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Introduction: Brain magnetic resonance imaging (MRI) is important for diagnosing 
Alzheimer’s disease (AD), and MRI acquisition time should be reduced. The current 
study aimed to identify which Pix2Pix-based super-resolution images can reduce 
errors associated with brain anatomical analysis with diffeomorphic deformation 
examination and MRI acquisition time.

Methods: Fifty patients with dementia who uderwent scanning using a 3-T MRI 
scanner in the OASIS-3 database were used to construct a super-resolution network. 
Network training was performed using a scaled image (64 × 64) down-sampled 
from the original image as the input image and paired with the original high-
resolution (256 × 256) supervised image. The hippocampal volume was measured 
using brain anatomical analysis with diffeomorphic deformation software, which 
employs machine learning algorithms and performs voxel-based morphometry. 
Peak signal-to-noise ratio (PSNR) and Multiscale structural similarity (MS-SSIM) 
score were used to objectively evaluate the generated images.

Results: At λ = e3, the PSNR and MS-SSIM score of the generated images were 
27.91 ± 1.78 dB and 0.96 ± 0.0045, respectively. This finding indicated that the 
generated images had the highest objective evaluation. Using the images generated 
at λ = e4, the left and right hippocampal volumes did not significantly differ between 
the original and generated super-resolution images (p = 0.76, p = 0.19, respectively).

Discussion: With super-resolution using the Pix2Pix network, the hippocampal 
volume can be accurately measured, and the MRI acquisition time can be reduced. 
The proposed method does not require special hardware and can be applied to 
previous images.
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1 Introduction

Alzheimer’s disease (AD) had already affected 500,000 people in 
2020. The incidence of AD can increase by 60% from 2020 to 2030 and 
by >200% by 2050 (1). AD is diagnosed using different diagnostic 
methods including cognitive testing, physical examination, and spinal 
fluid and blood analysis (2, 3). Brain magnetic resonance imaging 
(MRI) facilitates a noninvasive structural assessment and plays an 
important role in AD diagnosis (4). Patients with AD exhibit extensive 
and progressive synaptic and neuronal loss. Therefore, for the early 
diagnosis of AD, neuroimaging is essential to examine the pattern of 
changes in the preclinical stages of the disease (5).

Voxel-based morphometry (VBM) analysis is performed to 
calculate the gray and white matter volume and cerebrospinal fluid in 
voxel units by transforming and spatially normalizing MRI data based 
on standard brain coordinates (6). The hippocampal volume can 
be measured with high accuracy using the brain anatomical analysis 
with the diffeomorphic deformation (BAAD) software, which conducts 
VBM analysis and uses machine learning algorithms for diagnosing AD 
and predicting the progression of mild cognitive impairment (7). To 
measure hippocampal volume using the software, three-dimensional 
T1-weighted imaging (T1WI) MRI with a thin slice thickness of 
1.0–1.5 mm is required to include the whole head without gaps in the 
imaging range. However, three-dimensional T1WI has a long scanning 
time (8). Compressed sensitivity encoding (SENSE) is a method that 
combines the SENSE method and compressed sensing technology for 
reducing MRI acquisition time. It was developed to achieve a higher 
speed and image quality (9). Another technique, controlled aliasing in 
parallel imaging results in a higher acceleration technology, which 
modifies the algorithm of the image acquisition method (k-space), 
reduces imaging time, and achieves a high spatial resolution with a thin 
slice thickness (10). Nevertheless, these scanning techniques require 
hardware or software modifications that involve significant investment.

The applications of deep learning techniques in medical imaging 
are promising. Goodfellow et al. proposed a generative adversarial 
network (GAN) (11). In the field of super-resolution technology, 
Ledig et al. implemented a GAN for image super-resolution tasks, 
which outperformed previous algorithms in terms of image perceptual 
quality metrics (12). Pix2Pix, a type of GAN, was reported as an 
image-specific network that transforms one image into another by 
learning pairs of images (13). Previous studies have reported the 
applications of MRI using Pix2Pix. For example, it suppresses head 
motion artifacts, improves fat-suppression methods in mammograms, 
and provides super-resolution techniques for magnetic resonance 
angiography images (14–16).

MRI acquisition time is closely related to the number of phase-
encoding steps. Reducing these steps shortens the scan time but often 
results in compromised spatial resolution and image quality. Although 
various acquisition techniques have been developed to mitigate this 
trade-off, maintaining sufficient image quality remains challenging in 
clinical scenarios involving patient motion, limited cooperation, or 
strict time constraints (17).

Artificial intelligence based super-resolution techniques offer a 
complementary approach by enhancing image quality through post-
processing rather than acquisition adjustments. Recent studies have 
shown that artificial intelligence based super-resolution can reduce 
MRI acquisition time by up to 45% without degrading diagnostic 
quality (18). However, whether super-resolution images reconstructed 

from low-resolution inputs can be reliably used for quantitative brain 
analysis, particularly hippocampal volumetry, using BAAD software 
remains unclear.

We hypothesized that high-resolution brain MRI images suitable 
for quantitative analysis could be reconstructed from low-resolution 
inputs using a Pix2Pix network, which is a type of GAN. This study 
aimed to evaluate whether super-resolution images generated by GAN 
based approach can preserve the accuracy required for BAAD analysis. 
In addition, this study investigated whether tuning the λ 
hyperparameter in the Pix2Pix network contributes to the generation 
of super-resolution images appropriate for accurate volumetric 
assessment under limited imaging conditions.

2 Materials and methods

2.1 Participants and image acquisition

The Institutional Committee of Niigata University of Health and 
Welfare approved this study (approval no. 19097–230,718). A written 
informed consent was not obtained because the study used the MRI 
data of patients with AD in the OASIS-3 database (https://sites.wustl.
edu/oasisbrains/).

2.2 Selection criteria

2.2.1 Selection criteria for the training dataset
To construct a model that considers the complex patterns of brain 

atrophy in AD, the training dataset included 50 patients diagnosed 
with AD, with a clinical dementia rating (CDR) score of ≥0.5, and 
consecutive patients registered in the OASIS-3 database (OAS-ID: 
111–1,140) who have imaging data obtained within 1 year before or 
after the date of diagnosis. Further, using a 3-T MRI scanner, the 
scanning conditions were based on T1WI with a matrix size of 
176 × 256, pixel size of 1 mm, and 256 slices. The age of the 
participants was 74.98 ± 8.55 years, the CDR was 0.83 ± 0.34, and the 
male-to-female ratio was 25:25.

2.2.2 Selection criteria for the testing dataset
The testing dataset comprised 20 consecutive participants who 

were identified using their registration ID (OAS-ID: 1–37) in the 
OASIS-3 database. For the testing dataset, an objective evaluation of 
super-resolution images was performed to evaluate the presence of 
brain atrophy. Therefore, the diagnostic results and CDR scores of the 
participants were excluded from the selection criteria. The MRI 
conditions of the testing dataset were similar to those of the training 
dataset. The age of the participants was 68.74 ± 8.67 years, the CDR 
was 0.13 ± 0.28, and the male-to-female ratio was 7:13. Table 1 shows 
the training and testing datasets.

2.3 Super-resolution (Pix2Pix) network

2.3.1 Dataset and pre-prosessing
The Pix2Pix network was constructed to generate super-resolution 

images. The network was based on the official TensorFlow tutorial 
(https://www.tensorflow.org/tutorials/generative/pix2pix?hl=ja) and 
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adapted to MRI input. The GeForce GTX 2080Ti graphics card 
(Nvidia Corporation, Santa Clara, CA, the USA) with a base clock 
speed of 2.1 GHz/s (corei7-13700), memory bandwidth of 64 GB/s, 
and memory per board of 11 GB was used. Further, the following 
software were utilized: Python 3.7.16 (Python Software Foundation, 
Delaware, the USA), TensorFlow-GPU 2.10.0, Spyder 4.1.3, and Keras 
2.3.1 (Google, Mountain View, Calif, the USA).

The training T1WI axial images (176 × 256) acquired from a OASIS-3 
public database were zero-filled with 40 pixels on each side, extending the 
matrix size to 256 × 256. This zero-filling was applied because the GAN 
generator architecture, U-Net, is fundamentally designed to accept square 
input images (19). Although U-Net can process rectangular images, 
maintaining input–output size consistency requires modifications such as 
changing convolution strides or kernel shapes, which can lead to uneven 
processing accuracy along different dimensions (20). Therefore, zero- 
filling was used to avoid altering the original image content while ensuring 
consistent and stable network performance.

The zero-filled areas do not contribute to spatial resolution 
improvement and were only added to meet network input 
requirements. These zero-filling regions were removed during post-
processing to prevent artificially inflated image similarity metrics such 
as PSNR and MS-SSIM. Hence, zero-filling was not intended to 
increase the acceleration factor or enhance true spatial resolution. 
These images were down-sampled (64 × 64) using bicubic interpolation 
to obtain input images. The original zero-filled T1WI images 
(256 × 256) were used as the supervised datasets. In addition, 56 
images of the parietal side were excluded from the training dataset due 
to the presence of several signal-free region effects. In this study, 200 
consecutive images of the foot side were collected from 50 patients, 
with a total of 10,000 paired images trained on the Pix2Pix network.

The testing images were first zero-filled in the same manner as the 
training images, and the matrix size was changed to 256 × 256. Next, 
the images were down-sampled, and the matrix size was changed to 
64 × 64. The testing images were generated using the 256 images of 
each patient registered in the OASIS-3 dataset. Figure 1 shows the 
schematic of the Pix2Pix network used in this study.

2.4 Generator

The generator network was based on U-Net (19), with a skip 
connection comprising an encoder block and decoder block. The 
encoder block contained eight convolution layers, and convolution was 
performed in each block prior to batch normalization and activation 
using a leaky rectified linear unit. The decoder block comprised the same 
number of up-sampling layers. In the encoder stack, inverse convolution, 
batch normalization, dropout (applied to the first three blocks), and 

activation with the rectified linear unit function were applied in that 
order. Then, batch normalization was applied to the output.

2.5 Discriminator

PatchGAN was used as the discriminative network. PatchGAN 
divides the image into small regions (patches) of a specific size and 
compares each patch for binary classification, rather than directly 
comparing the whole image. In this study, the patch size was set to 
30 × 30. First, the original and generated images of each patch were 
convolved once. Second, the output of each patch was concatenated, 
further convolved, and converted to one dimension for complete 
combination. Finally, all patches were concatenated for final binary 
(true-false) classification using the softmax function.

The Adam optimizer was used as the learning parameter, with an 
initial learning rate of 2e-4 and β1 of 0.5, and 4,000 steps were used 
(21). The training time of the proposed model was 8 h and 30 min.
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The Pix2Pix loss function was calculated using the 
following equation:

According to a current research on super-resolution magnetic 
resonance angiography images using Pix2Pix as a reference (16), 
experiments were conducted by setting the value of λ, which has a 
significant contribution to the loss of the generator network, to seven 
different values: e0, e1, e2, e3, 5 × e3, e4, e5.

2.6 Postprocessing

These zero-filled regions were subsequently removed during 
postprocessing to ensure that evaluation metrics such as PSNR and 
MS-SSIM accurately reflect the reconstruction quality of the original 
image content, rather than being artificially inflated by the zero-filled 
areas. The digital imaging and communications in medicine (DICOM) 
information required for the VBM analysis was set identical to the 
corresponding original images. The corresponding DICOM tags were 
added to the generated and super-resolution images using the 
MATLAB software R2023b (Mathworks, Natick, Massachusetts, the 
USA). The input image, a down-sampled image (64 × 64), was 
up-sampled to 256 × 256 using the nearest neighbor algorithm, and 
VBM analysis was performed with the same DICOM information as 
the corresponding original image.

2.7 Objective evaluation

The images were not generated well when set at λ = e0 and e1. 
Thus, an objective evaluation when set at λ = e2 to e5 was performed. 
The PSNR and MS-SSIM of the generated super-resolution and 
original images were calculated using the MATLAB software. Two 
objective evaluations were performed for each pair of supervised and 
generated images. The average for each patient was used as the basis 
of the study. The BAAD software package (version 4.3.2.0) was utilized 
to measure the left and right hippocampal volume.

TABLE 1 Details of the training and testing datasets.

Parameter Training dataset Testing dataset

Number 50 20

Tesla 3 3

Age Mean ± SD 74.98 ± 8.55 68.74 ± 8.67

CDR 0.83 ± 0.34 0.13 ± 0.28

Sex M:25 F:25 M:7 F:13

SD, standard deviation; CDR, clinical dementia rating; M, male; F, female.
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2.8 Statistical analysis

The differences in the average PSNR and MS-SSIM scores between 
the five types of images (λ = e2, e3, 5 × e3, e4, e5) and the original images 
were assessed using the Friedman test, treating each λ–original image 
pair as a repeated measure. When the Friedman test indicated a 
significant difference, post hoc pairwise comparisons between the 
generated and original images at each λ were conducted using the 
Wilcoxon signed-rank test. Additionally, the left and right hippocampal 
volumes obtained from the original and generated images were 
compared separately for each λ using the Wilcoxon signed-rank test. 
The significance level in the Friedman test was set at p < 0.005 using 
Bonferroni correction for the number of comparisons. The significance 
level in the Wilcoxon signed-rank test was set at p < 0.05. Statistical 
analyses were performed using the EZR software (22).

3 Results

3.1 Generated images

The generation of super-resolution images from 5,120 (256 × 20 
participants) input images took 126 s. Figure 2 shows the examples of 
the input, supervised, and generated images in the Pix2Pix network. 
Mosaic-like noise was observed throughout the brain on the images 
generated at λ = e0 (Figure 2A) and λ = e1 (Figure 2B). Super-resolution 
images were successfully generated at λ = e2 (Figure 2C) and λ = e3 
(Figure 2E). Super-resolution images were successfully generated at 
λ = e2 (Figure 2C) and λ = e3 (Figure 2E). However, visual inspection 
revealed that mosaic-like noise was observed in 29.5% of slices 
(1,509/5,120 slices) at λ  = e2 (Figure  2D) and in 24.9% of slices 

(1,277/5,120 slices) at λ = e3 (Figure 2F). Mosaic-like noise was not 
observed on images generated at λ = 5 × e3 (Figure  2G), at λ = e4 
(Figure 2H) and λ = e5 (Figure 2I), and super-resolution was successful 
in all images.

3.2 Objective evaluation

Table 2 shows the PSNR and MS-SSIM scores. The PSNRs (mean 
± standard deviation [SD]) of the generated images relative to the 
original images were 27.14 ± 2.30 dB at λ = e2, 27.91 ± 1.78 dB at 
λ = e3, 27.10 ± 1.69 dB at λ = 5 × e3, 27.65 ± 1.78 dB at λ = e4, and 
26.94 ± 2.28 dB at λ = e5. The MS-SSIM scores (mean ± SD) were 
0.95 ± 0.0073 at λ = e2, 0.96 ± 0.0045 at λ = e3, 0.95 ± 0.0048 at 
λ = 5 × e3, 0.96 ± 0.0047 at λ = e4, and 0.95 ± 0.0057 at λ = e5. The 
PSNR and MS-SSIM scores of the images generated at λ = e2, …, e5 
significantly differed (p < 0.005) based on the Friedman test. Further, 
the PSNR and MS-SSIM scores of the images generated at λ = e3 
significantly increased, with the highest value being e2 < e3, 5 × e3 < e3, 
e4 < e3, and e5 < e3 (Wilcoxon signed-rank test, p < 0.05).

3.3 Hippocampal volume

Table 3 shows the left and right hippocampal volumes measured 
using the BAAD software on the original, input, and generated 
images. The right and left hippocampal volumes on the original 
images (mean ± SD) were 3.66 ± 0.47 and 3.45 ± 0.56 mL, 
respectively. The left and right hippocampal volumes on the input 
images (64 × 64) were 3.88 ± 0.48 and 3.80 ± 0.48 mL, respectively. 
The left hippocampal volumes on the generated images were 

FIGURE 1

Schematic of the super-resolution network. U-Net was used as the generator network. This network comprised an encoder with eight convolution 
layers and a decoder with the same number of deconvolution layers. Skip connections were performed. PachGAN was utilized as the discriminator 
network, and the patch size was set to 30 × 30. The Adam optimizer was applied as the learning parameter, and 4,000 learning steps were performed.
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3.83 ± 0.49 mL at λ  = e2, 3.52 ± 0.42 at λ = e3, 3.57 ± 0.46 mL at 
λ = 5 × e3, 3.67 ± 0.45 at λ = e4, and 3.68 ± 0.45 at λ = e5. There was 
no significant difference in terms of the hippocampal volume 

between the original and generated images at λ = 5 × e3 at λ = e4 and 
λ = e5 (p = 0.10, p = 0.76, p = 1.00, respectively, Wilcoxon signed-rank 
test). By contrast, the right hippocampal volumes were 3.62 ± 0.58 mL 

FIGURE 2

Examples of the input, supervised, and generated images in the Pix2Pix network. The images were generated by modifying the hyperparameter 
lambda. (A) λ = e0, (B) λ = e1: Mosaic-like noise was observed throughout the brain. (C,D) λ = e2: Super-resolution images were successfully generated; 
however, mosaic-like noise was observed in 29.5% of slices (1,509/5,120 slices). (E,F) λ = e3: Super-resolution images were generated with mosaic-like 
noise observed in 24.9% of slices (1,277/5,120 slices). (G) λ = 5 × e3, (H) λ = e4: (I) λ = e5: Super-resolution images were successfully generated for all 
images.

TABLE 2 PSNR and MS-SSIM scores.

λ e2 e3 5 × e3 e4 e5

PSNR [dB] 27.14 ± 2.3 27.91 ± 1.78 27.10 ± 1.69 27.65 ± 1.78 26.94 ± 2.28

MS-SSIM 0.95 ± 0.0073 0.96 ± 0.0045 0.95 ± 0.0048 0.96 ± 0.0047 0.95 ± 0.0057

PSNR, peak signal-to-noise ratio; MS-SSIM, Multi-Scale Structural Similarity.
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at λ  = e2, 3.41 ± 0.51 mL at λ = e3, 3.46 ± 0.48 mL at λ = 5 × e3, 
3.54 ± 0.48 mL at λ = e4, and 3.58 ± 0.51 mL at λ = e5. There was no 
significant difference in terms of the hippocampal volume between 
the original and generated images at λ = e3, at λ = 5 × e3 and λ = e4 
(p = 0.37, p = 0.99, p = 0.19, respectively). Table 4 and Figure 3 show 
the results of the Brand-Altman analyses performed separately for the 
left and right hippocampi. For each hemisphere, comparisons were 
made between the original and input images, as well as between the 
original and generated image. For the left hippocampus, the mean 
bias and 95% limits of agreement [LoA] were −0.22 [−0.56 to 0.11] 
for the input image. For the generated images, the LoA values at each 
λ were as follows: −0.17 [−0.51 to 0.18] at λ = e2, 0.13 [−0.35 to 0.62] 
at λ = e3, 0.091 [−0.39 to 0.57] at λ = 5 × e3, −0.0090 [−0.37 to 0.35] 
at λ = e4, and −0.021 [−0.56 to 0.51] at λ = e5. For the right 
hippocampus, the mean bias and LoA were −0.35 [−0.88 to 0.18] for 
the input image. For the generated images, the corresponding values 
were: −0.17 [−0.57 to 0.23] at λ = e2, 0.040 [−0.49 to 0.57] at λ = e3, 
−0.013 [−0.59 to 0.56] at λ = 5 × e3, −0.090 [−0.58 to 0.40] at λ = e4, 
and −0.12 [−0.59 to 0.34] at λ = e5.

4 Discussion

4.1 Influence of a hyperparameter on 
hippocampal volume

To reduce MRI acquisition time, the influence of a 
hyperparameter on hippocampal volume was investigated by 

modifying the value of λ as an adjustment for the Pix2Pix network 
for super-resolution three-dimensional T1WI reconstruction. In 
this study, a L1 loss was incorporated into the Pix2Pix model to 
suppress high-frequency artifacts in super-resolution MRI, with its 
weight adjusted using the hyperparameter λ. This approach was 
necessary because using only the adversarial loss leads to the 
occurrence of high-frequency artifacts, making it essential to 
include L1 loss as regularization. The hyperparameter λ determines 
the weight of this reconstruction loss (23). High-frequency 
components in MRI images primarily contribute to contours and 
boundaries (24), which are considered to have a significant impact 
on the differentiation between white and gray matter. Therefore, in 
this study, the initial investigation focused on optimizing the 
hyperparameter λ. In the objective evaluation, the highest value was 
obtained at λ = e3 (PSNR: 27.91 ± 1.78 dB, MS-SSIM: 0.96 ± 0.0045). 
By contrast, when super-resolution images were generated at 
λ = 5 × e3, λ = e4, the left and right hippocampal volumes were 
3.57 ± 0.46 mL and 3.67 ± 0.45 mL, and 3.46 ± 0.48 mL and 
3.54 ± 0.48 mL, respectively. There was no significant difference 
between these values and the hippocampal volumes calculated on 
the original images (left, p = 0.10, p = 0.76; right, p = 0.99, p = 0.19). 
Mosaic-like generation defects were observed in all or part of the 
super-resolution images generated using Pix2Pix at λ = e0 to e3. This 
is because the stability of the training of GANs, including Pix2Pix, 
decreased based on the values of the hyperparameter input (11, 25). 
Using the formula for loss function, the GAN was unable to learn 
properly due to the biased network learning progress because the 
generator and discriminator were not trained alternately due to 

TABLE 3 Left and right hippocampal volumes.

Image type Left hippocampal
volume (mL) mean 

± SD

Original image vs. 
generated (input) 

image

Right hippocampal
volume (mL) mean ± 

SD

Original image vs. 
generated (input) 

image

Original image (256 × 256) 3.66 ± 0.47 3.45 ± 0.56

Input image (64 × 64) 3.88 ± 0.48 P < 0.05 3.80 ± 0.48 P < 0.05

SR image generated at λ = e2 3.83 ± 0.49 P < 0.05 3.62 ± 0.58 P < 0.05

SR image generated at λ = e3 3.52 ± 0.42 P < 0.05 3.41 ± 0.51 P = 0.37

SR image generated at λ = 5 × e3 3.57 ± 0.46 P = 0.10 3.46 ± 0.48 P = 0.99

SR image generated at λ = e4 3.67 ± 0.45 p = 0.76 3.54 ± 0.48 P = 0.19

SR image generated at λ = e5 3.68 ± 0.45 P = 1.00 3.58 ± 0.51 p < 0.05

SD, standard deviation; SR, super resolution.

TABLE 4 Results of the Bland–Altman analysis of the left and right hippocampal volumes.

Image type Left hippocampal
volume (mL)

Right hippocampal
volume (mL)

Mean bias Limits of agreement Mean bias Limits of agreement

Input image (64 × 64) −0.22 −0.56 to 0.11 −0.35 −0.88 to 0.18

SR image generated at λ = e2 −0.17 −0.51 to 0.18 −0.17 −0.57 to 0.23

SR image generated at λ = e3 0.13 −0.35 to 0.62 0.040 −0.49 to 0.57

SR image generated at λ = 5 × e3 0.091 −0.39 to 0.57 −0.013 −0.59 to 0.56

SR image generated at λ = e4 −0.0090 −0.37 to 0.35 −0.090 −0.58 to 0.40

SR image generated at λ = e5 −0.021 −0.56 to 0.51 −0.12 −0.59 to 0.34

SR, super resolution.
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excessive weight being placed on the discriminator rather than on 
the generator. The primary objective of this study was to evaluate 
whether hippocampal volume accuracy required for clinical BAAD 
analysis can be maintained in super-resolution images generated by 
our GAN-based approach. Analysis of hippocampal volume 
confirmed that measurement accuracy was preserved across a range 
of λ values. However, when the λ value was excessively low (e.g., 
λ = e2), mosaic-like noise was observed in some outputs, which may 

compromise clinical interpretation despite the preservation of 
volume accuracy. To reduce the risk of such noise while maintaining 
measurement precision, we  recommend setting λ to e4 when 
applying the Pix2Pix network to super-resolution processing of 
medical images. This setting achieves a practical balance between 
adversarial learning and data fidelity, ensuring both reliable 
hippocampal volume quantification and clinically interpretable 
image quality.

FIGURE 3

Bland–Altman analysis of the hippocampal volume in input and generated images. The Brandt-Altman analysis results are shown below: (A) Left 
hippocampal volumes between the input and original images and between the generated super-resolution (SR) (λ = e2) and original images. (B) Left 
hippocampal volumes between the input and original images and between the generated SR (λ = e3) and original images. (C) Left hippocampal 
volumes between the input and original images and between the generated SR (λ = 5 × e3) and original images. (D) Left hippocampal volumes 
between the input and original images and between the generated SR (λ = e4) and original images. (E) Left hippocampal volume between the input and 
original images and between the generated SR (λ = e5) and original images. (F) Right hippocampal volume between the input and original images and 
the generated SR (λ = e2) and original images. (G) Right hippocampal volume between the input and original images and between the generated SR 
(λ = e3) and original images. (H) Right hippocampal volumes between the input and original images and between the generated SR (λ = 5 × e3) and 
original images. (I) Right hippocampal volume between the input and original images and between the generated SR (λ = e4) and original images. 
(J) Right hippocampal images between the input and original images and the generated SR (λ = e5) and original images. The dashed lines and white 
plots indicate the association between the hippocampal volume analyzed using the input image and the hippocampal volume measured using the 
original image within the limits of agreement ± 1.96 standard deviations (SD). The dotted lines and red plots represent the association between the 
hippocampal volume analyzed using the generated SR image (λ = e5) and the hippocampal volume measured using the original image within the limits 
of agreement ± 1.96 SD.
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4.2 Objective evaluation

Zhao et  al. reported that the average PSNRs for 4x super-
resolution images using MRI was 28.10 db for enhanced super-
resolution generative adversarial network (ESRGAN) and 27.41 db for 
super-resolution generative adversarial network (SRGAN) (26). In the 
Pix2Pix network used in this study, the PSNR was similar to that of 
ESRGAN and SRGAN at λ = e2 or greater. Therefore, we assume that 
the performance of 4 × super-resolution three-dimensional T1WI 
using Pix2Pix is similar to that of other GANs.

In the report of Ledig et  al., who first proposed the SRGAN 
model (12), a hyperparameter equal to λ was implemented as e3 and 
validated. In this study, the PSNR and MS-SSIM had the highest 
values at λ = e3, and the objective evaluation results supported the use 
of the value of λ implemented in the GAN-based networks for super-
resolution MRI.

4.3 Hippocampal volume

Some studies combining VBM and artificial intelligence have 
used machine learning methods to classify patients with 
schizophrenia and healthy individuals. Meanwhile, others have 
utilized VBM to differentiate the white from the gray matter of the 
brain and identify asymmetry (27). To date, no study has used super-
resolution imaging and VBM to evaluate brain volume. The current 
study calculated hippocampal volumes using low-resolution input 
images. Results showed that the left and right hippocampal volumes 
on the low-resolution input images were significantly larger than 
those on the original image. Moreover, in the Bland–Altman analysis, 
there were no mean biases in the left and right hemispheres. Based 
on these findings, low-resolution hippocampal images may 
underestimate hippocampal atrophy. When the images were 
generated at λ = e2, the hippocampal volume measured from the 
downsampled input images was larger than that calculated from the 
original images. Additionally, the mean bias and limits of agreement 
for the input images and those generated at λ = e2 were as follows: for 
the input images, the mean bias was −0.22, with limits of agreement 
ranging from −0.56 to 0.11, and for the images generated at λ = e2, 
the mean bias was −0.17, with limits of agreement ranging from 
−0.51 to 0.18. This discrepancy is likely due to the reduced 
contribution of the L1 loss term in the loss function, which prevented 
the learning process from converging as intended. Consequently, 
we  consider that the super-resolved images generated at λ = e2 
exhibited hippocampal volumes similar to those measured from the 
downsampled input images, leading to overestimation. Nevertheless, 
there was no significant difference in the left and right hippocampal 
volumes between the image generated at λ = 5 × e3 and those at λ = e4 
and the original image. In addition, the average bias for the left and 
right hemispheres was close to zero (λ = 5 × e3: 0.091 vs. −0.013, 
λ = e4: −0.0090 vs. −0.090). when considering L1 regularization, the 
intermediate signal intensity is more likely to be  applied to the 
generated image when the edges are unclear (13). Further, this effect 
becomes more evident as λ increases. Therefore, if the value of λ 
becomes extremely large and intermediate colors are applied, the 
contrast between the white and gray matter may become unclear, and 
the error in volume measurement via VBM analysis can increase.

4.4 Prospects for super-resolution 
technology and clinical applications

High-quality T1-weighted images are essential for the diagnosis of 
AD achieving this requires extensive k-space encoding and additional 
T1 imaging, which in turn leads to longer scan times. Techniques such 
as generalized auto calibrating partially parallel acquisitions (GRAPPA) 
and, more recently, compressed sensing have been reported to 
significantly reduce scan times. For example, GRAPPA acceleration has 
reduced the scan time from 10 min 47 s (with full sampling) to 6 min 
17 s, and compressed sensing can further decrease scan times—up to 
a 10-fold acceleration can reduce the time to as little as 2 min 9 s (28, 
29). However, high acceleration rates may lead to trade-offs in image 
quality and the introduction of artifacts. Reducing the matrix size from 
256 to 64 corresponds to reducing the number of phase-encoding steps 
to 0.25 times the original. In our study, the proposed method yielded 
hippocampal volumes that did not differ significantly from those of the 
original images, and the PSNR values were 27.91 ± 1.78 at e3, 
27.10 ± 1.69 at 5 × e3, and 27.65 ± 1.78 at e4, indicating minimal 
degradation in image quality. Theoretically, with all other parameters 
held constant, this reduction is expected to decrease the scan time to 
approximately 25% of the original duration, indicating that the 
proposed approach is potentially beneficial.

Regarding the computational requirements, running the Pix2Pix 
network does not require specialized servers and can be performed on 
commercially available PCs, making it accessible for clinical use. 
Training the model takes approximately 8 h and 30 min, but once 
trained, generating super-resolution images from 5,120 input images 
takes 126 s. This short processing time for image generation enables 
the reduction of MRI scan times while allowing for the creation of 
high-resolution images without introducing significant delays. This 
capability supports the feasibility of both reducing scan times and 
efficiently generating high-quality images, making the approach 
highly suitable for diagnostic applications.

The down-sampling method used in this study may introduce 
consistent artifacts in low-resolution scans, which could 
be misinterpreted by the deep learning algorithm as clues to high-
resolution features, potentially leading to reduced performance when 
applied to real-world data (30). However, the primary objective of this 
study was not to eliminate artifacts but rather to accurately measure 
volumes using BAAD software. Our results indicate that the 
hippocampal volumes derived from the super-resolved images—when 
appropriate parameter adjustments were made did not significantly 
differ from those of the original images, suggesting that the impact of 
consistent artifacts in low-resolution scans is minimal.

In AD diagnosis, hippocampal volume is a well-established 
biomarker; however, other critical indicators also play a significant role. 
For instance, the amygdala undergoes structural changes at various 
stages of disease progression (31). Recent studies have increasingly 
focused on leveraging artificial intelligence for staging AD (32). The 
integration of structural MRI and resting-state functional MRI 
(rs-fMRI) enables more precise diagnostic analysis and classification. By 
combining hippocampal subfields, amygdala volume, and brain 
network features with multiple rs-fMRI metrics, the accuracy of AD 
diagnosis can be significantly improved (33). Moreover, Wang, et al., a 
network that effectively integrates a pre-training module (Transformer) 
with a self-training module (convolutional neural network) in an 
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interactive manner demonstrated superior performance compared to 
using convolutional or attention mechanisms alone. This approach 
balances computational efficiency while preserving both local and 
global features. As deep learning algorithms evolve through the 
integration of new data, there is significant potential for further 
advancements (34). While our current research focuses on GANs, 
we plan to explore various learning models in future studies. As deep 
learning evolves, exploring a variety of architectures other than GANs 
could lead to more accurate and efficient diagnostic tools.

In summary, λ = e3 had the highest value in the objective 
evaluation. However, the learning of some images was unstable. By 
setting at λ = e4, the images were stabilized, and hippocampal volumes 
that were close to those on the original images that had high objective 
evaluation scores were calculated. Therefore, λ = e4 is the optimal 
value for super-resolution using the Pix2Pix network. The strength of 
this study is that it used super-resolution images to measure the 
hippocampal volume via VBM analysis. In addition, it directly 
compared the hippocampal volume measured using super-resolution 
images with that measured using the original image. In addition, as a 
clinical application of this research, the reduction in acquisition time 
for 3D T1WI MRI is beneficial for not only patients with AD who 
have difficulty undergoing long MRI scans but also others such as 
those with claustrophobia and elderly individuals. In addition, this 
technology can achieve an image with a super resolution without the 
need for any special hardware or software. Thus, it can also be applied 
to images that have been taken in the past.

The current study had several limitations. First, the Pix2Pix 
network was trained not on actual low-resolution MRI scans but on 
pseudo-low-resolution images derived from a high-resolution dataset. 
Obtaining paired low-resolution and high-resolution MRI scans from 
the same patient, particularly those with AD, is extremely difficult. 
While this simulation-based approach may limit the real-world 
applicability, it is commonly used in cases where real-world paired 
data are lacking (35). Future work will focus on acquiring paired 
low-resolution and high-resolution MRI scans from actual MRI 
images of healthy volunteers to further validate the model. Second, the 
dataset selected from OASIS-3 only included 3-T MRI images and 
primarily consisted of AD and healthy control subjects. In this study, 
using only 3-Tesla data may not capture potential differences in image 
quality or tissue contrast that can occur with other magnetic field 
strengths, thereby restricting the generalizability of our findings. 
Third, the study focused on AD patients, leaving uncertainty about 
whether the proposed super-resolution technique is applicable to 
other populations, such as patients with non-AD dementias or 
different age groups. To address these limitations, future studies will 
assess its generalizability using diverse datasets covering various 
neurodegenerative diseases and demographic variations. Additionally, 
the model’s performance will be evaluated on MRI data acquired at 
different field strengths, and the dataset will be  expanded using 
publicly available resources such as ADNI (https://adni.loni.usc.edu/) 
and Kaggle (https://www.kaggle.com/).

5 Conclusion

Using low-resolution images is one of the approaches for 
reducing MRI acquisition time. In this study, when hippocampal 

volume was measured directly from low-resolution images, it was 
more likely to be  overestimated, and brain atrophy was 
underestimated. Therefore, an objective evaluation was performed, 
and changes in hippocampal volume were investigated by adjusting 
λ, the main hyperparameter of the super-resolution Pix2Pix network. 
The optimal value was at λ = e4, which resulted in a high objective 
evaluation. BAAD-based hippocampal volume measurements from 
super-resolution images showed no significant differences from the 
original images, effectively reducing measurement errors. These 
results suggest that the proposed method has the potential to reduce 
MRI acquisition time and patient burden by enabling accurate 
hippocampal volume measurement from super-resolution images. 
However, given the limitations of training on synthetic data and the 
small dataset size, further validation using real-world clinical data is 
necessary. Additionally, future studies will explore alternative 
optimization strategies beyond λ selection to improve image quality 
and robustness.
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