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Purpose: The neural mechanisms of sleep disturbance associated with chronic

tinnitus remains unknown. To investigate this issue, multimodal magnetic

resonance imaging (MRI) was used to detect glymphatic system dysfunctions

in chronic tinnitus patients with sleep disturbance.

Methods: This prospective study included 30 tinnitus with sleep disturbance

(TSD), 30 tinnitus with no sleep disturbance (TNSD) and 38 age, sex, and

education-matched healthy controls (HCs). All the subjects underwent MRI

scans of the glymphatic indexes and clinical assessment. Multimodal MRI indices

were used as proxies of glymphatic function and the relationships between the

glymphatic function and sleep disturbance were further evaluated.

Results: TSD group exhibited significantly higher choroid plexus volume

(CPV) and enlarged perivascular spaces (EPVS) values than the HCs group (p

< 0.0001). Moreover, the TNSD group revealed significantly lower di�usion

tensor image analysis along the perivascular space (DTI-ALPS) values than the

HCs group (p = 0.044). In chronic tinnitus patients, the decreased DTI-ALPS

index was negatively associated with the Pittsburgh Sleep Quality Index (PSQI)

scores (r = −0.428, p = 0.001). In addition, the increased CPV and EPVS

values were positively correlated with the PSQI scores (r = 0.374, p = 0.005;

r = 0.335, p = 0.013; respectively). Furthermore, reduced ALPS values were

negatively associated with the Tinnitus Handicap Questionnaires (THQ) scores

(r = −0.378, p = 0.005).

Conclusion: Using multimodal MRI approaches, this study provides preliminary

evidence for disrupted glymphatic function in chronic tinnitus patients, which

may be associated with sleep disturbance. CPV, EPVS, and ALPS could serve as

neuroimaging markers and shed new light on neuropathological mechanisms

for chronic tinnitus comorbid with sleep disturbance.

KEYWORDS

chronic tinnitus, sleep disturbance, glymphatic system, magnetic resonance imaging,

di�usion tensor imaging

1 Introduction

Chronic tinnitus is the permanent perception of a sound with no identifiable

corresponding acoustic source (1–3). Tinnitus patients often suffer from sleep problem

and psychological distress such as depression and anxiety that significantly influence

the life quality (4–6). The prevalence of comorbid sleep disturbance in tinnitus patients
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ranged from 10.1% to 79.5% (7). Previous researches have

elaborated on the relationship between chronic tinnitus and sleep

disturbance (8–10). However, the neurophysiological mechanism

of sleep disturbance associated with tinnitus remains unknown.

Recent studies have shown that the glymphatic system plays a

pivotal role in removing metabolic waste from the brain (11). The

glymphatic system involves the interaction between cerebrospinal

fluid (CSF) and brain interstitial fluid (ISF). The fluid then exits

the brain parenchyma through venous perivascular spaces, clearing

waste such as amyloid beta (Aβ) and tau protein into meningeal

lymphatic vessels (12). When the clearance function for Aβ and

tau protein is compromised, the balance will be broken, and the

accumulation and aberrant deposition of Aβ and tau will lead to

a cascade of damages, ultimately resulting in cognitive decline.

Dysfunction in the glymphatic system has been hypothesized to

play a role in sleep disorders (11, 13, 14). However, none of these

studies have focused on investigating brain glymphatic dysfunction

in chronic tinnitus with sleep disturbance to date.

The glymphatic system can be evaluated by proton emission

tomography (PET) (11) or gadolinium-based contrast-enhanced

magnetic resonance imaging (MRI) (15); however, several non-

invasive MRI indices are useful for indirect glymphatic evaluation,

such as choroid plexus volume (CPV) (16), enlarged perivascular

spaces (EPVS) (17), diffusion tensor image analysis along the

perivascular space (DTI-ALPS) (18–20). The CPV integrates signals

from the brain parenchyma with signals from circulating immune

cells, and selectively recruits peripheral leukocytes to the brain

parenchyma (16). The EPVS is a major indicator of the increase

in periarterial space, representing the inflow of CSF into the

brain parenchyma (21). In addition, the ALPS index can be used

for measuring the spatial diffusion around the deep medullary

vein, mainly reflecting the outflow of CSF/ISF (22). Therefore,

aberrant glymphatic system function purportedly contributes to

pathophysiology of brain aging, neurodegenerative diseases, and

other brain injuries (23). Our prior study investigated for the

first time that lower DTI-ALPS index values were detected in

chronic tinnitus patients, which was significantly correlated with

lower scores on specific cognitive performance (24). Nevertheless,

it is unclear whether the other indices of the glymphatic system

were abnormal in chronic tinnitus and if sleep disturbance

contributed to the glymphatic system dysfunction associated with

chronic tinnitus.

To determine if glymphatic system dysfunction existed in

chronic tinnitus patients with sleep disturbance, we used MRI to

obtain CPV, EPVS, and DTI-ALPS values of glymphatic function

and determined their relationships with sleep disturbance in

chronic tinnitus patients. We hypothesized that: (a) CPV, EPVS

and DTI-ALPS indices of glymphatic function would be disrupted

in chronic tinnitus patients compared to normal controls, (b) that

CPV, EPVS and DTI-ALPS values of glymphatic function would be

correlated with sleep disturbance in chronic tinnitus patients.

2 Materials and methods

2.1 Subjects

The current study was approved by the Ethics Committee of

Nanjing First Hospital. All subjects provided written informed

consent before their participation in this study. Sixty chronic

tinnitus patients were included from otolaryngology department

while 38 age, sex, and education well-matched HCs were recruited.

Pittsburgh Sleep Quality Index (PSQI) was used to evaluate sleep

quality of patients with tinnitus. According to the PSQI score,

the tinnitus patients were divided into 30 tinnitus with sleep

disturbance (TSD) (PSQI score >5) and 30 tinnitus with no sleep

disturbance (TNSD) (PSQI score ≤5). All individuals were 30–

70 years old, right-handed and completed more than 9 years of

education. Patients had bilateral or central tinnitus without hearing

loss (hearing threshold <25 dB). The hearing thresholds of both

ears were assessed by puretone audiometry (PTA) at the frequencies

of 250, 500, 1,000, 2,000, 4,000, and 8,000Hz. Tinnitus severity was

assessed by Tinnitus Handicap Questionnaires (THQ) (25), which

was categorized as mild, moderate or severe (26). Ten patients had

mild tinnitus, 25 moderate tinnitus, and 25 severe tinnitus. All

HCs and most tinnitus patients had normal hearing. Evaluation

of tinnitus related depression and anxiety symptoms were assessed

using the Self-Rating Depression Scale (SDS) and Self-Rating

Anxiety Scale (SAS) (27, 28). Montreal Cognitive Assessment

(MoCA) was used to assess the cognitive status for each subject

(29). One TSD patient and one TNSD patient were subsequently

excluded from the study due to the exceeded limits for head motion

during MR scanning.

Exclusion criteria included the following: (1) pulsatile

tinnitus, hyperacusis, Meniere’s diseases; (2) ear surgery, acoustic

neurinoma, use of ototoxic drugs; (3) severe smoking, alcoholism,

drug addiction, stroke, head injury, Alzheimer’s disease, Parkinson’s

disease, epilepsy, schizophrenia; (4) other major central nervous

system (CNS) disorders; and (5) MRI contraindications. The

demographics and clinical information of the chronic tinnitus

patients and HCs are presented in Table 1.

2.2 MR data acquisition

MRI data were obtained using a 3.0-T MR imaging system

(MAGNETOM Skyra; Siemens Healthcare, Erlangen, Germany)

with a 20-channel receiver array head coil. During scanning,

earplugs and headphones were used to reduce the scanner noise.

The earplugs (Hearos Ultimate Softness Series, USA) were used

to attenuate scanner noise by approximately 32 dB. The scan

parameters of DTI were as follows: TR = 4,996ms, TE = 102ms,

slices = 70, slice thickness = 2mm, gap = 0, FA = 90◦, b-values

= 0 and 1,000s/mm2, diffusion gradient directions = 32, matrix

= 128 × 128, and FOV = 200mm × 200mm. Structural images

were obtained using a high-resolution T1-weighted gradient-

echo sequence and the following scan parameters: TR/TE =

9.912/4.12ms, slices = 160, thickness = 1mm, gap = 0, FA = 16◦,

matrix= 256× 256, and FOV= 256mm× 256 mm.

2.3 DTI-ALPS measurement

The DTI-ALPS index was calculated from diffusion-weighted

imaging data using the DTIFIT tool of the FMRIB Software

Library (FSL, Wellcome Centre for Integrative Neuroimaging,

University of Oxford, UK, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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TABLE 1 Demographics and clinical information between tinnitus patients and HCs.

Items TSD (n = 29) TNSD (n = 29) HCs (n = 38) p-value

Age (year) 63.62± 7.08 62.59± 6.85 61.45± 3.79 0.330a

Gender (male/female) 14/15 13/16 17/21 0.951b

Education (years) 10.28± 1.67 11.10± 1.01 10.63± 1.78 0.130a

Tinnitus duration (months) 31.86± 19.97 24.62± 12.25 – 0.787c

THQ score 50.69± 15.52 51.81± 15.92 – 0.102c

PTA of left ear (dB HL) 16.72± 2.17 16.84± 3.06 17.63± 4.24 0.482a

PTA of right ear (dB HL) 16.49± 2.81 17.01± 3.13 17.24± 3.73 0.654a

Average PTA of both ears (dB HL) 16.61± 1.99 16.93± 2.49 17.43± 3.58 0.492a

MoCA scores 26.45± 0.74 26.66± 0.72 26.89± 0.86 0.073a

PSQI scores 9.59± 3.07 4.48± 0.63 4.42± 0.68 <0.001∗a

Data are represented as Mean± SD.
∗P <0.001. aThe p-values are obtained by using one-way analysis of variance. bThe p-values are obtained by using χ2 test. cThe p-values are obtained by using two-sample t-test.

TSD, tinnitus with sleep disturbance; TNSD, tinnitus with no sleep disturbance; HCs, healthy controls; THQ, Tinnitus Handicap Questionnaires; PTA, puretone audiometry; MoCA, Montreal

Cognitive Assessment; PSQI, Pittsburgh Sleep Quality Index.

FSL). Detailed calculation process was depicted in Figure 1A

and previous study (18). Briefly, preprocessing procedure

included format conversion, brain extraction, eddy correction,

and tensor calculation firstly. Then, we used fsleyes tool to

outline 5mm diameter spherical regions of interest (ROIs)

on the bilateral projection fibers, association fibers, and

subcortical fibers. Next, we extracted the diffusivities of the

three directions along the x, y, and z axes at the voxel level

within the ROI. Finally, the DTI-ALPS index was calculated

based on this formula: mean (Dxxassoc, Dxxproj)/mean

(Dzzassoc, Dyyproj). All the outlines of ROI were reviewed

by an experienced radiologist.

2.4 CPV measurement

To reduce the potential error of manual segmentation, we

chose a convolutional neural network model using U-Shaped

Neural Network (U-NET) architecture to segment the volume

of the choroid plexus using T1w MRI (https://github.com/hettk/

chp_seg) (30). This architecture had been validated across the

adult lifespan and shown better performance than the existing

segmentation methods (such as FreeSurfer). More detailed

segmentation process was depicted in Figure 1B. Briefly, individual

T1w image was used as input and registered non-linearly with

Advanced Normalization Tools (ANTs) to the International

Consortium for Brain Mapping-Montreal Neurological Institute

(ICBM-MNI) 152 -T1-weighted template (31). After processing

by the 3D U-NET fully convolutional neural network, the

output was then inversely transformed to the native imaging

space and generated a mask of choroid plexus. Finally, the

volume is calculated using SimpleITK (version 2.1.1.1) in

Python (3.7.0) to acquire the individual choroid plexus volume

(32). Furthermore, we used Computational Anatomy Toolbox

(CAT12, Jena University Hospital, Departments of Psychiatry

and Neurology, Germany, https://github.com/ChristianGaser/

cat12) in Statistical Parametric Mapping software package (SPM12,

Functional Imaging Laboratory, Wellcome Department of

Cognitive Neurology, UCL Queen Square Institute of Neurology,

UK, http://www.fil.ion.ucl.ac.uk/spm) to segment T1 images and

obtained total intracranial volume (TIV), gray matter volume

(GMV), white matter volume (WMV), and cerebrospinal fluid

volume (CSFV). In addition to the volume raw value, it was

expressed as a ratio of TIV ∗ 1,000 to eliminate potential influences

of individual variability in brain volume and further analyses were

based on this ratio.

2.5 EPVS measurement

EPVS probability map of each T1w image was generated using

a previously validated deep learning model (33). This model has

been conducted to quantify EPVS in cerebral vessel disease and

demonstrated satisfactory effectiveness and robustness (17). Based

on the suggestions of the developers and manual review of the

EPVS probability map, we adopted a threshold of 0.1 to maximize

the inclusion of all potential EPVS and generate individual EPVS

masks. Finally, similar to the extraction process of CPV, the

original EPVS volume was extracted and was expressed as a ratio

of TIV ∗ 1,000. Detailed segmentation process was depicted in

Figure 1C.

2.6 Statistical analysis

The differences in demographic and clinical information were

investigated using SPSS 26.0 (SPSS, Inc., Chicago, IL, USA). The

chi-square test was used for categorical variables such as gender,

while the independent samples t-test or Mann–Whitney U-test

was used for continuous variables with normally distributed data,

based on normal distribution tested with the Shapiro–Wilk test.

The MRI index was calculated for each group and its correlation

with clinical variables was assessed using Pearson’s correlation.

Bonferroni correction for multiple comparisons was carried out.
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FIGURE 1

The MRI indices calculation flow of glymphatic system function. (A) After preprocessing of DTI, FA and individual di�usivity maps were generated

using DTIFIT tool implemented in FMRIB Software Library. Next, placing 5mm diameter spherical ROIs on the bilateral projection fibers, association

fibers, and subcortical fibers and extracting the di�usivities of the three directions along the x, y, and z axes at the ROIs on bilateral fibers on both

sides of the brain. The DTI-ALPS index was calculated based on this formula: mean (Dxxassoc, Dxxproj)/mean (Dzzassoc, Dyyproj). (B) Choroid

plexus was segmented by inputting T1w image into a validated U-net deep learning model, and its volume was extracted after inspected and

reviewed. (C) EPVS probability maps were obtained by using another validated U-net deep learning segmentation model. The volume of EPVS is

extracted after thresholding and review. Abbreviations: EPVS, enlarged perivascular space; DTI, di�usion tensor image; FA, fractional anisotropy; ROI,

regions of interest.
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TABLE 2 Comparison of the brain volume and glymphatic function characteristics between tinnitus patients and HCs.

Items TSD (n = 29) TNSD (n = 29) HCs (n = 38) p-value

Total intracranial volume (TIV) (cm3) 1343.47± 131.10 1352.83± 135.14 1349.11± 138.27 0.965

Gray matter volume (% of TIV) 0.323± 0.023 0.322± 0.017 0.325± 0.019 0.885

White matter volume (% of TIV) 0.300± 0.016 0.294± 0.014 0.294± 0.016 0.282

Brain parenchyma volume (% of TIV) 0.623± 0.034 0.617± 0.027 0.619± 0.029 0.764

Choroid plexus volume (CPV) (cm3) 2.37± 0.78 2.03± 0.36 1.76± 0.48 <0.001∗

CPV/TIV ∗ 103 1.76± 0.61 1.51± 0.29 1.31± 0.35 <0.001∗

Enlarged perivascular space (EPVS) volume (cm3) 2.54± 0.68 2.24± 0.33 2.03± 0.43 <0.001∗

EPVS/TIV ∗ 103 1.89± 0.46 1.66± 0.26 1.51± 0.32 <0.001∗

ALPS 1.48± 0.12 1.57± 0.12 1.65± 0.12 <0.001∗

Data are represented as Mean± SD.
∗P < 0.001.

TSD, tinnitus with sleep disturbance; TNSD, tinnitus with no sleep disturbance; HCs, healthy controls; TIV, total intracranial volume; CPV, choroid plexus volume; EPVS, enlarged perivascular

space; ALPS, analysis along the perivascular space.

Statistical significance was determined using a two-tailed p-value

of <0.05.

3 Results

3.1 Demographic and clinical data

The demographic and clinical data from three groups are

presented in Table 1. No significant differences were detected

among TSD, TNSD patients and HCs in terms of age, gender,

education level, average hearing thresholds, and MoCA scores (p

> 0.05). There were no significant differences of THQ scores and

disease duration between TSD and TNSD patients (p > 0.05).

Compared withHCs and TNSD, TSD patients revealed significantly

worse performances on the PSQI scores (p < 0.001).

3.2. Structural results

Compared with HCs, no significant differences of GMV,WMV,

and TIV were detected among tinnitus patients and HCs (p> 0.05)

(Table 2). After Monte Carlo simulation correction, we detected no

suprathreshold voxel-wise differences of GMV, and WMV among

tinnitus patients and HCs.

3.3 Glymphatic function analysis

Using ANOVA, it showed there were significant differences

of CPV, EPVS, and DTI-ALPS index among three groups

(Figure 2). Post-hoc analysis indicated that the TSD group exhibited

significantly higher CPV values than the HCs group (p < 0.0001)

and significantly higher EPVS values than the HCs group (p <

0.0001). TSD group showed higher CPV and EPVS values than

TNSD group but not significant (p > 0.05). Furthermore, the TSD

group showed significantly lower DTI-ALPS values than the TNSD

(p = 0.018) and HCs group (p < 0.0001). Additionally, the TNSD

group revealed significantly lower DTI-ALPS values than the HCs

group (p = 0.044). Detailed MRI indices of the participants are

shown in Table 2.

3.4 Correlation analysis

Among all participants, age, gender, education, and average

hearing thresholds were controlled as covariates to eliminate these

variables as potential confounds. In chronic tinnitus patients, the

decreased DTI-ALPS index was negatively associated with the

PSQI scores (r = −0.428, p = 0.001) (Figure 3A). Moreover,

the increased CPV and EPVS values were positively correlated

with the PSQI scores (r = 0.374, p = 0.005; r = 0.335, p =

0.013; respectively) (Figures 3B, C). Furthermore, reduced ALPS

values were negatively associated with the THQ scores (r =

−0.378, p = 0.005) (Figure 3D). In addition, the increased CPV

values were positively correlated with the EPVS values (r =

0.440, p = 0.001) (Figure 3E). However, no other MRI indices of

glymphatic function were associated with other tinnitus clinical

characteristics (all p>0.05). No significant correlations survived

after Bonferroni correction.

4 Discussion

The current study explored for the first time to detect

glymphatic dysfunction related to sleep disturbance in chronic

tinnitus using multimodal MRI approaches. Our analyses non-

invasively generated exploratory insights into the functional status

of the glymphatic system, offering potentially relevant information

for future clinical investigations. These metrics could be useful

in assessing the role of the glymphatic system in chronic tinnitus

patients with sleep disturbance.

In this study, we used multimodal MRI images to

comprehensively evaluate the glymphatic system function in

chronic tinnitus, including segmentation of CPV and EPVS

utilizing T1w and calculation of ALPS index using DTI. The

choroid plexus, regarded as a unique neuro-immunological

interface, not only produces CSF, but also integrates signals from
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FIGURE 2

Di�erences of the glymphatic system function among TSD, TNSD and HCs. (A) TSD group showed significantly lower DTI-ALPS values than the TNSD

(p = 0.018) and HCs group (p < 0.0001); TNSD group revealed significantly lower DTI-ALPS values than the HCs group (p = 0.044). (B) TSD group

exhibited significantly higher CPV values than the HCs group (p < 0.0001). (C) TSD group exhibited significantly higher EPVS values than the HCs

group (p < 0.0001). *Represents the significant di�erences between groups.

FIGURE 3

Correlation analyses between glymphatic system function and clinical variables. (A) In chronic tinnitus patients, the decreased DTI-ALPS index was

negatively associated with the PSQI scores (r = −0.428, p = 0.001). (B) The increased CPV values were positively correlated with the PSQI scores (r =

0.374, p = 0.005). (C) The increased EPVS values were positively correlated with the PSQI scores (r = 0.335, p = 0.013). (D) The decreased ALPS

values were negatively associated with the THQ scores (r = −0.378, p = 0.005). (E) The increased CPV values were positively correlated with the EPVS

values (r = 0.440, p = 0.001).

the CNS parenchyma with signals from circulating immune

cells, and selectively recruits peripheral leukocytes to the CNS

parenchyma (34). In Alzheimer’s disease, increased CPV was

associated with greater Aβ plaque formation and poorer cognitive

function (16). EPVS volume is a major indicator of the increase

in periarterial space, representing the inflow of CSF into the brain

parenchyma (21). The ALPS index, which measures the spatial

diffusion around the deep medullary vein, mainly reflects the

outflow of CSF/ISF (22). Taoka et al. reported positive correlation

between reduced DTI-ALPS index and cognitive dysfunction

in Alzheimer’s disease for the first time (18). We compared

these indices in tinnitus groups and observed major differences
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suggesting that the glymphatic system is significantly impaired

in individuals with chronic tinnitus. Moreover, the tinnitus

glymphatic dysfunctions are correlated with sleep disruption and

tinnitus distress. The correlations are at most moderate, but may

also considered to be weak (35).

Chronic tinnitus patients showed higher CPV than HCs for

reasons that are poorly understood. The choroid plexus not only

plays a pivotal role in CSF production but is also essential for

regulating the transfer of immune cells from the brain parenchyma

into CSF (36). The mechanisms responsible for the tinnitus-

related increase in CPV are unclear, but others have reported

that CPV was associated with greater in Alzheimer’s disease than

HCs and was correlated with Aβ deposition and poorer cognitive

function (16). Similarly, the volume of EPVS was significantly

higher in tinnitus patients compared to HCs suggesting that the

inflow of CSF into the brain parenchyma is impaired. AQP4,

which is polarized in astrocytes, plays a significant role in volume

regulation; inflammation can increase its expression which could

lead to drainage disorders manifested as EPVS visible on MRI

(37). The glymphatic system’s role is to clear metabolic waste

and interstitial solutes from the brain parenchyma, including

the CSF tau protein (38). Our prior study found that chronic

tinnitus patients revealed decreased DTI-ALPS index, which was

correlated with specific neuropsychological tests (24). Thus, DTI-

ALPS has been pivotal in detecting glymphatic system function

and underscoring the potential value as a biological indicator of

neuropathological conditions.

Nonetheless, the above three indicators based on diffusion

and structural MRI cannot directly reflect dynamics aspects of

the glymphatic system (20, 39, 40). Kiviniemi et al. suggested

that low frequency (<0.1Hz) resting-state functional MRI (fMRI)

blood-oxygen-level-dependent (BOLD) signals are linked to CSF

dynamics and glymphatic function (41). The resting-state global

BOLD (gBOLD) activity and associated physiological modulations

are speculated to represent highly coordinated neural and

physiological processes closely linked to glymphatic clearance

(42, 43). Therefore, the gBOLD-CSF coupling may serve as a

marker for evaluating the glymphatic function, and was linked

to Aβ and tau in Alzheimer’s disease, Parkinson’s disease,

as well as aging (44–48). The relationship between gBOLD-

CSF coupling and glymphatic function in chronic tinnitus

with sleep disturbance requires to be further investigated in

future study.

Furthermore, the glymphatic system is primarily active during

slow-wave sleep (49). Aberrant glymphatic function is associated

with sleep disturbance in Alzheimer’s and Parkinson’s disease

(50) as well as in our chronic tinnitus patients. Whether

glymphatic dysfunction is a cause, consequence or bystander

in these diseases remains to be determined. In our study,

only lower DTI-ALPS values were detected in TSD group than

TNSD group, which was associated with sleep disturbance.

Increasing evidences have indicated that DTI-ALPS is a promising

alternative indicator for evaluating the glymphatic function and

has been widely used in various neurodegenerative diseases.

Prior studies have suggested that glymphatic system impairment

contributes to or is a result of sleep disorder or other sleep-

related diseases using DTI-ALPS (13, 51, 52). Therefore, it

raises the potential for DTI-ALPS as a potential biomarker

for sleep disorder which will be an important question for

future study. Further longitudinal studies with a larger sample

of tinnitus patients will be acquired to determine whether

similar associations exist in chronic tinnitus accompanied with

sleep disturbance.

Several limitations should be acknowledged. First, the sample

size was relatively small and it is based on cross-sectional analyses

that make it difficult to establish a strong cause and effect

relationship. Thus, long term longitudinal studies are acquired to

investigate the changes of glymphatic function in tinnitus patients.

Second, chronic tinnitus patients are often accompanied with mild

to severe hearing loss. Future studies should include participants

with hearing loss to determine if the correlation between the degree

of hearing loss and glymphatic dysfunction in chronic tinnitus.

Moreover, due to the lack of a group with sleep disturbances

without tinnitus, it cannot be ruled out that the findings are

associated with sleep disturbances alone irrespective of chronic

tinnitus. In addition, although no correlations could pass such a

stringent standard after Bonferroni correction (53), we believe that

our research is still meaningful to provide some enlightenments

for future study in this field. Finally, DTI-ALPS index provides a

single measure of glymphatic function in each hemisphere. While

reductions in the DTI-ALPS index have been reproducibly linked

to multiple conditions associated with glymphatic impairment, it

is an indirect measure, true confirmation of direct glymphatic

contributions is difficult (20). Therefore, future glymphatic imaging

studies of tinnitus would benefit from inclusion of more invasive

methods to confirm the aforementioned findings.

5 Conclusions

In summary, this study provides preliminary evidence for

reduced glymphatic function in chronic tinnitus patients compared

to normal controls, which was correlated with sleep disruption,

by using multimodal MRI approaches. Glymphatic dysfunction

could represent a potential target for further investigation

in developing therapies for chronic tinnitus patients with

sleep disturbance.
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