to determine future values of the hazard based

on historical values of the covariates. However, knowledge of the

survival prediction might be required to transform the longitudinal

covariate in the correct way.

The additional longitudinal covariate is sampled from the

uniform distribution, given by

Xi4(tij) ∼ U(−11, 9).

Afterwards we apply the following transformation, which takes

the sum of this covariate and delays this by 6 visits (corresponding

to 3 years)

Ri(tij) =

{

0 if j <= 6
∑j−7

k=0
Xi4(tik) if j > 6

The hazard function for this scenario is then given by

λi(t) = λ0(t) exp[γBi +

3
∑

q=1

αqXiq(tij)+ 0.2 · Ri(tij)].

With this scenario we investigate whether a model can detect

the effect of a covariate, even if the covariate itself cannot be

accurately modelled.

2.7 Application: ADNI

To demonstrate performance in a real-world data analysis

setting for cognitive health, we use data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). This is an ongoing

longitudinal observational study that was launched in 2003. The

primary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

More information about ADNI is available on the website: https://

adni.loni.usc.edu/.

Our goal is to predict the time to a dementia diagnosis. Subjects

have regular follow-up visits and at each of these a diagnosis is

given. The event time will either be the time of the first visit where

a dementia diagnosis is given or the time of the last available visit

where a non-dementia diagnosis is given. Subjects that already have

a dementia diagnosis at baseline are removed from the dataset.

Several other works have used the ADNI study to evaluate dynamic

survival predictions using a similar preprocesssing strategy for the

data (2, 15–17).

This work uses the TADPOLE data set1 constructed by the

EuroPOND consortium (31). This is a fixed version of the ADNI

dataset, created for a classification challenge, and therefore allows

for easier reproduction of the results. After exclusion of subjects

with dementia at baseline this dataset consists of 1,390 subjects.

We included 7 demographic baseline features and 15 longitudinal

variables, which are described in Table 1.

Study participants were followed in 6 month intervals, up to

a maximum of 10 years. For most participants visits did not take

place every 6 months, with a median number of visits of 7 and a

median follow-up time of 3 years. In addition, not all variables were

recorded every visit. We impute these missing variables using the

last recorded measurement of that subject, following the method of

last observation carried forward.

2.8 Hyperparameters

Machine learning models often include hyperparameters,

which are configuration settings defined before the training process

begins. Unlike model parameters, which are learned from the

data during training, hyperparameters control aspects such as

model architecture, regularization, learning rates, and optimization

techniques. These settings can influence the performance of the

model, affecting its ability to generalize to new data.

For this study, we opted to use a fixed set of hyperparameters

across all models to maintain experimental feasibility and allow

for fair comparison. All methods are implemented in Python

and the implementation is available at https://github.com/Wieske/

DSA_comparison. The hyperparameters were selected based on

default values in the model implementations, previous literature,

and insights from earlier experiments. Below, we summarize the

chosen settings for each model.

For MFPCA the only hyperparameter choice is the number of

multivariate scores that will be used. For this we chose to retain the

minimum number of multivariate scores that explains at least 95%

of the variance in the longitudinal variables.

1 https://tadpole.grand-challenge.org
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TABLE 1 Description of the included features from the ADNI TADPOLE

dataset.

Name Description

Baseline APOE4 Number of apolipoprotein ǫ4

alleles

Baseline PTEDUCAT Years of education

Baseline PTETHCAT Ethnicity

Baseline PTGENDER Gender

Baseline PTMARRY Marriage status

Baseline PTRACCAT Race

Longitudinal AGE_t Subject age at visit time

Longitudinal ADAS11 Alzheimer’s disease

assessment scale (11-item)

Longitudinal ASAS13 Alzheimer’s disease

assessment scale (13-item)

Longitudinal CDRSB Clinical dementia rating (sum

of boxes)

Longitudinal Entorhinal MRI measure of entorhinal

Longitudinal Fusiform MRI measure of fusiform

Longitudinal Hippocampus MRI measure of hippocampus

Longitudinal ICV MRI measure of ICV

Longitudinal MMSE Mini-mental state

examination

Longitudinal MidTemp MRI measure of MidTemp

Longitudinal RAVLT_forgetting Rey auditory verbal learning

test (forgetting)

Longitudinal RAVLT_immediate Rey auditory verbal learning

test (immediate)

Longitudinal RAVLT_learning Rey auditory verbal learning

test (learning)

Longitudinal RAVLT_perc_

forgetting

Rey auditory verbal learning

test (forgetting)

Longitudinal Ventricles MRI measure of ventricles

Longitudinal WholeBrain MRI measure of WholeBrain

For the RSF model we set the number of estimators to 1,000

(29), as increasing this value generally improves performance

until a plateau is reached, at the cost of longer training time.

Additionally, we set the minimum number of samples required

to split a node to 32 and the minimum number of samples per

leaf node to 16. These settings smooth the model’s predictions and

prevent overfitting by avoiding overly small nodes.

For neural networks, several hyperparameters were required

to define both the architecture and training process. For the

architecture of the RNN we set the number of layers to 2, each

with a number of nodes equal to 5+ the number of longitudinal

covariates. A dropout rate of 0.3 was applied to mitigate overfitting

(32). The neural network for the survival prediction contains 2 fully

connected layers with 32 hidden nodes. A ReLU activation function

and dropout is applied after the first layer, while a softmax function

is used after the second layer to obtain probability outputs. To

train the neural networks we used an Adam optimizer (33) with

a learning rate of 1e−3 and weight decay of 1e−5, which generally

improves generalization performance (34). Each model is trained

in batches of size 32 for 100 epochs.

To test the sensitivity of the models to the chosen set

of hyperparameters we include an experiment with random

hyperparameter optimization (35) on the ADNI dataset in a limited

setting. For each parameter we set a range or distribution, which

includes the chosen value. For instance, the number of layers in a

neural network is now chosen randomly from 1, 2, and 3. We then

generate 100 sets of hyperparameters, where for each parameter a

value is randomly sampled from the chosen range or distribution.

We train each model with this parameter set on 80% of the training

set, using the other 20% to validate the results. The model with the

best results on this validation set is then evaluated on the test set.

2.9 Evaluation

We evaluate all methods on the four different synthetic

datasets and the ADNI dataset. Characteristics of all datasets are

summarized in Table 2.

To ensure a reliable estimate for generalization performance,

we use a separate set of subjects for evaluation, that will not be used

during model training. For the simulation scenarios we create 10

different training sets with 1,000 subjects and generate a large set of

3,000 different subjects for evaluation. For the ADNI data we use

10-fold cross validation, where the subjects are divided among ten

sets and we repeatedly use one set for evaluation and all others for

training.

For each dataset we choose four landmark points l at which

we evaluate the predictions of the conditional survival probability.

We landmark the test dataset at time l, by removing subjects with

Ti <= l and removing measurements obtained after time l. The

fitted models are then used to predict the survival probability at

several time points t > l.

At each time t we calculate the predicted risk R̂(t|Y
(l)
i ) of a

subject, conditional on survival until l, using

R̂(t|Y
(l)
i ) = 1−

Ŝ(t|Y
(l)
i )

Ŝ(l|Y
(l)
i )

. (18)

To adjust for censoring we calculate the Inverse Probability of

Censoring Weighting (IPCW). For this we use the training data to

obtain the Kaplan-Meier estimate of the censoring distribution:

Ĝ(t) =
∏

j : tj<=t

(

1−

∑

i∈train(1− δi)·I(Ti = tj)
∑

i∈train I(Ti >= tj)

)

(19)

To assess the discrimination performance of models, we

calculate the IPCW time-dependent Area Under the Curve

(tdAUC) (36). In Blanche et al. (37), it is shown that this is a proper

metric for predicting the risk of an event t years in the future. The

tdAUC compares all pairs of subject (i, j) where subject i has the

event of interest at or before time t and subject j is still event free at t.

When the predicted risk of subject i at time t is higher, as expected,
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TABLE 2 Summary of dataset characteristics.

Dataset Subjects Censoring percentage Mean event time Mean number of visits

Scenario 1 1,000 (train) 33% 5.1± 3.0 10.1± 5.9

Scenario 2 1,000 (train) 33% 5.1± 3.0 10.2± 6.0

Scenario 3 1,000 (train) 42% 5.0± 3.2 10.0± 6.3

Scenario 4 1,000 (train) 48% 5.2± 3.3 10.4± 6.6

ADNI 1,390 83% 3.5± 2.4 7.2± 3.9

FIGURE 1

tdAUC and brier score results obtained by predicting the true survival probabilities for each simulation scenario.

the score increases. The complete formula is given by

tdAUCIPCW(t)

=

∑N
i=1

∑N
j=1 δi · I(Ti ≤ t)I(Tj > t)Ĝ(Ti)I(R̂(t|Y

(l)
i ) > R̂(t|Y

(l)
j ))

(
∑N

i=1 I(Ti > t))(
∑N

i=1 δi · I(Ti ≤ t)Ĝ(Ti))
.

(20)

In addition, wemeasure the error of themodels using the IPCW

Brier Score. This metric is an estimation of the Mean Squared

Error when the true underlying probabilities are unknown, but only

binary outcomes are available and is given by

BSIPCW(t) =
1

N

N
∑

i=1

δi · I(Ti <= t)
(1− R̂(t|Y

(l)
i ))2

Ĝ(Ti)

+I(Ti > t)
(0− R̂(t|Y

(l)
i ))2

Ĝ(t)
. (21)

For the simulated datasets, we do have access to underlying

survival probabilities, which allows us to calculate the mean
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FIGURE 2

Mean Squared Error (MSE) for a selection of models across the first three simulation scenarios. The markers represent the mean of 10 results, with

error bars illustrating the standard deviation. The top row shows the results for scenario 1 (baseline), the middle row for scenario 2 (with interaction

term) and the bottom row for scenario 3 (longitudinal). For MSE lower is better.

squared error using the following equation

MSE(t) =
1

N

N
∑

i=1

(R(t|Y
(l)
i )− R̂(t|Y

(l)
i ))2. (22)

When a model would perfectly predict the true survival

probabilities this would results in a MSE of 0. However, this would

not necessarily result in perfect scores for the tdAUC and brier

score metrics. In Figure 1 we show the tdAUC and brier score

results obtained by predicting the true survival probabilities for

each simulation scenario.

3 Results

3.1 Results on synthetic experiments

First, we will investigate the behaviour of the different models

on the synthetic datasets. Due to the large amount of models,

datasets, landmarking methods and metrics, we will focus on the

most salient observations. Additional figures can be found in the

Supplementary material or in the code repository (https://github.

com/Wieske/DSA_comparison).

3.1.1 E�ect of dependency structure
First we find that the choice of model is very dependent on the

type of relationships that exist in the data. In Figure 2 we show the

MSE for several models on the first three synthetic datasets, which

were all trained with the strict landmarking method. In Figure 3 we

show the results for a different selection of models on scenario 4.

For simulation scenario 1, where the longitudinal trajectories

of the subjects can be extrapolated from baseline data, we see that a

Cox Proportional Hazard (CPH) model that just uses baseline data

gives almost perfect results.Whenwe add an interaction term in the

simulation (scenario 2) that is not specified in the CPH model we

can see the advantage of models such as Random Survival Forest.

This survival model has more flexibility and can therefore learn

this interaction term even when it is not explicitly provided to the

model.

In simulation scenario 3 we introduce different slopes for

different subjects, which means it is no longer possible to
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FIGURE 3

Mean Squared Error (MSE) and tdAUC for a selection of models for synthetic scenario 4 (delayed e�ect). The markers represent the mean of 10

results, with error bars illustrating the standard deviation. For MSE lower is better and for tdAUC higher is better.

extrapolate the trajectories from baseline data alone. As a result,

the baseline model can no longer provide enough information and

the MSE for this model becomes larger when more time passes.

In this case, using the last available measurement instead of the

baseline model already results in a significant decrease in error.

Using a neural network method (RNN-FNN) results in even more

improvement, especially at later landmark times, where more data

points are available to estimate the future trajectory.

In the last scenario we add a randomly sampled covariate with a

delayed effect on the hazard. For this covariate the future trajectory

cannot be accurately predicted, but the effect can be predicted using

historical values. The results in Figure 3 show that the RNN-FNN

model outperforms other approaches for this scenario. This model

is trained on longitudinal and survival prediction simultaneously,

which likely makes it possibly to detect this effect.

3.1.2 Landmarking methods
Next we will focus on the results for different landmarking

methods, for which we will use synthetic data scenario 3. In

Figure 4 we show the average MSE per landmark time for different

landmarking methods. Although the results vary based on which

models are used, in general using no landmarking results in the

worst performance. For the MFPCA model not using landmarking

resulted in a large error, especially for early landmarks. This

error decreases for later landmarks, possibly because by then the

trajectories used for evaluation are longer, making them more

similar to the complete longitudinal trajectories in the training set.

The difference between strict landmarking and super landmarking

is usually smaller and differs per model. For the CPH model

the strict landmarking method is usually superior, except for the

combination with the RNN model, where some of the runs did not

properly converge.

3.1.3 Neural network training strategies
In Figure 5 results are shown for the neural network methods,

consisting of a recurrent neural network (RNN), followed by

a fully-connected neural network (FNN). For this model two

combinations are trained, one where the RNN is only trained on

a longitudinal loss (RNN_long-FNN) and one where the RNN is
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FIGURE 4

Average tdAUC for several model combinations using di�erent landmarking methods during training. The markers represent the mean of 10 results,

with error bars illustrating the standard deviation. For the tdAUC higher is better.

first trained on a combination loss and afterwards the entire model

is trained on a survival loss (negative log likelihood) (RNN-FNN).

When one of the landmarking methods is applied during

training the RNN-FNN model has the best performance. However,

without landmarking the RNN-FNN model has a very high error,

while the RNN_long-FNN model still gives decent results. This is

likely because the RNN-FNN model is overfitting on information

in the complete longitudinal trajectories that will not be available

during evaluation, as also explained in Section 2.3.1. During

training the model can determine the survival probability of

subjects using values of the covariates right before the event, so it

is not necessary to try to estimate future values for the covariates

to make a good prediction. During evaluation these values are

not always available due to landmarking of the data, which causes

the high errors. By only using longitudinal loss the RNN_long

model is forced to learn features that can be used to predict

the future trajectory, which are still informative when the data is

landmarked during evaluation. When some form of landmarking

is used during training, the RNN-FNN model does not have this

problem and the bigger focus on the survival loss seems to become

an advantage.

3.2 Results on real world data

Our experiments on the ADNI dataset show less conclusive

results. Figure 6 displays the average tdAUC for each combination

of model and landmarkingmethod. In Figure 7 we show the tdAUC

and brier score over time for several model combinations at a

landmark time of 3 years.

For this dataset, super and random landmarking often

outperform both strict landmarking and no landmarking. The

inferior results of the strict landmarking method may be attributed

to specific characteristics of the ADNI dataset. The ADNI study

was conducted in multiple phases, each recruiting new participants

while continuing to follow subjects from previous phases.

Participants who entered during later phases had fewer visits before

the study concluded. Therefore excluding subjects that have had the

event results in a rapid decline in the number of subjects available

for training over time. Specifically, after 1 year 84% of subjects are

still at risk (1,161), after 2 year 61% (842 subjects), after 3 years

42% (583 subjects), and after 4 years only 22% (301 subjects). The

results of the RSF model only decrease slightly at later landmark

times, but for the CPH and FNN models, the smaller sample size
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FIGURE 5

tdAUC and MSE results for the RNN-FNN and RNN_long-FNN models using di�erent landmarking strategies with data from synthetic scenario 3 at a

landmark time of 3 years. The markers represent the mean of 10 results, with error bars illustrating the standard deviation. For the tdAUC higher is

better and for the MSE lower is better.

of strict landmarking resulted in poor performance. For the CPH

model, this might be caused by convergence or numerical issues as

a result of the larger number of variables without regularization.

The neural network models might have overfit on the smaller

training set.

Among the different survival models tested, the Random

Survival Forest (RSF) model frequently produced strong

results, demonstrating its ability to handle complex survival

data with many features. RSF was also the most stable

across landmarking methods, showing similar performance

regardless of the chosen strategy. In contrast, the CPH model

often performed poorly, which may be due to the large

number of features and the lack of regularization, leading

to numerical or convergence issues in some runs. The FNN

model resulted in similar or worse performance compared to

the RSF.

Among the longitudinal models, the RNN_long model

demonstrated good performance but did not improve upon

the simpler approach of using only the last visit for prediction.

Unlike the results observed for synthetic data in Section 3.1.3,

incorporating additional survival information into the RNN

only diminished the performance. These results suggest that

for this dataset, these more complex strategies are either

unnecessary or need further refinement to leverage their

full potential.

3.3 Sensitivity to hyperparameter choices

To assess the sensitivity of our results to the chosen

hyperparameters, we performed a random hyperparameter search

on the ADNI dataset for a landmark time of 3 years, using the strict

landmarking method. Figure 8 compares the results of this random

search to the results obtained with the fixed parameter set. For most

models, the results were comparable between the two approaches,

with the fixed hyperparameter set even outperforming random

search at several points. For the RNN-FNN model, the random

search led to performance improvements, especially at points where

the original results were poor compared to other models. However,

even with these improved results, the RNN-FNN model did not

surpass the performance of the last_visit-RSF model. This suggests

that the qualitative conclusions drawn from our experiments do not

strongly depend on our choice of fixed hyperparameters.

3.4 Computational requirements

An additional consideration in model selection is the

computational efficiency of the chosen method. We recorded the

training times for each model on the ADNI dataset, with the

average results shown in Figure 9. While all methods were trained
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FIGURE 6

Average tdAUC for all considered model combinations on the ADNI dataset with di�erent landmarking methods. The markers represent the mean of

10 results, with error bars illustrating the standard deviation. For the tdAUC higher is better.

using similar computational resources, the neural network models

benefited from GPU acceleration, reducing their training times.

The baseline and last_visit benchmarks were substantially faster

than other methods, as these benchmarks only required training

the survival model. In contrast, the MFPCA method was notably

slower, both in training the longitudinal model and in generating

longitudinal encodings for subsequent survival modeling. This

higher inference cost extended the training time for the survival

models.

Among landmarking strategies, no landmarking and random

landmarking were the most computationally efficient. Super and

strict landmarking, on the other hand, resulted in longer training

times due to their larger combined training datasets. Specifically,

super landmarking trains a single model on the entire expanded

dataset, whereas strict landmarking involves training separate

models on smaller subsets of the data. For neural network methods,

these two landmarking strategies yielded comparable training

times. However, for MFPCA and RSF, super landmarking was

slower because these models required significantly more time to

handle the larger dataset.

4 Discussion

This study explored various landmarking strategies and model

choices for dynamically predicting survival outcomes, highlighting

the importance of these decisions in different contexts. Our findings

suggest that some form of landmarking is often beneficial, but the

optimal strategy can depend heavily on the specific characteristics

of the dataset and the model being used.

In the simulation experiments, strict landmarking was often

the best-performing method. On the ADNI data, on the other

hand, it often performed poorly. This may be because, while this

method has a low bias in theory, the exclusion of subjects can

result in higher variance. Therefore, settings with limited data can

benefit from different landmarking approaches, such as the super

or random landmarking method. These methods resulted in good

performance for most models with synthetic data as well as ADNI.

It should be noted that our focus has been on observational

datasets, where the baseline time of a subject usually has no special

meaning. A strict landmarking method may be more beneficial in

an intervention setting because the trajectories of the subjects are
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FIGURE 7

tdAUC and brier score for several models on the ADNI dataset at a landmark time of 3 years, using di�erent landmarking methods. The markers

represent the mean of 10 results, with error bars illustrating the standard deviation. For the tdAUC higher is better and for the brier score lower is

better.

potentially better aligned at the start of the intervention. In this

setting, the considered landmark times are expected to be at more

similar points in all trajectories. As a result, measurements between

subjects can be more readily compared from time point to time

point, which will typically lead to improved performance.

Our experiments, conducted on datasets with varying

characteristics, demonstrate that the optimal longitudinal model

can vary depending on the specific scenario. In simpler settings,

where longitudinal trajectories show little variation between

subjects, classical survival analysis methods fit with baseline

data are sufficient. However, this approach falls short as soon as

longitudinal trajectories exhibit more variation within subjects. In

the more complex simulation scenarios as well as the real-world

setting, several methods exceeded the performance of the baseline

benchmark. The RNN model demonstrated strong performance

across all synthetic datasets, with its advantages particularly

evident in the final scenario. In this case, it appeared to be the only

model capable of accurately capturing the effect of the additional

covariate. This highlights the importance of the ability to integrate

longitudinal and survival information during training, which

can be crucial for modeling certain complex relationships. In

the scenarios we considered, the MFPCA model never emerged

as the best-performing approach. On the ADNI dataset, the

last visit benchmark delivered the best results, emphasizing that

incorporating the entire longitudinal data is not always necessary

for optimal performance.

Among the studied survival models, one clear takeaway is the

robustness and versatility of the Random Survival Forest (RSF).

Across most longitudinal models and landmarking methods, RSF

consistently produced stable results and strong performance. Its

ability to handle non-linearities and its ease of implementation

make it an attractive choice for many applications. In the synthetic

data scenario where the model assumptions were correctly

specified, the Cox Proportional Hazards (CPH)model delivered the

best results. This suggests that CPH may be a suitable choice when

the relationships between covariates and event probabilities are well

understood and align with the model’s underlying assumptions.

While neural network-based strategies did show some benefits

when survival information was incorporated into the longitudinal

model, this improvement was primarily observed in synthetic

data. When applied to the ADNI dataset, these strategies failed

to outperform simpler benchmarks, indicating that the value of
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FIGURE 8

tdAUC and brier score obtained using fixed parameters or a random hyperparameter search for several models on the ADNI dataset at a landmark

time of 3 years, using the strict landmarking method. The markers represent the mean of 10 results, with error bars illustrating the standard deviation.

For the tdAUC higher is better and for the brier score lower is better.

complex models depends strongly on the characteristics of the data.

The ADNI dataset is characterized by a high percentage of censored

observations and a lower average number of visits per subject

compared to our synthetic datasets, as shown in Table 2. This

combination poses challenges for identifying complex relationships

between covariates and event probabilities. The limited frequency

of longitudinal measurements reduces the amount of information

available to capture temporal patterns, while the high censoring

rate further restricts the effective sample size for modeling event

occurrences. These factors likely contribute to the difficulty in

detecting nuanced interactions and may limit the performance of

more complex models on this dataset.

Our results suggest that special care should be taken when

benchmarking new methods. Not only should they be compared to

simple variations of the proposed technique, which often is the only

experiment carried out, but a comparison should also be made with

rather different approaches. Our results on ADNI show that it is

sensible to include a simple method like last_visit that corresponds

to the traditional landmarking strategy, as described in Section 2.2.

In our study, we used a fixed set of hyperparameters across

all models to ensure fair comparisons, but we recognize this as a

potential limitation. To address this, we conducted an additional

experiment involving a random hyperparameter search in a limited

setting. This experiment demonstrated improved performance for

some neural network methods, particularly in scenarios where

their initial results were suboptimal. However, these improvements

did not alter the overarching conclusions of our study. While

optimizing hyperparameters, especially for complex models like

neural networks, can enhance predictive performance, it also

introduces a trade-off. High sensitivity to hyperparameters can

reduce model robustness and make predictions less reliable.

Therefore, while hyperparameter tuning has the potential to

refine model outcomes, it must be approached carefully to

balance improved performance with the need for robustness and

generalizability.

In conclusion, our results highlight the importance of carefully

considering both landmarking strategies and model choices when

dynamically predicting survival outcomes. Across most scenarios

considered, incorporating landmarking during training proves

beneficial. Strict landmarking performs well when enough data is

available, while the super and random landmarking approaches

offer excellent performance in the ADNI setting, with limited data.
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FIGURE 9

Training times for di�erent models and landmarking methods on the ADNI dataset.

Among the different model combinations, the random survival

forest fitted on the last available measurement consistently provides

strong results, making it a reliable choice in many cases. Neural

network methods show some potential for improvement when

sufficient data and informative longitudinal trajectories are present.

Ultimately, the optimal combination depends on factors such as

the complexity of the data relationships, the available data, and the

intended application of the model. Therefore, understanding the

trade-offs between these choices is essential for successful dynamic

survival analysis.
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