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Background: Vascular cognitive impairment (VCI) is prevalent but 
underdiagnosed due to its heterogeneous nature and the lack of reliable 
diagnostic tools. Machine learning (ML) enhances disease evaluation by enabling 
accurate prediction and early detection from complex data. This study aimed to 
develop ML models to detect VCI using clinical data and multimodal MRI, and 
to explore the associations between imaging markers and cognitive function.

Methods: The study enrolled 313 participants from Wuhan and surrounding 
areas, including 157 patients with VCI (age 62.38 ± 6.62 years, education 
10.83 ± 3.00 years) and 156 cognitively normal individuals with vascular risk 
factors (age 59.93 ± 6.74 years, education 13.97 ± 3.19 years). An independent 
dataset of 82 participants was used for external validation. Clinical data, 
neuropsychological assessments, and MRIs (T1, T2-FLAIR, and DTI) were 
collected. After imaging processing and preliminary model selection, optimal 
models using various data modalities were constructed. Model reduction was 
undertaken to simplify models without sacrificing performance. SHapley Additive 
exPlanations and moDel Agnostic Language for Exploration and eXplanation 
were used for model interpretation.

Results: The comprehensive final model integrating clinical and multimodal 
MRI measures achieved the best performance with eight input variables (AUC 
of 0.956, 95%CI 0.919–0.988 for internal and 0.919, 95%CI 0.866–0.966 for 
external validation). During external validation, DTI demonstrated more stable 
performance than T1 and T2-FLAIR imaging, highlighting its potential importance 
over conventional imaging markers. Key imaging markers, especially along the 
lateral cholinergic pathway, were highlighted for their importance in diagnosing 
VCI and understanding its manifestation.

Conclusion: Our study developed and validated accurate ML models for VCI 
detection, emphasizing the importance of DTI. The identified imaging markers, 
particularly those derived from DTI, underscoring the potential in enhancing 
diagnostic accuracy and understanding cognitive impairments related to 
vascular changes.
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1 Introduction

Vascular cognitive impairment (VCI) refers to a broad spectrum 
of cognitive impairment ranging from mild cognitive impairment 
to dementia, attributed to cerebrovascular pathologies and the 
burden of vascular risk factors (1). It is considered the second most 
prevalent form of cognitive impairment, potentially the most 
common in East Asia (2–4). Including cases of dementia with mixed 
pathology and white matter hyperintensities (WMHs), VCI accounts 
for 50–80% of all dementia cases (3). The impact of potential 
underlying neurodegenerative pathologies and various vascular 
pathologies on cognition varies greatly among individuals, 
complicating the encapsulation of VCI within a single diagnostic 
framework (5).

The criteria for diagnosing VCI include the presence of cognitive 
impairment, cerebral vascular injuries, and a predominant causal 
relationship between vascular burden and cognitive decline (2). For 
cognitive evaluation, “60-min” or “30-min” neuropsychological 
assessment protocols are recommended (1). However, these 
assessments are time-consuming, challenging in the presence of 
visual or hearing impairments, or dysgraphia, and subject to inter-
rater and intra-rater variability (6). Only neurologists with substantial 
training and experience can conduct these assessments accurately. 
Besides, quantifying cerebral vascular burden and establishing 
causality between vascular burden and cognitive decline is difficult. 
The large interindividual variability in cerebral vascular burden and 
its relationship with cognitive status challenges the determination of 
causality. Simplistically categorizing individuals with high vascular 
burden as having VCI is inadequate. Moreover, the so called covert 
vascular brain injuries are prevalent in both cognitively impaired 
individuals and cognitively intact older adults, complicating the 
definition of vascular burden. Consequently, despite its prevalence, 
VCI is significantly underdiagnosed or diagnosed late in clinical 
practice, lacking reliable and straightforward diagnostic tools, 
especially for individuals with risk factors (7–9).

Brain MRI is deemed the “gold standard” for diagnosing 
VCI. Vascular lesions are primarily assessed visually; however, visual 
rating scales offer limited information, being insufficient both to 
accurately describe lesion distribution and to capture the heterogeneity 
inherent in VCI. Moreover, distinguishing patients with VCI from 
cognitive normal individuals using acknowledged imaging markers is 
challenging, as there are no defined thresholds of vascular burdens to 
indicate VCI. For instance, small vessel disease (SVD) is a primary 
cause of VCI, yet it remains unclear how the severity of imaging 
manifestations of SVD indicates the severity of cognitive impairment. 
Advanced imaging techniques, such as Diffusion Tensor Imaging 
(DTI), which evaluates microstructural integrity beyond visible 
injuries, is demonstrated to offer promising insights into cognitive 
profiles (3). DTI measures may serve as a more decisive predictor for 
cognitive deficits than other conventional markers (10). Further 
translation and quantification of images, alongside the integration of 
new imaging technologies, show promise in offering enhanced value 
for the interpretation of individual cognitive profiles (10).

Besides MRI findings, comprehensive VCI diagnostic criteria 
must also consider clinical vascular events and clinical information 
like demographics and medical histories (2, 11). In some guidelines, 
even a history of stroke or vascular risk factors burden may suffice 
when MRI is unavailable. Additionally, brain reserve has emerged as 

new evidence suggesting independent relationships between brain 
reserve, cerebral vascular injury, and cognition, not yet incorporated 
into current diagnostic criteria (12). Education and lifestyle factors, 
such as moderate exercise and smoking habits, are also critical for 
understanding an individual’s cognitive profile, especially considering 
recent lifestyle and environmental changes (13, 14).

Recent advances in machine learning (ML) technology have enabled 
the analysis of complex relationships in high-dimensional, multimodal 
data, increasingly used in clinical applications (15). While many ML 
models have been developed for Alzheimer’s disease, few have been 
explored for VCI (16, 17). Liu et  al. developed radiomics-based 
diagnostic models for subcortical ischemic vascular cognitive 
impairment using a dataset of 116 participants (18). Wang et  al. 
constructed VCI models based on white matter diffusion and cortical 
perfusion features in a sample of 113 participants, achieving an accuracy 
of 72.57% (19). Given VCI’s heterogeneous nature, there is a greater need 
for reliable and accurate ML models in VCI. Model Furthermore, the 
interplay between risk factors, quantified imaging findings, and cognition 
in VCI requires further investigation. In recent years, model 
interpretability has become a critical component of machine learning 
applications (20). Interpretation methods such as SHAP (SHapley 
Additive exPlanations) facilitate the identification of key predictors and 
provide insights into underlying mechanisms, enabling a better 
understanding of how specific variables contribute to model predictions 
(21). These approaches are particularly valuable in VCI, where the 
complex interactions and relative contributions of various risk factors for 
cognitive decline remain difficult to accurately define (22).

To address these needs, we  developed ML models based on 
multimodal data, including conventional SVD imaging markers, 
detailed brain volume and cortical surface metrics from T1 images, 
DTI measures, and clinical information reflecting individuals’ vascular 
risk burden, clinical history, and brain reserve. We developed these 
models using data from a VCI cohort and subsequently validated them 
with an external dataset. We aimed to develop reliable models for 
distinguishing patients with VCI, elucidate the model’s interpretability, 
identify key contributors, and explore the associations between critical 
imaging markers in cortical and white matter (WM) regions and 
cognitive functions. Pharmacological treatment of VCI has primarily 
focused on cholinesterase inhibitors (22, 23). The key imaging markers 
identified in our study, especially those located along the lateral 
cholinergic pathway, may provide supporting evidence for the 
hypothesis of cholinergic pathway dysfunction in VCI and offer a 
potential neuroimaging basis for targeted therapeutic strategies (24). 
To this end, our models achieved high accuracy in VCI assessment by 
integrating these diverse measures and components, offering new 
insights into influential imaging markers and risk factors for better 
understanding cognitive profiles.

2 Materials and methods

2.1 Participants

In this study, multi-modal data was collected from 313 participants 
in the Zhongnan VCI cohort. These participants were consecutively 
recruited from the Department of neurology at Zhongnan hospital 
and multiple communities in Wuhan from 2020 to 2023, including 
157 with VCI and 156 cognitive normal participants with risk factors.
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The inclusion criteria were: (1) age between 45 and 75; (2) at least 
primary school education (6 years); (3) able to cooperate in completing 
neuropsychological assessments and MRI examinations; (4) patients 
with VCI should meet the Vascular Impairment of Cognition 
Classification Consensus Study (VICCCS) diagnostic criteria (1), 
including a cognitive impairment objectified with the 
neuropsychological assessments and presence of cerebrovascular 
(including ischemic and hemorrhagic injury, large and small vessel 
diseases, and hypoperfusion) diseases or vascular risk factors; (5) 
cognitive normal subjects should report no complain of cognitive 
impairment and present no cognitive impairment in neuropsychological 
assessments, and be burdened with risk factors, which were susceptible 
to cognitive impairment; (6) signing the informed consent form.

The exclusion criteria were: (1) a history of recent stroke (within 
3 months); (2) other central neurological diseases; (3) other systemic 
diseases that may contribute to cognitive impairment; (4) visual 
impairment, hearing disorder or other impairments affecting the 
neuropsychological assessments; (5) MRI scans with serious artifacts 
from substantial movements.

The risk factors included hypertension, diabetes, hyperlipidemia, 
abdominal obesity, smoking, alcohol consumption, cardiovascular 
disease, atrial fibrillation, and lack of physical exercise. Hypertension was 
defined as either two consecutive blood pressure measurements with 
systolic pressure ≥140 mmHg or diastolic pressure ≥90 mmHg, or a 
prior diagnosis of hypertension, or current use of antihypertensive 
medication. Hyperglycemia was defined as fasting blood glucose 
≥7.0 mmol/L, or a diagnosis of diabetes, or current use of hypoglycemic 
drugs. Hyperlipidemia was defined as total cholesterol ≥5.2 mmol/L, or 
triglycerides ≥1.7 mmol/L, or a diagnosis of hyperlipidemia, or current 
use of lipid-lowering medication. Smoking was defined as smoking at 
least one cigarette per day for more than six months. Alcohol 
consumption was defined as consuming ≥7 standard drinks per week for 
more than six months, with one standard drink corresponding to 
approximately 10 g of alcohol, equivalent to 300 mL of beer, 50–100 mL 
of liquor (Chinese Baijiu), or 100 mL of rice wine. Abdominal obesity was 
defined as a waist circumference >90 cm in men and >85 cm in women.

All participants underwent MRI scans in Zhongnan hospital, 
including 3D T1, 3D T2 fluid-attenuated inversion recovery (FLAIR) 
and DTI. A full set of neuropsychological assessments were conducted. 
Clinical information, including demographics, medical histories, 
lifestyles and results of basic laboratory tests, was collected. The 
diagnosis of VCI was determined by two experienced senior 
neurologists following the VICCCS guideline (1).

2.2 Neuropsychological assessments

All participants underwent comprehensive neuropsychological 
assessments conducted by an experienced neuropsychologist, 
including Montreal Cognitive Assessment (MoCA), Mini-Mental 
State Examination (MMSE), Trail-Making Test A (TMT-A), Trail-
Making Test B (TMT-B), (Instrumental) Activities of Daily Living 
(ADL/IADL), Hamilton Anxiety Rating/Hamilton Depression Rating 
Scale (HAMA/HAMD), Boston Naming Test (BNT-15) or Verbal 
Fluency Test (VFT-3 min) and Chinese Auditory Verbal Learning Test 
(CAVLT). All researchers involved in the neuropsychological 
evaluations received standardized internal training prior to the 
initiation of the study.

2.3 Clinical information

We gathered demographic data, encompassing age, sex, body 
mass index (BMI), and educational level. Additionally, we compiled 
information on lifestyles and medical histories, such as smoking, 
exercising status, hypertension history, diabetes history, 
hyperlipidemia history, coronary heart disease (CHD), history of 
infarction, and intracranial vascular stenosis or occlusion history. 
Furthermore, we  obtained results from various laboratory tests, 
including systolic blood pressure (SBP), diastolic blood pressure 
(DBP), fasting blood glucose (FBG), total cholesterol (TC), 
triglycerides (TG), low-density lipoproteins (LDL), and high-density 
lipoproteins (HDL).

2.4 Imaging features

Multimodalities MRI were collected, and measures from T1, 
T2-FLAIR and DTI were derived for subsequent ML modeling 
(Figure  1). T One major cause of VCI is SVD. In assessing the 
primary manifestations of SVD through imaging, we  employed 
STRIVE criteria (25). Lacune, WMH and Enlarged perivascular 
spaces (EPVS) were assessed based on semi-quantified visual rating 
scale and fuzzy localizations. Voxel-based morphometry (VBM) 
and surface-based morphometry (SBM) were employed to T1 
images to extract volume measures and surface parameters of 
various regions. Diffusion metrics of various ROIs were obtained 
from DTI, including fractional anisotropy (FA), mean diffusivity 
(MD), radial diffusivity (RD), and axial diffusivity (AD). The details 
of multimodalities MRI protocols and images processing are shown 
in Appendix S1.

2.5 Model construction and model 
reduction

For model construction, we utilized a comprehensive dataset 
that included demographics, medical histories, lifestyles, results of 
basic laboratory tests, SVD imaging markers, and processed MRI 
imaging measures (Figure 1). Our preliminary analysis involved 
conducting independent samples T-tests and Levene’s tests, 
followed by Student’s T-tests for data with homogeneity of variance 
and Welch’s tests for the rest. Imaging measures with a p-value less 
than 0.01 were selected (26, 27). The data underwent standardization 
through one-hot encoding and Z-score transformation 
independently across different combinations of data modalities. To 
refine the feature set, we applied the least absolute shrinkage and 
selection operator (LASSO), determining the penalty coefficient via 
10-fold cross-validation (27). The dataset was randomly divided 
into training and testing sets in a ratio of 8:2, with the training set 
for model development and the testing set for subsequent internal 
validation. We  used the Lazy Predict (0.2.12) to construct 
preliminary models and identify superior models for further 
development (28). Subsequently we employed five ML algorithms: 
Extreme Gradient Boosting (XGB), Support Vector Machine 
(SVM), Logistic Regression (LR), Gaussian Naive Bayes (GNB) and 
Random Forest (RF), constructing models based on diverse 
multimodal measures (clinical data, T1, T2-FLAIR, and DTI 
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measures; T1 and T2-FLAIR measures; DTI measures). Model 
development included 10-fold cross-validation and grid search to 
determine the optimal hyperparameters. The best hyperparameters 
for the models were detailed in Appendix S1. Additionally, 
we sought to identify the minimum necessary variables for our ML 
models to enhance clinical applicability and simplify interpretation. 
Through the SHAP value ranking and a sequential forward selection 
strategy, we refined our models to those with stable area under the 
receiver operating curve (AUC) values that did not significantly 
change with the addition of more variables. Therefore, model 
reduction was carried out, resulting in the determination of the 
final models, which exhibited no significant changes in performance 
compared to the initial models. To address the issue of 

interpretability, we  utilized SHAP (0.42.1) and moDel Agnostic 
Language for Exploration and eXplanation (DALEX 1.5.0) for 
further model analysis (21, 29, 30).

2.6 External validation

We conducted external validation using a dataset of 82 participants 
from the General Hospital of the Yangtze River Shipping and the Third 
People’s Hospital of Hubei Province, collected from 2022 to 2023. This 
dataset included 57 patients with VCI and 25 cognitive normal 
participants, adhering to the same inclusion and exclusion criteria as 
the Zhongnan VCI cohort.

2.7 Statistical analysis

Differences in demographics between patients with VCI and 
participants with normal cognitive function were examined using 
independent samples T-Test for normally distributed continuous 
variables, Mann–Whitney U test for non-normally distributed ones, 
and the chi-squared test for categorical variables. Normality was 
assessed through visual inspection and the Shapiro–Wilk test. Few 
missing values of laboratory results were imputed using the median, 
as detailed in the Appendix S1 (26, 31). Model performance was 
assessed using the receiver operating curve (ROC), the precision-
recall (PR) curve and the average precision (AP). Additional model 
performance metrics, including accuracy, specificity, recall, 
precision, F1-score, and decision curve analysis (DCA), were also 
calculated. The 95% confidence intervals (CIs) for model evaluation 
metrics were generated with 1,000 bootstrap sets. The DeLong test 
was employed for ROC comparison. For ranking feature 
importance, SHAP utilized mean absolute SHAP values, while 
DALEX used a loss function of 1-AUC. Additionally, DALEX 
calculated variable importance through 10 permutations. Partial 
correlations were utilized to assess the associations between the 
selected imaging features of the final models and the scores of 
neuropsychological assessments, including MoCA, MMSE, TMT-A 
and TMT-B, independently in VCI and normal cognition group. 
Sex, age and education were controlled as covariates, and the 
Benjamini-Hochberg false discovery rate (FDR) was applied for 
multiple comparisons. Statistical significance was set at p < 0.05. 
DeLong test was performed using MedCalc software version 20.022, 
and other statistical analyses were conducted in IBM SPSS Statistics 
27. The entire model construction process was implemented using 
the Scikit-learn package (1.2.2) in the Python environment.

3 Results

3.1 Participants and demographics

Our analysis included an internal dataset of 313 participants 
(Table  1) and an external dataset of 82 participants 
(Supplementary Table S1). The internal dataset comprised 157 
participants with VCI and 156 cognitive normal participants with risk 
factors, which was used for model deviation and internal testing. The 
hold-out external dataset was utilized for external validation.

FIGURE 1

The framework for multimodal data processing, model construction, 
model evaluation and model interpretation. Multimodal data 
included various inputs, including clinical data and multimodal MRI. 
VBM, SBM and DTI measures were extracted from T1 and DTI, while 
SVD imaging markers were derived from T1 and T2-FLAIR. The 
models were developed using four ML algorithms and three 
combinations of data modalities. Model reduction was performed 
based on SHAP values. Subsequently, the final models underwent 
evaluation, external validation, and further interpretation.
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3.2 Model performance, model reduction, 
and identification of final model

Following feature selection, the initial model, which integrated 
clinical data along with T1, T2-FLAIR, and DTI measures, incorporated 
34 variables. Additionally, the initial models exclusively using T1 and 
T2-FLAIR, and DTI measures contained 14 and 18 variables, respectively 
(Supplementary Figures S1–S3). The results of Lazy Predict demonstrated 
that RF model outperformed other models (Supplementary Table S2). 
For the comprehensive model utilizing clinical data and multimodal 
MRI (Supplementary Table S3), the RF model has the highest AUC 
(0.962) and AP value (0.970). Performance of the initial DTI model 
(Supplementary Table S4) and the model combining T1 and T2-FLAIR 
(Supplementary Table S5) measures was found to be lower than the 
comprehensive multimodal model. Adding more data modalities 
improved model performance. For DTI-specific models, the GNB model 
exhibited the highest AUC (0.904) and AP (0.922), followed by the RF 
model, which showed a slightly decreased AUC (0.897) and AP (0.920). 

The F1-score of the RF and GNB model was 0.767 and 0.640, respectively. 
Among models built with T1 and T2-FLAIR measures, the GNB model 
had the highest AUC (0.876). The model reduction process, guided by 
the ranking of SHAP values, demonstrated that after a certain point, as 
the number of features increased, the model’s performance trends 
stabilized (Figure 2). This observation led to the determination of a 
cut-off point for model reduction and the selection of key features. 
Combining the model performance metrics and model reduction 
process, the final models were ultimately determined. For models 
combining clinical data with measures from T1, T2-FLAIR, and DTI, an 
8-feature RF model was selected. This model, with an AUC of 0.956, 
performed comparably to the initial 34-feature model (AUC = 0.962) 
without a significant difference (ΔAUC = 0.005, p = 0.725), while 
significantly reducing the number of variables required. It also achieved 
a high AP of 0.963, emphasizing the model’s clinical utility through its 
high performance with fewer variables (Figure 3). For models based on 
DTI measures, the 11-feature RF model was chosen, achieving an AUC 
of 0.892 and an AP of 0.910, without a significant change in classification 

TABLE 1 Demographics.

Demographics Derivation cohort number (%) or mean (SD, score range)

Patients with VCI Participants with normal cognition p

Age(years) 62.38 (6.62, 44–76) 59.93 (6.74, 48–75) <0.001

Education (years) 10.83 (3.00, 6–19) 13.97 (3.19, 6–23) <0.001

Sex, female, n (%) 47 (29.93%) 73 (46.79%) 0.002

BMI (kg/m2) 24.04 (2.53, 17.30–30.80) 24.64 (3.06, 18.29–38.06) 0.120

MMSE 24.48 (4.78, 6–30) 28.63(1.25, 25–30) <0.001

MoCA 18.13 (4.85, 6–27) 25.53(2.28, 19–30) <0.001

Smoke, n (%) 88 (56.05%) 54 (34.62%) <0.001

Exercise, n (%) 117 (74.52%) 100 (64.10%) 0.046

Intracranial vascular stenosis or occlusion history, n (%) 80 (50.96%) 11 (7.05%) <0.001

Infarct history, n (%) 102 (64.97%) 24 (15.38%) <0.001

CHD, n (%) 18 (11.46%) 9 (5.13%) 0.073

Hypertension history, n (%) 117 (74.52%) 91 (58.33%) 0.002

Diabetes history, n (%) 64 (40.76%) 58 (37.18%) 0.516

Hyperlipidemia history, n (%) 58 (36.94%) 101 (64.74%) <0.001

SBP 136.09 (14.60, 100–180) 129.90 (16.27, 92–170) <0.001

DBP 79.76 (10.63, 58–124) 79.94(11.30,53–111) 0.787

FBG (mmol/L) 6.20 (2.76, 3.05–28.53) 5.73 (1.45, 2.81–11.36) 0.068

TC (mmol/L) 4.11 (1.01, 2.12–7.69) 4.60 (0.90, 2.51–7.04) <0.001

TG (mmol/L) 1.68 (1.20, 0.33–11.69) 1.75 (1.24, 0.38–10.01) 0.607

HDL (mmol/L) 1.08 (0.34, 0.52–3.16) 1.28 (0.35, 0.70–3.16) <0.001

LDL (mmol/L) 2.42 (0.79, 0.99–5.10) 2.69 (0.76, 1.08–4.85) 0.002

CSO-EPVS 0.30 (0.49, 0–2) 0.13 (0.41, 0–3) <0.001

BG-EPVS 1.10 (0.30, 1–2) 1.00 (0.16, 0–2) 0.001

Deep lacune 0.39 (0.78, 0–5) 0.18 (0.51, 0–3) <0.001

Lobar lacune 2.97 (4.43, 0–23) 0.38 (1.52, 0–15) <0.001

Fazekas-PV 1.93 (1.00, 0–3) 0.87 (0.84, 0–3) <0.001

Fazekas-DEEP 1.64 (1.02, 0–3) 0.80 (0.75, 0–3) <0.001

BMI, body mass index; CHD, coronary heart disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TC, total cholesterol; TG, triglycerides; LDL, low-
density lipoproteins; HDL, high-density lipoproteins; Fazekas-PV, Fazekas scale in periventricular white matter; EPVS, enlarged perivascular spaces; BG, basal ganglia; CSO, centrum semiovale. 
Bold values represent statistical significance at the p<0.05 level.
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FIGURE 2

Model reduction and determination of final models. (A,C,E) AUCs with varied number of features of five ML models. (B,D,F) AUC, accuracy, specificity, 
recall, F1 score and AP with varied number of features of the determined final models. (A,B) Models constructed with clinical data, T1, T2-FLAIR and DTI 
measures. (C,D) Models of DTI measures. (E,F) Models of T1 and T2-FLAIR measures. The dotted line represents the decision point of the final models. 
Abbreviations: ROC, receiver-operating-characteristic; AUC, area under the ROC curve; AP, average precision; ML, machine learning; RF, random 
forest; XGB, eXtreme gradient boosting; SVM, support vector machine; LR, logistic regression; GNB, gaussian naive bayes.

capability (ΔAUC = 0.004, p = 0.698) from the 18-feature RF model 
before model reduction. For models utilizing T1 and T2-FLAIR 
measures, the 11-feature GNB model was identified, with an AUC of 
0.872 and an AP of 0.888. This model showed no significant decrease in 
performance (ΔAUC = 0.004, p = 0.783) compared to the 14-feature 
GNB model (Table 2). The comparison of ROC, PR, and DCA curves 
between the initial models and the final models after model 
reduction showed no significant decline in performance 
(Supplementary Figure S4). In summary, the 8-feature RF model, the 
11-feature RF model, and the 11-feature GNB model were identified as 
the final models for three distinct data modality combinations.

In DCA (Figure  3C) of final models, with a threshold 
approximately 0.1 to 0.24 and over 0.34, the net benefit of the 
multimodal model was the largest. The DCA curve revealed that the 
multimodal model had a wider range of threshold probability and a 
higher net benefit, thence, had greater clinical utility.

The DeLong test showed a statistically significant difference 
between the final model incorporating only T1 and T2-FLAIR features 
and the comprehensive final model that included clinical data, T1 and 
T2-FLAIR, and DTI. The difference in ROC areas was 0.084, with a 

standard error of 0.033, a z statistic of 2.524, 95% CIs ranging from 
0.019 to 0.150, and a p-value of 0.012. This outcome suggests that the 
imaging indicators derived from T1 and T2-FLAIR alone are 
insufficient for a comprehensive assessment of VCI. No significant 
differences were observed among the other final models.

3.3 External validation of the final model

For external validation, the final models were tested on 
external dataset. The 8-feature RF model, which incorporates clinical 
data and multimodal MRIs, achieved an AUC of 0.919 
(Supplementary Table S6). This performance was comparable to that 
observed in the internal validation dataset, with no significant decrease 
in performance (ΔAUC = 0.038, p = 0.308). The AP of this final model 
on external dataset was 0.966, respectively. For the 11-feature RF 
model specific to DTI measures, the AUC was 0.779, slightly lower but 
not significantly different (ΔAUC = 0.114, p = 0.108) from the internal 
validation performance. In contrast, the 11-feature GNB model for T1 
and T2-FLAIR measures demonstrated an AUC significantly lower 
(ΔAUC = 0.301, p < 0.001) than its performance in internal validation.
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3.4 Model interpretation

The final 8-feature RF model demonstrated reliable and strong 
performance in both internal and external validations. Consequently, 
we utilized SHAP and DALEX for further interpretation of this model 
and to assess the contribution of the input variables. For SHAP, the 
variable contributions were ranked and displayed based on their mean 
absolute SHAP values (Figure 4A). A SHAP value greater than zero 
indicates a contribution towards a positive class prediction, in this case, 
indicating cognitive impairment (Figure 4B). For DALEX, Education 
level and the MD of right posterior thalamic radiation (PTR) emerged 
as the most significant features. These were followed by the gyrification 
of the right parahippocampal gyrus, the count of lobar lacunes, history 
of intracranial vascular stenosis or occlusion, RD of the right superior 
fronto-occipital fasciculus, gyrification of the left insula, and infarct 
history. Imaging features played a pivotal role, and their importance 
was consistent across both the 11-feature RF model and the 11-feature 
GNB model, which were solely based on imaging measures 
(Figures  4C–F). This consistency across models indicates that our 
approach is stable to variations in architecture and input, rather than 
relying on a limited set of clinical features for decision-making. For the 
8-feature RF model, both DALEX and SHAP yield the same importance 
ranking (Supplementary Figure S5a), affirming the reliability of the 
interpretations. In the case of the 11-feature RF model, most of the 
importance rankings align, with both methods identifying the same 
top four features (Supplementary Figure S5b). The importance ranking 
of the 11-GNB model is not consistent, but both analyses concur on 
the most important feature (Supplementary Figure S5c). SHAP force 
plots help interpret how each feature of a model influences a specific 
prediction relative to a baseline. For each of the three final models, one 
VCI prediction and one NC prediction were selected and are presented 
in Supplementary Figure S6 for further explanation.

3.5 Neuropsychological assessments

We evaluated the association between the key imaging features 
identified by SHAP and DALEX and neuropsychological assessments 
within the VCI group. Significant associations were observed, further 
supporting the critical imaging markers identified by our models 
(Supplementary Table S7).

4 Discussion

We gathered data from a comprehensive VCI cohort, which 
included clinical information, neuropsychological assessments, and 
multimodal MRI sequences. By employing ML algorithms, 
we constructed models with a variety of data inputs. Among various 
data combinations tested, our results showed that the model 
incorporating all data modalities, including clinical data, T1, 
T2-FLAIR, and DTI measures, achieved the most favorable 
performance. The model’s performance was enhanced by the inclusion 
of additional data modalities. Furthermore, the DTI-based model 
outperformed than the model constructed with T1 and T2-FLAIR 
measures, demonstrating superior classification ability. To enhance 
usability, we employed model reduction based on SHAP values to rank 
the importance of variables. Additionally, DALEX was implemented 
to further validate these variables, affirming the reliability of the 
interpretations (30). Our best performing final model, which includes 
all data modalities with only eight input variables, exhibited no 
significant decline in performance compared to the initial model with 
34 features. During external validation, the final model constructed 
with all modalities and the DTI-based final model exhibited stable 
performance, showing no significant difference compared to internal 
validation. This demonstrates the model’s reliability and good clinical 
applicability across diverse sample sets.

VCI has a complex etiology and diverse pathogenesis, and its 
precise pathogenesis has not yet been fully elucidated (5, 32). In actual 
practice, different individuals may exhibit varied symptoms and 
disease trajectories, and the mechanisms of interaction among various 
cognitive impairment risk factors, as well as their relative 
contributions, remain difficult to define accurately (22). Identifying 
new imaging markers and consolidating existing ones, as well as 
expanding the use of neuroimaging techniques and developing new 
models, is crucial for achieving an early and accurate diagnosis of VCI 
(33). The application of advanced multimodal neuroimaging 
techniques and machine learning models enables the early evaluation 
and identification of individuals at risk of VCI (33, 34). DTI is a 
sensitive MRI approach in detecting microstructural damage, capable 
of capturing subtle WM alterations (35). Prior study suggested that 
DTI measures may be more decisive markers for detecting cognitive 
deficits compared to conventional imaging markers (10). In our study, 
the DTI model showed stable performance in an external dataset, 

FIGURE 3

Performance of final models. The ROC curve (A) PR curve (B), and DCA curve (C) of final models. 8-feature RF model constructed with clinical data, T1, 
T2-FLAIR and DTI measures. 11-feature RF model constructed with DTI measures. 11-feature GNB model constructed with T1 and T2-FLAIR measures.
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showing no significant decline of accuracy. However, a significant 
performance decline was observed in the external validation for the 
model based on T1 and T2-FLAIR measures. This decline could 
be attributed to demographic differences between the internal and 
external datasets, the patients with VCI in the external dataset 
typically had milder symptoms and were likely in an earlier stage of 
VCI. Microstructural damages are more common in VCI, yet 
conventional MRI techniques often demonstrate limited sensitivity to 
these changes (23). Conversely, prior research has shown that DTI 
measures are capable of detecting subtle alterations in WM regions, 
even during the preclinical stage of VCI (36). Aligning with existing 
studies, our research further confirms the sensitivity and applicability 
of DTI across a range of clinical stages within the VCI population.

Given the diverse and complex pathophysiology and risk factors 
associated with VCI, the integration of multimodal data and the 
adoption of novel and quantitative imaging approaches improve 
diagnostic specificity and sensitivity. However, few models have been 
developed for the diagnosis and prediction of VCI, and they were all 
based on small sample studies (19, 26). Our approach using ML to 
integrate clinical and multimodal MRI data for VCI diagnosis was 
developed on a relatively larger dataset and included both internal and 
external validation. The reduction of features in these models further 
improved their clinical usability. Moreover, advancements in 
computing power and processing capabilities make ML a promising 
approach to addressing clinical challenges (37). In our study, the RF 
model showed superior performance, attributed to their capability to 
handle complex and nonlinear data commonly encountered in 
medical scenarios (38, 39).

According to SHAP and DALEX analysis, our study confirmed the 
importance of several imaging markers, especially those derived from 
DTI. These markers demonstrated a meaningful association with 
cognitive functions, such as attention, processing speed, executive 
function, and global cognition. The influential cortical regions 
identified in our study encompass the frontal and temporal lobes, 
parahippocampal gyrus, cuneus, precuneus, supramarginal gyrus, 
precentral gyrus, and insula. Consistent with prior research, the 
gyrification of these areas was significantly linked to cognitive 
functions (40, 41). Regarding DTI measures, the PTR, cerebellar 
peduncle, superior fronto-occipital fasciculus, uncinate fasciculus and 
the body of corpus callosum were identified as the five most critical 

WM regions. Alterations in the PTR are found to associate with 
executive function, a conclusion supported by our findings that linked 
decreased FA of the PTR with extended completion times on the 
TMT-A and TMT-B (42). Additionally, cognitive decline has been 
associated with dysfunction in the cortical-cerebellar-cortical loop, 
notably the middle cerebellar peduncle, the largest of the three 
peduncles (43, 44). Our study found significant associations between 
higher RD of the middle cerebellar peduncle and longer completion 
times for TMT-B. The corpus callosum, which comprises WM 
commissural fibers connecting the left and right hemispheres, plays a 
vital role in cognitive functions. SHAP analysis indicated that an 
increase in the FA of the body of corpus callosum had a positive 
impact on cognition, supporting previous research and suggesting its 
utility as an independent indicator of VCI (45). Additionally, the 
majority of DTI indicators in the model were aligned with the lateral 
cholinergic pathway. The dysfunction of the cholinergic pathway and 
the cortical disconnection hypothesis are increasingly recognized for 
their roles in the manifestation and progression of VCI (24). Previous 
study using diffusion MRI with tractography to isolate lateral 
cholinergic tracts have found correlations between diffusion measures 
of these tracts and cognitive functions (46). In our study, the 
correlation between cognitive outcomes and diffusion measures along 
lateral cholinergic tracts may support the hypothesis that lesions in 
these segments disrupt the integrative function of WM microstructure, 
which is then reflected in cognitive performance (47). Restoring the 
cholinergic system through the use of cholinesterase inhibitors 
represents one of the primary therapeutic approaches for treating 
cognitive impairment in VCI and AD (24, 48–50). However, their 
effectiveness in the early stage of mild cognitive impairment remains 
controversial (51). Studies have indicated that the therapeutic effect of 
cholinergic treatment depends significantly on cholinergic integrity in 
the early stages (51). Monitoring these DTI biomarkers in vivo may 
provide objective indicators reflecting the integrity of cholinergic 
pathways, enabling the stratification of patients who would specifically 
benefit from cholinergic-oriented interventions (49, 51). Furthermore, 
these markers could serve as indicators for evaluating therapeutic 
effects, potentially before clinical cognitive improvements become 
apparent. These insights might advocate for the consideration of 
cholinergic therapies for VCI, with diffusion abnormalities in 
particular regions acting as sensitive markers for early detection and 

TABLE 2 Performance of the final models with different modalities.

Modalities Clinical data + T1 and T2-FLAIR + DTI DTI T1 and T2-FLAIR

Algorithm RF RF GNB

Number of features 8 11 11

ΔAUC and p ΔAUC = 0.005 p = 0.725 ΔAUC = 0.004 p = 0.698 ΔAUC = 0.004 p = 0.783

AUC 0.956 [0.919–0.988] 0.892 [0.813–0.954] 0.872 [0.793–0.945]

AP 0.963 [0.929–0.990] 0.910 [0.836–0.964] 0.888 [0.809–0.959]

F1-score 0.857 [0.769–0.930] 0.754 [0.643–0.842] 0.831 [0.735–0.909]

Accuracy 0.857 [0.778–0.937] 0.762 [0.667–0.841] 0.825 [0.746–0.905]

Precision 0.931 [0.846–1.0] 0.852 [0.741–0.960] 0.871 [0.769–0.967]

Recall 0.794 [0.677–0.909] 0.676 [0.546–0.807] 0.794 [0.676–0.906]

Specificity 0.931 [0.846–1.0] 0.862 [0.758–0.963] 0.862 [0.750–0.963]

ΔAUC and p: the difference of AUC and significance level between the final models and the initial models without model reduction. AUC, area under the ROC curve; AP, average precision; 
RF, random forest; GNB, gaussian naive bayes. The AUC was calculate using the Scikit-learn package (1.2.2); the DeLong test was performed using MedCalc software version 20.022; the 95% 
confidence intervals (CIs) were estimated using 1,000 bootstrap resamples.
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intervention to prevent or delay cognitive decline (52). Overall, when 
incorporated into a ML model, these imaging indicators derived from 
multimodal MRI demonstrate potential in assessing VCI status and 
show significant correlations with cognitive decline in VCI patients.

Additionally, several clinical factors, including education, HDL, 
SBP levels, and specific medical histories, also contributed to the 
diagnosis of VCI. Notably, a history of hyperlipidemia was identified 
as a protective factor in our models, possibly due to the beneficial 
effects of statins that target atherosclerotic factors crucial in reducing 
vascular-related cognitive decline (53). Recent studies have identified 
links between cardiovascular risk factors and structural brain changes, 

emphasizing the importance of managing these factors to promote 
healthy brain aging (54). Screening and addressing modifiable risk 
factors, such as educational level and vascular health, could strengthen 
brain reserve and potentially prevent or delay the onset of dementia 
(11, 55, 56).

Our study encountered several limitations. Primarily, our 
participants were predominantly from central China, and the external 
validation dataset was relatively small, limiting the model’s 
applicability in other regions. Nevertheless, it’s important to highlight 
that our dataset originated from multiple centers, and the model 
underwent external validation. The inherent heterogeneity within our 

FIGURE 4

The SHAP values of the final models. (A,B) the mean absolute SHAP values and the distribution of SHAP values for the 8-feature RF model constructed 
with clinical data, T1, T2-FLAIR and DTI measures. (C,D) SHAP values for the 11-feature RF model of DTI measures. (E,F) SHAP values for the 11-feature 
GNB model of T1, T2-FLAIR measures.

https://doi.org/10.3389/fneur.2025.1505739
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


He et al. 10.3389/fneur.2025.1505739

Frontiers in Neurology 10 frontiersin.org

dataset provides preliminary clinical evidence supporting its potential 
for broader application and evaluation across diverse regions. 
Nonetheless, further validations across multiple regions and 
longitudinal studies are crucial to bolster the robustness of our 
findings. Secondly, our cohort exhibited a higher level of education 
and participants unable to complete neuropsychological assessments 
were excluded, possibly skewing the generalizability of our results. 
Thirdly, the inclusion period of our study encompasses the dates of the 
COVID-19 pandemic. Although all participants tested negative for the 
virus via nucleic acid tests at recruitment, 16 participants recruited in 
2023 reported a history of infection, which could potentially influence 
the DTI data (57). We are currently recruiting more participants and 
conducting follow-up studies to overcome these limitations. Future 
research endeavors should aim to incorporate a wider array of MRI 
modalities and more advanced algorithms such as federated learning 
to accumulate multicenter big data while addressing data privacy 
concerns, thereby enabling a more accurate delineation of early VCI 
changes and the development of novel intervention strategies (58).

In summary, our study developed ML models capable of 
distinguishing between cognitive normal individuals at risk and those 
with VCI, achieving increased clinical applicability through the use of 
fewer input variables. By integrating clinical data and multimodal 
MRI, the models demonstrated not only enhanced precision in 
identifying patients with VCI but also generalization ability in external 
validation. We also highlighted the importance of DTI, perhaps more 
important than conventional imaging markers. Our research has 
uncovered several potential imaging markers sensitive to the detection 
of VCI, highlighting the critical role of specific cortical and WM 
abnormalities in clarifying the manifestations of VCI.
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