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Introduction: Consciousness relies on both cortical and subcortical structures 
and their feedforward and feedback pathways. Within this framework, the 
thalamus represents a relay station enabling the transmission, reception, and 
integration of information. However, it is divided into several nuclear groups each 
composed of functionally heterogeneous nuclei, and, to date, an agreement on 
which nuclei are most involved in the generation, maintenance, and modulation 
of consciousness is still lacking.

Methods: To fill this gap, we  performed a systematic review by querying 5 
electronic databases (MEDLINE/Pubmed, Scopus, EMBASE, Web of Science, 
and Cinahl Complete) about studies published in the last 20 years exploring the 
relationship between specific thalamic nuclei/nuclear groups and consciousness. 
For each included study, we extracted data supporting (i.e., positive evidence) or 
not (i.e., negative evidence) the relationship between a specific nucleus/nuclear 
group and the consciousness.

Results: 167 articles were included leading to 346 pieces of evidence of 
which 284 were positive. Most of the retrieved positive evidence pertained 
to the intralaminar nuclear group, followed by the mediodorsal and ventral 
nuclear groups. Furthermore, when considering the specific nuclei within the 
intralaminar nuclear group, results highlighted the centromedian-parafascicular 
complex (CM-Pf) as the nucleus most related to consciousness. Despite the high 
heterogeneity characterizing the adopted methodologies (e.g., brain stimulation, 
anesthesia, brain damage), as well as the study population (e.g., either healthy 
and pathological humans or animals) across studies, the greatest amount of 
evidence supported a key role of CM-Pf for the generation, modulation, and 
maintenance of the level of consciousness.

Discussion: Though there is more research on the role of intralaminar nuclei, 
there is proportionally more positive evidence supporting these nuclei 

OPEN ACCESS

EDITED BY

Diego Iacono,  
Atlantic Health System, United States

REVIEWED BY

Raffaele Aspide,  
IRCCS Institute of Neurological Sciences of 
Bologna (ISNB), Italy
Maria Guadalupe Garcia-Gomar,  
National Autonomous University of Mexico, 
Mexico
Jasmine Thum,  
University of Alabama at Birmingham, 
United States

*CORRESPONDENCE

Francesca Giulia Magnani  
 francesca.magnani@istituto-besta.it

†These authors have contributed equally to 
this work and share last authorship

‡Deceased

RECEIVED 11 October 2024
ACCEPTED 26 May 2025
PUBLISHED 18 June 2025

CITATION

Cacciatore  M, Magnani  FG, Barbadoro  F, 
Ippoliti  C, Stanziano  M, Clementi  L, Nigri  A, 
Nanetti  L, Marino  S, La Porta  F, Lucca  LF, 
Prada  F and Leonardi  M (2025) Thalamus 
and consciousness: a systematic review on 
thalamic nuclei associated with 
consciousness.
Front. Neurol. 16:1509668.
doi: 10.3389/fneur.2025.1509668

COPYRIGHT

© 2025 Cacciatore, Magnani, Barbadoro, 
Ippoliti, Stanziano, Clementi, Nigri, Nanetti, 
Marino, La Porta, Lucca, Prada and Leonardi. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Systematic Review
PUBLISHED 18 June 2025
DOI 10.3389/fneur.2025.1509668

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1509668&domain=pdf&date_stamp=2025-06-18
https://www.frontiersin.org/articles/10.3389/fneur.2025.1509668/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1509668/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1509668/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1509668/full
mailto:francesca.magnani@istituto-besta.it
https://doi.org/10.3389/fneur.2025.1509668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1509668


Cacciatore et al. 10.3389/fneur.2025.1509668

Frontiers in Neurology 02 frontiersin.org

(particularly the CM-Pf) as key nodes in the network underlying consciousness 
compared to other thalamic nuclei. These results support ongoing therapeutic 
approaches to disorders of consciousness by reinforcing the rationale behind 
brain stimulation targeting CM-Pf and paving the way for other potential 
candidates for targeted interventions.

KEYWORDS

thalamus, consciousness, centromedian-parafascicular, neuromodulation, arousal, 
wakefulness, disorders of consciousness

1 Introduction

Studying consciousness is a major challenge in neuroscience, and 
a shared definition is still lacking (1, 2). From a classical neurological 
perspective, consciousness encompasses two main components: 
wakefulness (i.e., the level of consciousness) and awareness (i.e., the 
content of consciousness) (1, 3). Whilst wakefulness refers to being 
awake, awareness is characterized by conscious access to a specific 
piece of information, thus representing the subjective experience (3). 
Moreover, several authors (4) highlighted the role of arousal as a key 
component in the generation of consciousness. Specifically, arousal 
reflects the overall state of alertness, and it may be considered as the 
background condition that enables consciousness by ensuring 
adequate excitability of the neuronal substrate of consciousness, 
without being directly involved in specifying conscious contents (5).

Similarly, there is still much debate on identifying the neuronal 
correlates of consciousness [NCCs; Koch et al. (6)] defined as the 
minimum set of neuronal mechanisms sufficient to be conscious. 
Although we  are far from a univocal identification of the NCC, 
consciousness relies on both cortical and subcortical structures with 
their feedforward and feedback pathways. Specifically, consciousness 
is thought to be supported by “reentrant” activity with continuous 
interactions from deep layers of subcortical areas to superficial and 
middle layers of high-order cortical areas (i.e., feedforward pathways) 
and vice versa (i.e., feedback pathways) (7–9). Within this framework, 
the thalamus plays a key role as a relay station allowing the 
transmission, reception, and integration of a large variety of cortical 
and subcortical information.

The thalamus has been defined as a central “miniature-map” of the 
brain, where each cortical area is represented in specific thalamic 
nuclei (10). The identification of these nuclei depends on the thalamic 
parcellation adopted as reference (e.g., topographical, 
cytoarchitectural, and functional) (10–13). Based on the topographical 
features and the excitatory and inhibitory nature of the projections, 
the thalamus has been traditionally divided into dorsal and ventral 
parts, respectively (10, 14). The dorsal thalamus encompasses several 
nuclei gathered in nine nuclear groups (i.e., the anterior, mediodorsal; 
MD, lateral, ventral, intralaminar, midline, posterior, and medial and 
lateral geniculate bodies). Instead, the ventral thalamus encompasses 
the reticular nucleus (TRN) only (15), that comprises GABAergic 
neurons reciprocally connecting cortical and subcortical structures 
and representing the inhibitory control over other thalamic nuclei and 
thalamo-cortical connections (16, 17). Several studies demonstrated 
that the TRN participates in regulating sleep/wake cycle (18–20), 
absence seizures (21), and it is a target of anesthetic drugs (22), thus 
suggesting its crucial role in the mechanisms underlying wakefulness, 
arousal, and consciousness. Despite the well-recognized role of TRN 

in maintaining arousal and wakefulness by representing the major 
component modulating the synchronization of thalamo-cortical 
networks (23), the dorsal thalamic nuclei deserve attention as well. 
Indeed, by considering the projection to the higher-order cortical 
areas, dorsal thalamic nuclei may be functionally classified into (i) 
relay nuclei, also known as “specific nuclei” due to their projections to 
the primary motor and sensory cortices; (ii) association nuclei, 
receiving inputs from the sensorimotor cortex and projecting to both 
association and limbic cortical areas, and (iii) intralaminar and 
midline nuclei, also known as “non-specific nuclei” due to their 
widespread projections to the cerebral cortex, striatum, and basal 
ganglia (10, 13, 14).

The non-specific thalamic nuclei representing the central parts of 
the forebrain arousal system are responsible for the overall level of 
cortical excitability and, therefore, have been linked to the level of 
consciousness (24); moreover, they have been further divided 
depending on the functions they contributed to. Specifically, the 
midline nuclear group is conventionally divided into a ventral part 
involving the nucleus reuniens (Re) and linked to several cognitive 
functions [e.g., working memory and executive functions; Vertes et al. 
(14)] and a dorsal part encompassing paraventricular (Pv) and 
paratenial (Pt) nuclei which are related to behaviors requiring elevated 
wakefulness [e.g., feeding or fear; Ren et al. (25)]. On the other hand, 
the intralaminar nuclei are subdivided into rostral (i.e., paracentral; 
Pc, central lateral; CL, and central medial; CeM) and caudal (i.e., 
centromedian-parafascicular complex; CM-Pf) nuclei. It is well 
known that being the intralaminar nuclei a termination site of the 
Ascending Reticular Activating System (ARAS) (26), they have a 
pivotal role in regulating the cortical arousal state and, over the years, 
a growing number of studies investigated their functioning focusing 
primarily on the CL and CM-Pf nuclei due to their role in promoting 
cortical excitation and influencing feedforward and feedback pathways 
(27–29). The role of non-specific thalamic nuclei for consciousness 
was also supported by the studies on severely brain-injured patients 
with Disorders of Consciousness (DOC) (30, 31), and current research 
provided remarkable findings about the use of intralaminar Deep 
Brain Stimulation (DBS) targeting the CL and CM-Pf as a potential 
neuromodulatory intervention to boost the level of consciousness of 
these patients (32).

However, it is worth noting that, although the non-specific nuclei 
have been historically identified as pivotal structures for consciousness, 
available evidence reported the implication of relay/specific and 
association thalamic nuclei as well. Accordingly, Schiff et  al. (31) 
pointed out that along with the intralaminar nuclei, the MD, ventral 
anterior (VA), ventral lateral (VL), and inferior pulvinar (PULi) nuclei 
(together defined as central thalamus) also possess anatomical and 
functional features suitable to support consciousness. Indeed, they are 
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interconnected with the basal forebrain systems controlling cortical 
activity, thus, they may be part of the large-scale cerebral dynamics 
underlying consciousness (31). Their role in supporting consciousness 
is highlighted by several studies investigating their activity during 
anesthesia (33) and in pathological populations manifesting DOC (34, 
35) or absence seizures (36).

Taken together, the above-reported evidence highlighted the 
thalamus as a key structure for the regulation of the overall state of 
arousal, wakefulness, and consciousness. Although the role of the 
different nuclei has been proved by adopting different methodologies 
on different populations, an agreement on which nucleus (if any) most 
contributed to consciousness is still lacking. To fill this gap, 
we performed a systematic review of the studies published in the last 
20 years exploring the relationship between specific thalamic nuclei and 
consciousness, arousal, and wakefulness (as these two last components 
contribute to consciousness). In other words, the present systematic 
review aimed to pool together the heterogeneous existing evidence 
concerning the relation between specific thalamic nuclei and 
consciousness to determine which thalamic nuclei are most related to 
it. Whether it would be possible identifying the thalamic nucleus playing 
a pivotal role in generating, modulating, and maintaining consciousness, 
it would have important clinical consequences, especially for targeting 
the most appropriate thalamic region to boost the level of consciousness 
through neuromodulation in clinical population suffering from DOC.

2 Methods

The present systematic review followed the Preferred Reporting 
Items for Systematic Reviews and Meta- Analyses guidelines 
[PRISMA; Moher et al. (37)] to search and extract eligible studies.

2.1 Search strategy

Relevant studies were identified by searching the following 
electronic databases: MEDLINE/Pubmed, Scopus, EMBASE, Web of 
Science, and Cinahl Complete. The search was narrowed to the title, 
abstract, or keywords of original published studies, and a tailored 
search strategy was developed for each database according to their 
thesaurus (see Supplementary material for terms combinations). The 
publication dates were initially set from the beginning of 2003 until 
March 2023 and then updated until the 15th of July 2024. All the 
searches were limited to articles published in English. Both animal and 
human studies have been considered. Moreover, the reference list of 
the topic-relevant reviews was assessed to identify further eligible 
studies to be added.

The duplicate deletion was performed by a bibliographic 
management software (Mendeley; https://www.mendeley.com, 
accessed on 15th of July 2024), and the records were imported in a 
customized Excel spreadsheet including the title, abstract, and record 
information for each article.

2.2 Selection criteria

Studies were eligible if they met all the following criteria: (i) to 
be  a research article (i.e., excluding reviews, book chapters, and 

theoretical studies not reporting experimental data), (ii) either 
measuring or manipulating consciousness, arousal, or wakefulness, 
and (iii) presenting evidence in favor or against a relationship between 
one of the above-mentioned functions and a specific thalamic nucleus 
or nuclear group. We did not apply any restrictions on the techniques 
adopted to manipulate and measure the function of interest. 
Consequently, we  included studies manipulating consciousness, 
arousal, and wakefulness through either brain-modulatory techniques 
(e.g., electrical, chemogenetic, and optogenetic stimulation), or 
anesthesia protocols, as well as studies measuring the function of 
interest in pathological populations. No restrictions on the study 
population were adopted, including both studies on animals and 
humans, being either healthy or pathological (e.g., epilepsy, severe 
acquired brain injuries leading to DOC).

2.3 Screening and data extraction

Eligibility assessment of search results was performed 
independently by three raters using a three-step procedure.

In the first step, articles were screened by title, abstract, and 
keywords by adopting the following assessment scale: 0 = excluded 
(i.e., the article did not meet the inclusion criteria); 1 = included (i.e., 
the article matched the inclusion criteria); 2 = doubt (i.e., the article 
required the intervention of a third rater). The agreement between the 
raters was computed [Cohen K (38)]. In the second step, the full text 
of the included articles was analyzed using a similar rating (i.e., 
0 = excluded, 1 = included). In both steps, a third rater with senior 
experience in the topic reviewed the articles to reach a consensus in 
cases of discrepancy between the raters.

In the final step, raters independently extracted data from the 
included studies using a custom-built Excel data extraction sheet, 
pilot-tested on fifteen randomly selected included studies.

The following information has been extracted from each 
included study:

The investigated thalamic nuclear group classified according to (15) 
that is based on previous studies (39–43); see Table  1 and 
Figure 1.

The thalamic nucleus (if specified), classified according to (15). If 
an article used a nomenclature based on a different classification, 
we adapted it to the one specified in (15), i.e., in case of nuclei’s 
further division into parts depending on different criteria than 
(15), we considered the nucleus as a whole, and in case of nuclei 
not included in (15), we considered only the respective nuclear 
group (15). Importantly, for human studies reporting only the 
thalamic stereotactic coordinates in the Montreal Neurological 
Institute system, we extracted the anatomical label of regions 
according to the Automated Anatomical Labeling (44).

The lateralization of each thalamic nucleus/nuclear group 
(if specified).

The function of interest (i.e., consciousness, arousal, 
and wakefulness).

The analyzed outcome measures (behavioral; instrumental).
The sample characteristics, including species (humans; animals), 

the absence/presence of any pathology (healthy; pathological), 
and the sample size.

The presence/absence of control conditions/groups.
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Then, for each thalamic nucleus/nuclear group, we  recorded 
whether the evidence of the relationship with the function of interest 
contained in the study was either positive or negative. Consequently, 
a single study could contain a different number of positive/negative 
pieces of evidence depending on the number of considered thalamic 
nuclei/nuclear groups. This allowed us to count how many positive/
negative pieces of evidence were retrieved for each thalamic nucleus/
nuclear group.

2.4 Identification of thalamic nuclei most 
associated with the consciousness, arousal, 
and wakefulness

To identify the nuclei most associated with the function of 
interest, we  first searched for the thalamic nuclear groups most 
associated with it by computing a numerical index. Specifically, 
we calculated the proportion of the number of positive pieces of 
evidence for each thalamic nuclear group (Posgroup) over the total 
number of pieces of evidence for each thalamic nuclear group 
(Totgroup) weighted for the natural logarithm (ln) of the Totgroup, 
according to the following formulae: ( )= ∗group

group
group

Pos
ln Tot

Tot
index

. Subsequently, following the same approach, we further checked 
whether within the thalamic nuclear group with the highest 
numerical index there were specific nuclei that could be considered 
pivotal for the function of interest. We thus computed a numerical 
index for each nucleus according to the following formulae: 

( )= ∗nucleus
nucleus

nucleus

Pos ln Tot
Tot

index  where Totnucleus represents the 
total number of pieces of evidence for each nucleus and Posnucleus 
represents the total number of positive pieces of evidence for 
each nucleus.

3 Results

3.1 Literature search results

A total of 9,941 articles were retrieved (see Figure 2 for details). 
The automatic removal of duplicates resulted in 6833 articles.

During the first step, raters #1 and #2 agreed upon including 473 
articles, whereas 167 were included by rater #3 who screened 424 
records for which there was no agreement between raters. The Cohen’s 
Kappa value for inter-rater agreement in the first step was 0.65, 
implying ‘Good’ concordance between the raters (38). A total of 640 
records were selected for full-text review.

During the second step, raters #1 and #2 agreed upon including 
116 articles, whereas 39 were included by rater #3. The Cohen’s Kappa 
value for inter-rater agreement in the second step was 0.68, consisting 
in a ‘Good’ concordance between the raters (38).

After the second step, 155 articles met the inclusion criteria for 
this systematic review. Further 12 articles were identified by checking 
the references list of topic-relevant reviews. Consequently, a total of 
167 articles were included in the systematic review.

Table 1 The table shows the thalamic nuclei classification adopted in the 
present work according to Nieuwenhuys et al. (15).

Nuclear group Nucleus Further divisions

Anterior

Anterodorsal (Ad)

Anteromedial (Am)

Anteroventral (Av)

Intralaminar

Central Lateral (CL)

Central Medial (CeM)

Centromedian-

Parafascicular (CM-Pf)

Paracentral (Pc)

Lateral

Lateral Posterior (LP)

Laterodorsal (LD)

Pulvinar (PUL)

Anterior part (PULa)

Inferior part (PULi)

Lateral part (PULl)

Medial part (PULm)

Lateral geniculate body
Dorsal (LGd)

Ventral (LGv)

Medial geniculate body

Dorsal (MGd)

Medial (MGm)

Ventral (MGv)

Mediodorsal Mediodorsal (MD)

Magnocellular part 

(MDmc)

Paralaminar part (MDpl)

Parvocellular part 

(MDpc)

Midline

Paratenial (Pt)

Paraventricular (Pv)

Reuniens (Re)

Posterior

Limitans (Li)

Posterior (Po)

Suprageniculate (Sg)

Reticular Reticular (TRN)

Ventral

Ventral Anterior (VA)
Magnocellular division 

(VAmc)

Ventral Lateral (VL)

Anterior part (VLa)

Medial part (VLm)

Posterior part (VLp)

Ventral Posterior complex 

(VP)

Ventral Posterior Inferior 

(VPI)

Ventral Posterolateral 

(VPL)

Ventral Posteromedial 

(VPM)

Ventromedial Posterior 

(VMpo)

(Continued)

Table 1 (Continued)

The first column lists the thalamic nuclear groups, the second column lists the thalamic 
nuclei for each specific nuclear group; in the third column, further divisions are listed for 
each thalamic nucleus.
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Figure 2 illustrates the PRISMA flow chart of the articles’ selection 
process and the main reasons for exclusion.

3.2 Data extraction results

When considering the function of interest, most of the articles 
explored the relationship between a specific thalamic nucleus/nuclear 
group and consciousness (n = 137 out of 167), whilst a minority 
focused on arousal (n = 15 out of 167) and wakefulness (n = 15 out of 
167). Moreover, 111 out of 167 articles related one of the above-
mentioned functions to a single thalamic nucleus/nuclear group, 
whilst the remaining 56 articles considered at least two thalamic 
nuclei/nuclear groups. It is worth noticing that 21 out of 111 articles 
provided information only concerning the involvement of a specific 
nuclear group without any specification about the involvement of 
specific thalamic nuclei. Among them, 14 articles focused on the 
relationship between the function of interest and the intralaminar 
group, 5 considered only the anterior nuclear group, and the two 
remaining articles considered only the ventral group.

As for the hemispheric lateralization, most of the 167 included 
articles focused on specific thalamic nuclei/nuclear groups bilaterally 
(n = 76), many articles did not specify the lateralization (n = 52), 
whilst a minority focused on either left (n = 13) or right (n = 10) 
thalamic nuclei/nuclear groups. The remaining 16 articles 
heterogeneously considered left and right thalamic nuclei/nuclear 
groups across the sample.

Independently from both the function of interest and the 
considered thalamic nucleus/nuclear group, out of 167 articles, most 
of them (n = 95) explored their relationship by collecting only 
instrumental outcome measures being either neurophysiological (n 
= 50), imaging (n = 41), or both (n = 4). Sixty-one articles relied on 
both behavioral and instrumental outcome measures, whilst 11 
articles explored the relationship between specific thalamic nuclei/

nuclear groups and the function of interest by collecting only 
behavioral outcome measures.

A similar number of studies were conducted on animals (n = 81) 
or humans (n = 86). The former was mostly conducted on healthy 
animals (n = 67) during anesthesia (n = 45) or brain activity 
modulation adopting different techniques (n = 22). The articles on 
humans were mainly conducted on pathological populations (n = 76), 
mostly represented by patients with DOC after brain damage (n = 56). 
Importantly, a high proportion of studies conducted on human 
pathological populations (n = 22) was represented by single cases. 
Overall, many of the articles (n = 118) considered a control group/
condition within the experimental design.

The 167 included articles contained a total of 346 pieces of 
evidence (see Supplementary Figure S1) of which 284 were positive, 
meaning that they supported the existence of a relationship between 
a specific thalamic nucleus/nuclear group and the function of interest.

3.3 Thalamic nuclei most associated to 
consciousness, arousal, and wakefulness

As mentioned above, since many articles reported data concerning 
thalamic nuclear groups, without focusing on specific nuclei, we first 
focused on the evidence by thalamic nuclear group. According to the 
computed numerical index, the intralaminar was the nuclear group 
most associated with the function of interest since it displayed the 
highest index followed by the ventral and mediodorsal ones (Table 2; 
see also Supplementary Tables S1a,b for the computation of human 
and animal evidence, separately).

Considering the pieces of evidence specifying the thalamic nuclei 
within the intralaminar nuclear group, and following the same 
approach, we further checked for the specific intralaminar nuclei most 
associated with the function of interest. As a result, the CM-Pf was the 
nucleus most associated with the function of interest (Table 3; see also 

FIGURE 1

Illustrative representation of anatomical locations of the thalamic nuclear groups. The axial slices shown the thalamic segmentation generated by 
FreeSurfer on 3D T1-weighted image of the MNI305 template. The reticular nuclear group is not displayed due to its small size. It is adjacent to the 
ventral nuclear group, separated from the internal medullary lamina.
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Supplementary Tables S1c,d for the computation of human and 
animal evidence, separately). It is worth noticing that we considered 
the CM-Pf complex instead of dividing the CM and Pf into two 
different nuclei since 15 pieces of evidence (45–59) considered the 
CM-Pf as a single thalamic nucleus. Thus, to avoid the removal of 
those results and given the anatomical and functional similarities 
between CM and Pf nuclei (60), we decided to consider the CM-Pf as 
a single thalamic nucleus.

3.4 Summary of positive and negative 
evidence

We here provide an overview of the evidence retrieved for each 
nuclear group and their nuclei.

3.4.1 Intralaminar nuclear group
Supplementary Table S2 lists the pieces of evidence about the 

relationship between the function of interest and the intralaminar 
nuclear group derived from 81 articles.

Much of the evidence from studies not reporting specific 
intralaminar nuclei focused on the structural (SC) and functional 
connectivity (FC) in brain-damaged patients. Indeed, the level of 
consciousness in these patients was associated to the degree of injury 
affecting the SC of the intralaminar-cortex (61–67) which, in turn, 
predicted consciousness recovery (67–71). This evidence is in line 
with the suggestion of the lesion of the ARAS comprising the 
intralaminar nuclei as a plausible pathogenic mechanism of impaired 
consciousness (72). When exploring FC between intralaminar, Default 
Mode Network (DMN), and posterior cingulate cortex during 
anesthesia-induced unconsciousness in healthy individuals, it 

FIGURE 2

PRISMA flow diagram of this systematic review.
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decreased during the unconsciousness and was restored during the 
recovery phase (73). Further support was derived from evidence 
highlighting behavioral improvement after intralaminar electrical 
stimulation in DOC patients, which also determined significant 
improvement in cortical metabolism (74, 75).

By contrast, three pieces of evidence suggested the lack of 
contribution by the intralaminar nuclear group to anesthesia-induced 
unconsciousness in mice (76) and stimulation-induced arousal (77) 
in rats, as well as a non-significant association between intralaminar-
frontal FC and recovery of consciousness in DOC patients (78).

3.4.1.1 Centromedian-parafascicular complex (CM-pf)
A high amount of evidence was derived from studies adopting 

electrical stimulation targeting CM-Pf to boost the level of 
consciousness in DOC patients. Specifically, at the behavioral level, 
CM-Pf DBS resulted in arousal improvement during stimulation (49, 
53) and the enhancement of the level of consciousness after the 
stimulation (47–50, 53, 54, 56, 79), determining changes in visual and 
motor abilities (55). At the neuronal level, electrical stimulation of the 
CM-Pf produced cortical arousal by increasing neuronal variability in 
all frequency bands (55), thus strengthening functional integrity and 
brain communication in DOC patients (46, 54, 55). The same results 
were observed by adopting CM-Pf electrical stimulation in mice (79) 
and non-human primates (51, 57, 80). Similarly, CM-Pf DBS in animal 

models of loss of consciousness resulted in an awake-like cortical state 
(i.e., increased spiking rate and decreased slow-frequency power and 
synchronization), enhanced FC with sensorimotor regions, and 
restored behavioral signs of consciousness (51, 81–83). Moreover, 
CM-Pf stimulation was associated with improved seizures’ outcome 
(84–88), as indicated by the reduction and even abolishment of both 
generalized tonic–clonic and convulsive seizures (84, 85) and atypical 
absences (85–87).

The CM-Pf role for consciousness was further supported by 
studies exploring the association between both structural and 
functional integrity and impaired consciousness in brain-damaged 
patients. Indeed, thalamic infarct and bilateral lesions involving the 
CM-Pf were frequently related to consciousness disorders (89–91). 
Specifically, DOC patients showed a neuronal loss (45, 92) and a 
significant reduction of metabolism in the CM-Pf (59), as well as a 
structural disconnection between the CM-Pf and both brainstem 
arousal nuclei (52) and cortical areas (93–95). These results on brain-
damaged patients are in line with evidence derived from both animal 
and human studies adopting anesthesia to manipulate consciousness. 
Indeed, propofol suppressed the consciousness-related excitatory 
postsynaptic currents of the CM-Pf in a dose-dependent manner in 
rats (96). Similarly, Sukhotinsky et  al. (97) reported CM-Pf 
involvement in both loss of consciousness and electroencephalogram 
(EEG) synchronization during anesthesia-induced unconsciousness 
after the microinjection of pentobarbital into the mesopontine 
tegmentum area in rats. Moreover, human studies on both healthy (98, 
99) and pathological (33) populations reported the modulation of 
CM-Pf FC during the anesthesia-induced unconsciousness, which was 
gradually restored during the recovery phase (98, 99). Importantly, 
although cortical and subcortical FC of thalamic nuclei was 
progressively restored during the recovery phase, the CM-Pf is the 
only nucleus that fully restored FC to the ARAS 1 h after the 
emergence (98).

Finally, the remaining pieces of evidence deriving from 
electrophysiological studies on healthy individuals demonstrated the 
CM-Pf pivotal role in the modulation of behavioral arousal state 
during (58, 100) sleep/wake cycle (58) and sleep/arousal transition 
(58, 100).

Despite this large amount of positive evidence, a couple of 
negative pieces of evidence on stroke and epileptic patients was found 
(101, 102). Specifically, Hindman et al. (101) showed that the CM-Pf 
lesion is not sufficient to cause an impairment of consciousness in 
stroke patients, and Valentín et al. (102) found that CM-Pf DBS led to 
the remission of refractory status epilepticus without affecting the 
level of consciousness (102).

Considering the above-mentioned results altogether, CM-Pf 
surely plays a role for consciousness modulation due to its widespread 
cortical and sub-cortical connections allowing it to exert a significant 
influence over the whole brain activity deemed necessary to sustain 
the conscious state.

3.4.1.2 Central lateral (CL)
Most of the evidence focusing on the CL was derived from animal 

studies adopting stimulation paradigms. Although with fewer pieces 
of evidence than CM-Pf, CL electrical stimulation increased 
physiological arousal and determined behavioral changes (e.g., motor 
activity improvement; increase of the level of consciousness) in awake 
mice (79), and both awake and anesthetized rats (57, 81, 103) and 

Table 2 For each thalamic nuclear group, the table shows the total 
number of pieces of evidence (2nd column), number of positive pieces of 
evidence (3rd column), and the numerical index used to identify the 
thalamic nuclear group most associated with the function of interest (4th 
column; refer to the main text for the index computation).

Nuclear 
group

Totgroup Posgroup Index

Intralaminar 102 94 4.26

Mediodorsal 53 44 3.29

Ventral 77 58 3.27

Midline 27 22 2.68

Reticular 22 19 2.66

Lateral 32 23 2.49

Anterior 20 16 2.39

Posterior 6 5 1.49

Medial geniculate 3 2 0.73

Lateral geniculate 4 1 0.34

Table 3 For each intralaminar nucleus, the table shows the total number 
of pieces of evidence (2nd column), number of positive pieces of 
evidence (3rd column), and the numerical index used to identify the 
intralaminar nucleus most associated with the function of interest (4th 
column; refer to the main text for the index computation).

Intralaminar 
nucleus

Totnucleus Posnucleus Index

Centromedian-

parafascicular complex

40 38 3.5

Central lateral 25 23 2.96

Central medial 15 14 2.52

Paracentral 4 4 1.38
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macaques (83, 104). Similarly, a study on an epileptic rat model 
described the increase of postictal cortical physiological arousal due 
to bilateral CL stimulation preventing slow activity and restoring 
behavioral responses (105). Moreover, a study stimulating deep 
cortical layer of awake mice suggested that cortico-CL interaction, 
along with other thalamic nuclei, drove long-lasting evoked EEG 
signals, and it was suppressed during anesthesia-induced 
unconsciousness (106). Furthermore, CL stimulation can 
bidirectionally influence consciousness. Indeed, CL electrical 
stimulation in an awake primate produced periods of perturbed 
consciousness in a frequency-dependent manner, characterized by 
similar features and involvement of the same networks that are pivotal 
in absence seizures (107). Similarly, optogenetic high-frequency 
stimulation of CL produced a whole brain activation resulting in 
increased behavioral arousal, while low-frequency stimulation led to 
behavioral arrest (108). However, it is important keeping in mind that 
in some of the above-cited studies the stimulation site spanned other 
thalamic nuclei in addition to the CL (79, 81, 108).

As for studies on humans, bilateral CL-DBS in a DOC patient 
modulated his behavioral responsiveness (48), whereas its 
discontinuation was associated with a significant responsiveness 
reduction (109). In line with these results, thalamic infarcts and 
bilateral lesions involving CL were associated with consciousness 
impairment (89–91) and, consistently, DOC patients showed neuronal 
loss in CL (45, 92) as well as symmetric structural disconnection 
between CL and the brainstem arousal nuclei (52). Similarly, decreased 
CL activity was detected during focal temporal (110) and limbic 
seizures (111) with loss of consciousness.

Evidence deriving from anesthesia-induced unconsciousness also 
showed the association between CL alpha oscillations and different 
behavioral states, suggesting the CL alpha coherence is one of the 
primary features of propofol-induced unconsciousness (112), in line 
with evidence showing the lack of preferential connections between 
CL and posterior/anterior cortical networks affected by anesthesia 
(33). Finally, evidence also showed its involvement in the SC pathway 
underlying the EEG synchronization and reversible loss of 
consciousness due to anesthesia through microinjecting pentobarbital 
into the mesopontine tegmentum area of rats (97).

Only two pieces of negative evidence were found for CL, both 
deriving from studies focused on epilepsy. Specifically, Kundishora 
et al. (113) showed that CL-DBS alone was not sufficient to restore an 
awake-like cortical state and González et al. (114) found no association 
between CL resting-state FC and the frequency of focal impaired 
consciousness seizures (114).

In summary, like what has been already seen for CM-Pf, CL 
activity can determine changes at both cortical and subcortical levels 
due to its bidirectional connections that possibly influence the level of 
consciousness and arousal.

3.4.1.3 Central medial (CeM)
The evidence on CeM comes mainly from animal studies. Only 

three pieces of evidence were derived from the human population, 
showing a neuronal loss in the CeM of DOC patients (92), CeM 
involvement in the alpha network affected under anesthesia in 
epileptic patients (33), and CeM decreased metabolic activity during 
anesthesia-induced unconsciousness in healthy individuals (115).

Among animal studies, most of the evidence was derived from the 
adoption of anesthesia, suggesting the CeM is a brain site involved in 

the modulation of consciousness during anesthesia and a key hub in 
the pathway mediating recovery which can regulate prefrontal cortex 
oscillations (116). Specifically, although Fu et al. (117) reported CeM 
involvement only during the recovery from propofol anesthesia, Baker 
et al. (118) described CeM as a hub initiating the transition towards 
propofol-induced loss of consciousness, consistent with the results of 
the study by Muheyati et al. (116) showing a decrease of the loss of 
righting reflex duration in anesthetized rats after CeM-induced 
chemical lesion. Moreover, during the transition phase, changes in 
high-frequency oscillations (20–40 Hz) occurred first in the CeM and 
then in the cortex (117). Coherently, anesthetic infusion into the 
central thalamus (including the CeM) slightly reduced the cortical 
arousal induced by pedunculopontine tegmentum stimulation (119). 
Molecular studies also supported CeM involvement in consciousness 
modulation under anesthesia, demonstrating that CeM potassium 
channels inhibition is sufficient to restore consciousness in 
anesthetized rats (120, 121) and (122) the inhibition of the 
mitochondrial protein in the CeM caused hypersensitivity to 
anesthetics (122).

The remaining pieces of evidence were derived from studies 
adopting CeM stimulation paradigms (79, 123, 124). Specifically, 
bilateral DBS targeting the central thalamus including CeM increased 
both behavioral and physiological arousal, as demonstrated by 
increased motor activity and increased alpha, beta, and gamma waves 
(79). Moreover, this activation was time-blocked to the stimulation 
that, when ceased, determined the rats returning to an anesthetic 
status (123). Similarly, CeM-focused ultrasound stimulation in mice 
increased behavioral arousal, as demonstrated by increased locomotor 
activity (125). Consistently, optogenetic tonic activation of CeM 
neurons reliably induced rapid awakening from NREM whereas, 
optogenetic burst-like activation contributed to the initiation of 
cortical UP-states in the cingulate cortex that were synchronized over 
brain-wide cortical circuits through a relay in the anterodorsal (Ad) 
nucleus (124).

A single article provided negative evidence highlighting the 
involvement of other intralaminar nuclei than CeM underlying the 
EEG synchronization and reversible loss of consciousness induced by 
microinjection of pentobarbital into mesopontine tegmentum area in 
rats (97).

In summary, the CeM role in consciousness is mainly inferred 
from its importance as a target of anesthetic drugs and its connections 
with the anterior cortical areas.

3.4.1.4 Paracentral (pc)
The studies supporting the role of Pc in consciousness and arousal 

overlapped some of the above-mentioned ones taking into 
consideration also other intralaminar nuclei. Indeed, evidence 
deriving from DOC patients showed a neuronal loss in Pc (92), 
whereas evidence deriving from anesthesia-induced unconsciousness 
in rats supported Pc involvement in modulating the EEG 
synchronization and reversible loss of consciousness (97). Moreover, 
electrical (79) and optogenetic (108) stimulation targeting the Pc 
increased behavioral and physiological arousal in mice and rats, 
respectively.

Overall, since Pc involvement in arousal and level of consciousness 
modulation was always accompanied by other intralaminar nuclei, it 
is possible hypothesizing that Pc carries-out a complementary, rather 
than pivotal, role for consciousness modulation.
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3.4.2 Mediodorsal nuclear group (MD)
The evidence supporting MD role for consciousness, wakefulness, 

and arousal was derived from 51 studies mainly conducted on humans 
(see Supplementary Table S3).

Specifically, most of the evidence is derived from studies on DOC 
patients showing thalamus-related structural abnormalities primarily 
located in the MD, including significant atrophy (34, 126), neuronal 
loss (involving both the magnocellular and parvocellular parts of MD) 
(52, 92, 126–130), and a lower number of spontaneous active units in 
the paralaminar MD (45). Consistently, paramedian infarcts involving 
MD were more frequently related to consciousness impairment (89–
91, 131). Moreover, these MD structural and functional features were 
useful in discriminating the level of consciousness and long-term 
outcomes in DOC patients (34, 64, 126, 132–134), especially when 
thalamo-cortical connections were considered (64, 132, 135). For 
instance, thalamic tracks connecting MD to cortical areas were one of 
the main factors in distinguishing across different diagnostic 
categories (64) and clinical outcomes (132–134) of DOC patients. 
Moreover, when considering structural features, the MD total volume 
and its atrophy were predictors for consciousness recovery (34), and 
its total volume was negatively correlated to the disability level of 
DOC patients (126). Consistently, DOC was characterized by MD 
bilateral hyperintensity which returned to normal levels when 
consciousness recovered in two patients suffering from thiamine 
deficiency due to Wernicke’s encephalopathy (136, 137).

Furthermore, the role of the MD was supported by several studies 
on anesthesia-induced unconsciousness in both humans and animals. 
Specifically, the alpha coherence of MD, as well as CL and other 
sensory-motor nuclei, characterized the anesthesia-induced 
unconsciousness and oscillated in a “boot-up sequence” depending on 
behavioral states from induction to emergence (112). Similarly, Choi 
et al. (138) highlighted that MD cortical rhythms and their functional 
coupling are largely, but not exclusively, responsible for 
unconsciousness. Moreover, Ramadasan-Nair et al. (122) suggested 
the MD role also in determining anesthetic sensitivity for loss of 
consciousness: the inhibition of the mitochondrial protein in the MD 
caused hypersensitivity to anesthetics in mice. Consistently, 
anesthesia-induced unconsciousness modulated the MD regional 
activity (139–141) and its FC (33, 73, 99, 142, 143) in a dose-
dependent manner (143), by suppressing its cortical connectivity 
during deep sedation which returned to the baseline during the 
recovery period (73). Importantly, evidence of MD parvo and 
magnocellular parts’ global signal co-activation coherently with 
arousal modulation in healthy individuals was found (141, 144). 
However, whilst CM-Pf-cortical FC was severely suppressed under 
anesthesia, MD-cortical connectivity was only moderately affected 
(99). Similarly, lidocaine infusion into the MD only slightly reduced 
the cortical activation induced by the pedunculopontine tegmentum 
stimulation in anesthetized rats (119).

The evidence deriving from studies on MD electrical stimulation 
was consistent in suggesting its role for consciousness. Specifically, 
when bilaterally stimulated in non-human primates, an awake-like 
cortical state was produced by increasing the spiking rate, decreasing 
slow-frequency power and synchronization, and reinstating higher-
frequency power (57, 81), as well as behavioral arousal and motor 
activity in mice (79). Similarly, bilateral DBS of the central thalamus 
including paralaminar MD along with CL and CM-Pf modulated the 
behavioral responsiveness in a chronic DOC patient, improving both 

his cognitively-mediated and motor behaviors (48). Moreover, a recent 
study highlighted the MD role for the thalamo-cortical interactions 
underlying the physiological arousal elicited by cortical deep layer 
stimulation in mice, as well as in modulating perturbational 
complexity across different behavioral states (i.e., wakefulness and 
anesthesia-induced unconsciousness) (106). Furthermore, evidence 
on MD electrical stimulation (145) reported a decreased waking 
percentage and an increased slow wave sleep in MD neurotoxic-
damaged rats, whilst MD stimulation through excitatory 
neurotransmitters produced a significant increase in total wake time 
(145). However, contrasting evidence reported a lack of MD neuron 
spike rate modulation across sleep/wake cycle, which was instead 
observed for the CeM (124), as well as a lack of activity of an important 
regulator of wakefulness (i.e., Neuropeptide S; NPS+) during the sleep/
wake transition (146).

Evidence also support MD involvement within the network 
underlying the loss of consciousness during seizures (147–149): only 
rhythmic bursts of 30- to 40-Hz gamma activity of the MD 
characterized unconsciousness during seizures when compared to 
other thalamic nuclei (147). Consistently, Kundu et al. (87) reported 
a resolution of focal impaired awareness seizures in a patient 
implanted with the Responsive Neurostimulation System in the 
anterior nuclear group and CM-Pf, spanning the adjacent MD.

Despite the large number of positive pieces of evidence, negative 
evidence was found. For instance, when exploring the thalamic nuclei 
temporal dynamic activity underlying arousal state transitions in 
healthy individuals through fast functional Magnetic Resonance 
Imaging (fMRI), the MD was not among the thalamic nuclei activating 
first (100). Moreover, electrical stimulation of the MD in anesthetized 
epileptic rats did not induce slow neocortical activity (150). Similarly, 
the electrical stimulation of the prefrontal cortex via MD was 
insufficient to restore consciousness in anesthetized macaques (83), 
and MD chemical lesions did not affect the anesthesia-induced 
unconsciousness in rats (116). Finally, two studies reported a lack of 
restored FC between the MD and ARAS 1 h after the emergence from 
anesthesia-induced unconsciousness in healthy individuals (98), as 
well as an absence of relation between the MD-cortical pathways and 
unfavorable (i.e., death or DOC) long-term outcome in traumatic 
brain-injured patients (95).

In summary, the MD role for consciousness is mainly inferred 
from structural and functional data deriving from studies on DOC 
patients and its activity modulation under anesthesia-induced 
unconsciousness. However, it should be noted that in most of MD 
electrical stimulation studies, the stimulation sites spanned other 
thalamic nuclei.

3.4.3 Ventral nuclear group
Supplementary Table S4 lists the pieces of evidence about the 

relationship between the function of interest and specific ventral 
thalamic nuclei derived from 52 articles. It is worth noticing that 3 
studies (58, 151, 152) did not adopt the thalamic nuclei categorization 
considered in the present work, supporting the role of the ventral 
intermediate nucleus for arousal, wakefulness, and consciousness. 
Specifically, bilateral DBS affected the total sleep time and the sleep 
efficiency (151) and there was a gamma activity difference between 
sleep and wakefulness when recording local field potentials targeting 
the ventral intermediate nucleus in patients undergoing surgical DBS 
implantation (58). Moreover, the loss of coherence activity with the 
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cortex during propofol anesthesia supported its role in consciousness 
too (152). Overall, the studies providing evidence for ventral 
intermediate nucleus’ role were a minority, whilst the most focused on 
the ventral posterior complex (VP).

3.4.3.1 Ventral posterior complex (VP)
Only a few studies most conducted on brain-damaged populations 

and anesthesia-induced unconsciousness considered the VP as a 
whole, providing a quite similar amount of positive and negative 
pieces of evidence. Despite neuronal loss in VP being associated with 
Unresponsive Wakefulness Syndrome (UWS) (127, 129), and the SC 
from VP to cortex discriminating across patients with favorable and 
unfavorable 1-year outcomes (95), the evidence from the study by 
Maxwell et al. (92) showed no difference between UWS patients and 
severely disabled patients without DOC in the VP neuronal loss. 
Moreover, VP did not play a role in FC change during anesthesia-
induced unconsciousness (99, 153) nor in influencing cortical 
activation underlying sleep/wake activity and the transition from 
wakefulness to sleep in mice (124). Nevertheless, a study described VP 
involvement in propofol-induced unconsciousness that was however 
determined by the inhibitory activity of the TRN over the VP (22).

On the contrary, a larger amount of positive than negative pieces 
of evidence was found for ventral posterolateral (VPL) and ventral 
posteromedial (VPM) nuclei. Although the single-cell recordings in 
the VPL, VPM, medial geniculate body, reticular formation, and 
cortex during wakefulness and anesthesia in cats failed to highlight 
which of these sites was the main responsible for anesthesia-induced 
unconsciousness, the authors pointed towards the involvement of 
both VPL and VPM in consciousness (154). Indeed, a study showed 
the VPL and VPM involvement in the thalamo-cortical interactions 
underlying the physiological arousal elicited by cortical deep layer 
stimulation in mice, as well as in the modulation of the perturbational 
complexity across behavioral states (i.e., awake and anesthesia) (106).

When looking at studies considering VPL, its SC was correlated 
with both the level of consciousness (93, 134) and the chance of 
recovery from DOC (93). Moreover, the FC between VPL and cortical 
areas significantly changed during anesthesia-induced 
unconsciousness (33, 155), as well as after cardiac arrest and during 
recovery in an ischemic rat model (156). When electrically stimulated 
during anesthesia-induced unconsciousness, VPL provoked 
neurophysiological changes like what has been recorded during 
wakefulness in macaques (81), and it is involved in the widespread 
networks underlying human absence seizures (86, 149). Furthermore, 
a few pieces of evidence also suggested VPL role in regulating arousal 
levels (100, 141) since it showed global signal co-activation coherently 
with arousal modulation (141) and it led, together with CM-Pf, the 
rest of the thalamus in determining arousal level changes as measured 
with fast fMRI in healthy individuals (100).

Similarly, the role of VPM has been explored by studies adopting 
anesthesia to induce unconsciousness in animals. Specifically, 
anesthesia-induced unconsciousness in rats were associated with 
VPM firing rate modulation (157, 158), VPM fast rhythms alteration, 
and an increase in thalamo-cortical coherence (159). Moreover, 
anesthesia determined a significant change in FC between VPM and 
cortex (160) which discharged coherently depending on the anesthetic 
concentration that determined, in turn, the level of unconsciousness 
in mice (161). Supporting this finding, the knockdown of the neuron-
specific K-Cl co-transporter KCC2 in the VPM in vivo reduced the 

effect of anesthesia, whilst preventing KCC2 downregulation delayed 
the emergence time (158). Furthermore, the gamma/high gamma 
power of the VPM was associated with the level of consciousness (162, 
163) and behavioral signs of arousal (162) in anesthetized rats. The 
VPM role was also supported by evidence of its involvement during 
seizures causing consciousness impairment both in humans (149) and 
rats (111, 164), and a further study showed a FC reduction from VPM 
to somatosensory cortex during sleep as compared to wakefulness in 
mice (165).

Of course, negative evidence for both VPL and VPM exist as well. 
Indeed, the atrophy degree of both VPL and VPM was not a significant 
predictor of brain-damaged patients’ 6-month recovery of 
consciousness (34). Moreover, VPM did not play a pivotal role in 
determining loss and recovery of consciousness after propofol 
anesthesia in rats as compared to TRN which was instead involved in 
inter-regional communication disruption with frontal areas (166). 
Moreover, when optogenetically stimulated in anesthetized mice, the 
VPM did not determine behavioral arousal and significant changes in 
EEG patterns (167). Similarly, VPL activity remained coupled with the 
cortical one from awake to unconsciousness in isoflurane-anesthetized 
rats (168), and, if electrically stimulated, it did not produce 
wakefulness, differently from other nuclei (123). Importantly, the 
same study showed that during anesthesia-induced unconsciousness, 
the fMRI water apparent diffusion coefficient did not change in VPL, 
and, similarly, local field potential power recorded outside the scanner 
did not decrease during anesthesia-induced unconsciousness in 
VPL (123).

Taken together, the existing data for VP pointed towards a role of 
this nucleus for consciousness and arousal when focusing on its 
specific nuclei (VPL and VPM), mainly due to their influence on the 
thalamo-cortical dynamics.

3.4.3.2 Ventral lateral (VL)
When considering VL, there was a greater amount of positive than 

negative pieces of evidence, mainly deriving from studies on brain-
damaged populations and anesthesia-induced unconsciousness.

Indeed, VL impairment due to polar-paramedian thalamic 
infarction, involving other thalamic nuclei, led to severe DOC with a 
quite high probability (131), and the VL atrophy degree predicted the 
6-month recovery of consciousness in severely brain-injured patients 
(34). Moreover, the SC of VL (involving VL posterior part (134)) both 
discriminated across different levels of consciousness (64, 134) and 
distinguished patients with favorable and unfavorable (i.e., long-
lasting DOC) outcomes after 1 year from the acute event (95). 
Furthermore, left VL preserved metabolism has been described as a 
distinctive feature of DOC patients’ improvement after treatment with 
transcranial Direct Current Stimulation targeting the left dorsolateral 
prefrontal cortex (169).

The evidence deriving from studies on anesthesia-induced 
unconsciousness was consistent in suggesting a role of VL for 
consciousness. Indeed, VL metabolic change and activation was found 
to be coupled with both the primary motor cortex and supplementary 
motor area during anesthesia-induced unconsciousness in both 
humans (170) and animals (153, 161). Moreover, VL is part of the 
functional network involving the DMN which showed a disconnection 
during anesthesia-induced unconsciousness and re-connection 
during the recovery time (73), and similar modulation was described 
when considering also VL posterior and anterior parts (33). Finally, 
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evidence also showed VL involvement in the SC pathway underlying 
the EEG synchronization and reversible loss of consciousness when 
microinjecting pentobarbital into the mesopontine tegmentum area 
of rats (97).

The VL role for consciousness has also been supported by 
evidence showing its involvement in generating absence seizures (149) 
that were significantly reduced when bipolar DBS was used targeting 
the CM-Pf and passing through both the VPL and the VL posterior 
part bilaterally (86). On the contrary, VL-DBS during deep anesthesia 
in primates did not contribute either to consciousness recovery (80, 
82) or to changing FC with cortical areas (82). Similarly, other 
evidence supported the lack of relationship between VL and 
consciousness since no changes were detected in its connectivity after 
anesthesia-induced unconsciousness (99) and during recovery both 
in humans (98) and rats (120). Similar negative evidence from fMRI 
studies highlighted that VL, and both VL anterior and posterior parts, 
did not contribute to arousal changes in healthy individuals (100, 144).

In summary, VL contribution to consciousness was supported by 
studies adopting heterogeneous methodologies that, however, well 
agree on its importance due to its connections with brain 
anterior areas.

3.4.3.3 Ventral anterior (VA)
The studies considering the role of VA relying on brain-damaged 

populations and anesthesia-induced unconsciousness mainly 
provided positive evidence. Specifically, when bilaterally impaired 
after polar-paramedian thalamic infarction, VA was more probably 
associated with severe DOC as compared to its unilateral impairment; 
importantly, the impairment always encompassed other thalamic 
nuclei (131). Moreover, different levels of consciousness in DOC 
patients were related to the difference in both thalamo-cortical SC (64) 
and FC (132) involving VA, and the SC between VA and several 
cortical regions also differed between DOC patients and healthy 
controls (130). The role of VA was also supported by evidence 
highlighting its importance in predicting the recovery of consciousness 
in DOC patients (34, 95, 171).

Furthermore, evidence deriving from studies on anesthesia-
induced unconsciousness showed a disconnection within the 
functional network involving VA and connecting the thalamus and 
the posterior parts of the DMN (i.e., precuneus and posterior cingulate 
cortex) which was re-connected during the recovery periods, when 
comparing brain metabolism and resting activity across the two 
conditions (73). Similarly, VA metabolism covaried with both the 
primary motor cortex and supplementary motor area during 
anesthesia-induced unconsciousness (170), thus suggesting VA FC 
modulation during anesthesia-induced unconsciousness as confirmed 
by neurophysiological data (33). Finally, as reported for VPM and 
VPL, VA also plays a role within the thalamo-cortical interactions 
underlying the physiological arousal elicited by cortical deep layer 
stimulation in mice, as well as in the modulation of the perturbational 
complexity across different behavioral states (106).

One negative piece of evidence was found highlighting other 
thalamic nuclei (i.e., CM-Pf and VPL) rather than VA as responsible 
for arousal changes in healthy individuals assessed through fast 
fMRI (100).

In summary, VA seems to be  involved, together with other 
thalamic nuclei, within the thalamo-cortical network underlying 
consciousness modulation, playing a complementary role.

3.4.4 Midline nuclear group
Supplementary Table S5 lists the evidence derived from 25 articles 

supporting the presence/absence of a relationship between the 
function of interest and specific midline nuclei. Importantly, all but 
two studies (33, 73) were conducted on animals.

Two studies reported contrasting evidence by considering the 
midline group overall. Indeed, whilst the study by Akeju et al. (73) 
showed its involvement in the mechanisms underlying the anesthesia-
induced unconsciousness in humans, due to a decrease in its 
connectivity with DMN, Sukhotinsky et  al. (97) reported no 
contribution of the midline nuclear group to the EEG synchronization 
and loss of consciousness after anesthesia-like state induction in rats 
after microinjecting pentobarbital into mesopontine tegmentum area.

3.4.4.1 Paraventricular (Pv)
Most evidence derived from studies adopting chemogenetic and 

optogenetic manipulations in animals to explore the Pv role in 
consciousness and wakefulness. Specifically, chemogenetic and 
optogenetic activation of the Pv glutamatergic neurons, astrocytes, as 
well as orexinergic terminals and locus coerulus tyrosine-hydroxylase 
projections to Pv during anesthesia-induced unconsciousness 
prolonged the induction time and shortened the emergence time; 
coherently, their inhibition reduced the induction time and delayed 
the recovery time (25, 172–178). Furthermore, at a molecular level, 
Wu et al. (178) highlighted the role of the sodium leak channel of 
glutamatergic, but not GABAergic, neurons of Pv in modulating 
sedative effects of general anesthesia through the regulation of Pv 
neuronal activity. However, a recent study showed that a chemical-
induced lesion to Pv accelerated the recovery time in gabodaxol-
induced unconscious rats but not in diazepam-induced unconscious 
rats (116). Similar results on recovery time have been found by Bu 
et al. (179) who, however, did not obtain any result on the induction 
time. Alike, after performing a controlled-cortical injury in mice to 
induce DOC, the activation of the Pv glutamatergic neurons reduced 
the duration of the loss of consciousness, whereas Pv inhibition 
increased it (180). Furthermore, the activation of both the Pv 
glutamatergic neurons and the paraventricular hypothalamic nucleus–
Pv circuit during sleep increased the wake time and decreased the 
NREM sleep time, while their inhibition reduced the wake time and 
increased the NREM sleep time (25, 181). Similarly, Ren et al. (182) 
revealed that chemogenetic and optogenetic activation of Glutamic 
acid decarboxylase 2-positive neurons in the dorsal raphe nucleus 
decreased the wakefulness time through monosynaptic inhibitory 
connections with the Pv. By contrast, Gao et al. (183) observed a 
different pattern of modulation after chemogenetic activation of the 
Pv type II neurons, consisting of a reduction of wake time and an 
increase in NREM sleep time.

Finally, evidence supporting the Pv role in consciousness also 
derived from anesthesia-based studies. Specifically, Liu et al. (184) 
explored the mechanisms underlying propofol-induced 
unconsciousness in mice, thus revealing a hyperpolarization of Pv 
occurring due to the modulation of the inhibitory currents via GABAA 
receptors. Similarly, an immunofluorescence study on mice revealed 
that in Pv (and in VPM) the KCC2 expression is consistently 
downregulated during anesthesia-induced unconsciousness (158). 
Moreover, Pv contributed to promoting arousal from deep 
pharmacologically induced coma, given its recruitment after the 
stimulation of the anterior portion of the nucleus gigantocellularis of 
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the ARAS (77). Instead, heterogeneous findings resulted from the 
adoption of c-Fos expression to study Pv activity during anesthesia. 
Specifically, on the one hand, two studies highlighted Pv-suppressed 
activity during anesthesia-induced unconsciousness (179) and 
increased activity during and after the emergence (179, 185); on the 
other hand, another study revealed significant activation of the Pv 
during anesthesia-induced unconsciousness (76).

Only two studies providing negative evidence were found, 
showing the lack of contribution of Pv in controlling cortical active/
UP state and sleep modulations (124), as well as in the sleep/wake 
transition (146).

In summary, the Pv is a brain site involved in the modulation of 
consciousness and wakefulness, representing a key hub in the pathway 
mediating anesthesia-induced unconsciousness and sleep/wake cycle.

3.4.4.2 Reuniens (Re)
Only the study by Weiner et al. (33) provided evidence of Re 

involvement in promoting anesthesia-induced alpha network 
anteriorization to achieve loss of consciousness in humans. Contrarily, 
two studies provided evidence against Re involvement in arousal 
modulation, either after deep pharmacologically induced coma (77) 
or during NREM sleep (124) in animals.

3.4.4.3 Paratenial (Pt)
A single study (186) supported Pt contribution to the loss of 

consciousness secondary to focal limbic seizures. Specifically, by 
electrically inducing focal limbic seizures in rats, the authors found a 
concurrent decreased activity in Pt and increased cortical slow wave 
activity during the ictal period, possibly due to the inhibition of the Pt 
excitatory output to the basal forebrain, thus contributing to reduced 
arousal from basal forebrain to the cortex.

3.4.5 Reticular nucleus (TRN)
The evidence supporting TRN role for consciousness, wakefulness, 

and arousal was derived from 22 studies mainly conducted on animals 
while adopting either anesthesia to induce unconsciousness or brain 
stimulation techniques targeting TRN (see Supplementary Table S6).

Although a study highlighted increased intrinsic excitability of 
GABAergic TRN neurons during propofol anesthesia and a 
consequent inhibitory influence over the VP glutamatergic neurons 
(22), other studies described a reduction of the electrical synaptic 
strength of TRN GABAergic parvalbumin-expressing neurons 
(187), along with a modulation of the reticulo-thalamo-cortical 
communication in a dose-dependent manner, with greater effects at 
deep levels of anesthesia (160, 166, 188). Moreover, anterior TRN 
optogenetic and chemogenetic activation shortened the emergency 
time from propofol-induced unconsciousness (189) and affected the 
number of transitions between wake and NREM sleep (20), whereas 
its inhibition delayed the recovery time from propofol-induced 
unconsciousness (189). The study conducted by Herrera et al. (190) 
went in the same direction since optogenetic activation of the GABA 
neurons of the lateral Hypothalamus-TRN circuit induced a rapid 
arousal during NREM sleep. Similarly, optogenetic activation of 
basal forebrain GABAergic terminals in the TRN also strongly 
promoted cortical activation and behavioral emergence from 
anesthesia (191). At a neurophysiological level, the optogenetic 
activation of the TRN induced a rapid increase of the frequency 
power in the delta band along with a decrease in the beta and 

gamma bands of the ipsilateral somatosensory cortex (192); at a 
behavioral level, it reduced the awake and increased the NREM sleep 
times (192). Contrary to the above-mentioned results, the study by 
Yi et  al. (193) provided contrasting evidence on the role of the 
anterior TRN GABAergic neurons in the regulation of the 
mechanisms behind general anesthesia. Indeed, chemogenetic and 
optogenetic activation of the anterior TRN GABAergic neurons 
shortened the induction time of isoflurane anesthesia and delayed 
the recovery time from both propofol- and isoflurane-induced 
unconsciousness (193). Moreover, when electrical stimulation was 
applied to the cortical deep layer in mice, the TRN drove the 
physiological arousal elicited by the stimulation and modulated the 
perturbational complexity across different behavioral states (i.e., 
awake and anesthesia) (106).

Three studies provided positive evidence relying on results from 
brain-damaged population. Specifically, traumatic coma in humans 
was related to a disconnection of brainstem arousal nuclei from TRN 
(52), and the recovery from coma was associated with an increased FC 
between TRN and basal ganglia in rats (194). Similarly, the integrity 
of TRN projections to the frontal cortex was predictive of a one-year 
favorable outcome after severe traumatic brain injury in humans (95).

Consistent evidence for a relationship between TRN and 
consciousness derived from studies on epilepsy in animals. Indeed, 
the TRN showed an increased metabolism (164) and tonic firing 
neuronal activity (21) during absence seizures, associated with the 
formation of cortical spike-and-wave discharge. Furthermore, deletion 
of the Phospholipase C β1  in the TRN induced spike-and-wave 
discharges and reduced TRN excitability, thus causing absence 
seizures (195). Similarly, Gad1 dejection in TRN, a gene responsible 
for the synthesis of GABAergic neurotransmitters, caused spike–wave 
discharge in rats (196).

Despite the consistency of the positive pieces of evidence, there 
were also negative ones. Specifically, Mesbah-Oskui et  al. (197) 
showed that the optical stimulation of the left TRN was not sufficient 
to maintain the anesthesia-induced unconsciousness. Moreover, TRN 
did not contribute to the cortical arousal elicited by the 
pedunculopontine tegmentum stimulation (119) nor to the EEG 
synchronization and loss of consciousness after anesthesia-like state 
induction (97).

Taken together, the results on TRN agree in supporting its 
importance for consciousness, mainly due to its inhibitory role over 
the other thalamic nuclei and considering that most of the studies 
were conducted on animals thus, allowing a more precise 
characterization of TRN neuronal mechanisms compared to what 
usually done in humans.

3.4.6 Lateral nuclear group
None of the 22 retrieved studies considered the lateral nuclear 

group as a whole (see Supplementary Table S7).

3.4.6.1 Pulvinar (PUL)
Studies on brain-damaged patients showed an association 

between impaired consciousness and both PUL FC and SC (52, 64, 
93, 134, 198, 199). For instance, the PUL medial part was a 
functional connective node significantly related to the level of 
consciousness in DOC patients (134), and the strength of PUL SC 
was associated with the recovery from DOC (93, 134). Similarly, 
evidence from magnetic resonance spectroscopy in DOC patients 
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showed that the ratio of the brain metabolites of PUL medial part 
(but not for the lateral one) was associated with a negative outcome 
at 12 months (199).

Similar findings were suggested by studies on epileptic patients. 
Indeed, the degree of the loss of consciousness in temporal lobe 
epilepsy was related to the involvement of PUL within the seizure 
network (148), and the electrical stimulation of the PUL medial part 
reduced the mean duration of the tonic phase and the severity of 
consciousness alteration (200). Similarly, Kundu et al. (87) reported a 
resolution of focal impaired awareness seizures in an epileptic patient 
implanted with a closed-loop Responsive Neurostimulation System 
targeting the anterior nuclear group and the CM-Pf, spanning 
the PUL.

Moreover, anesthesia-induced unconsciousness modulated PUL 
coherent alpha networks (33) and its global signal 
co-activation (141).

By contrast, unlike other thalamic nuclei, PUL was not relevant 
for changes in arousal state when considering resting-state fMRI 
(144), nor was one of the first thalamic nuclei to become active during 
arousal state transitions (100). Finally, neither its atrophy degree (34) 
nor the fiber density of the pulvinar-cortical tracks (95) in brain-
damaged patients predicted the DOC patients’ outcome.

Taken together, the results about the role of PUL for consciousness 
are heterogeneous depending on which part of PUL is considered. Its 
role is particularly supported by data deriving from clinical 
populations being either DOC or epileptics patients.

3.4.6.2 Lateral posterior (LP)
A similar amount of positive and negative pieces of evidence 

characterized the studies considering the LP role for consciousness.
When considering its FC (201) and SC (52) in DOC patients, 

there was a correlation with both the level of consciousness (201) and 
the outcome (52). Moreover, during anesthesia-induced 
unconsciousness, there was a disruption of the posterior alpha 
network structurally connected with the LP (33).

On the contrary, LP neuronal loss was neither predictive of the 
6-month outcome (34) nor distinguished across different levels of 
consciousness (92, 127, 129) in brain-damaged patients.

In summary, the available data did not allow to conclude for a LP 
pivotal role for consciousness.

3.4.6.3 Laterodorsal (LD)
Few studies considered the LD, all providing positive evidence for 

its involvement in consciousness.
Indeed, LD lesion was associated with the severity of DOC (34) 

and worst outcome at follow-up (34, 131). Consistently, Tenney et al. 
(164) reported LD involvement in the generation and maintenance of 
absence seizures by adopting fMRI. Moreover, propofol-induced alpha 
oscillations were associated with different behavioral states in healthy 
individuals (33) and rats (112). For instance, before the recovery from 
anesthesia-induced unconsciousness, alpha coherence between 
superficial cortical layers and LD (along with the MD and CL nuclei) 
recovered, consistent with a “boot-up sequence” during the emergence 
from anesthesia-induced unconsciousness (112).

Overall, besides the paucity of studies considering LD, it should 
be noted that LD involvement was accompanied by other thalamic 
nuclei, suggesting thus only a complementary LD role 
for consciousness.

3.4.7 Anterior nuclear group
All but four of the 20 retrieved articles provided positive evidence 

for the anterior group role for consciousness, wakefulness, and arousal 
(see Supplementary Table S8).

When considering anesthesia-induced unconsciousness, the 
anterior nuclear group connectivity pathway was involved in the 
loss of consciousness at both structural and functional levels [i.e., 
connectivity with both posterior cingulate cortex (143) and 
mesopontine tegmentum area area (97)]. Moreover, a high number 
of studies adopted anterior nuclei-DBS in epileptic patients 
demonstrating that it increased vigilance and arousal both during 
sleep and wakefulness (202, 203), interrupted sleep (203), and was 
followed by the disappearance of tonic–clonic seizures and 
complex spikes and waves (204, 205). Similarly, the Responsive 
Neurostimulation System implanted in the anterior nuclear group, 
targeting also the CM-Pf and the adjacent MD and PUL, stopped 
focal impaired awareness seizures in a patient suffering from 
frontotemporal epilepsy (87). Importantly, Singh et al. (206) found 
enhanced synchrony in alpha and beta bands recorded with 
stereotactic EEG targeting the anterior nuclei during focal seizures 
with impaired awareness and focal to bilateral tonic–clonic 
seizures but not during focal aware seizures thus, supporting the 
role of anterior nuclei activity in determining changes at the level 
of consciousness. Finally, studies on brain-damaged patients 
showed structural and functional abnormalities of the anterior 
nuclear group, including atrophy (34, 131), fibers’ density decrease 
within the cortical pathway (52, 130), and altered metabolites ratio 
(199) relating both to acutely and long-lasting 
impaired consciousness.

On the contrary, two studies did not report an association 
between the anterior nuclear group and consciousness in brain-
damaged patients (89, 95). Furthermore, Feng et al. (111) showed 
that, during epilepsy, the anterior nuclear group played a role in 
seizure propagation rather than in consciousness-
related disturbances.

3.4.7.1 Anteroventral nucleus (Av)
Only three studies considered the Av. Specifically, it belonged to 

the posterior alpha network connecting the frontal cortical regions 
and the higher-order sensory thalamic nuclei showing a decrease of 
coherence during propofol-induced unconsciousness (33). Moreover, 
a recent study suggested its role in the thalamo-cortical interactions 
underlying the physiological arousal elicited by cortical deep layer 
stimulation in mice (106). On the contrary, Av did not play a pivotal 
role during sleep/wake transition in healthy individuals assessed 
through fast fMRI (100).

Overall, despite the paucity of studies, it is possible hypothesizing 
that the Av carries-out a complementary role within the thalamo-
cortical interaction underlying the consciousness modulation, rather 
than a pivotal role.

3.4.7.2 Anterodorsal nucleus (Ad)
Only a study supporting the Ad role in propagating the cortical 

activation induced by CeM optogenetic activation was found. 
Specifically, CeM optogenetic stimulation during natural sleep 
initiated the UP states in the cingulate cortex that propagated in the 
visual cortex through the Ad activity (124), meaning that Ad acted as 
a relay.
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3.4.8 Posterior nuclear group
Despite the paucity of studies (n = 6) considering the role of the 

posterior nuclear group for consciousness, all but one provided 
positive evidence (see Supplementary Table S9).

When microinjecting pentobarbital into the mesopontine 
tegmentum area, the posterior nuclear group was involved in the SC 
pathway underlying the loss of consciousness in rats (97); similarly, 
alpha coherence of the posterior nuclear group, as well as other 
thalamic nuclei, characterized the anesthesia-induced 
unconsciousness and oscillated in a “boot-up sequence” from 
induction to emergence (112). Furthermore, it was involved, together 
with other thalamic nuclei, in the generation and maintenance of 
absence seizures as assessed with fMRI in rats (164). By contrast, a 
study highlighted the lack of contribution of the posterior nuclear 
group to the recovery of consciousness in anesthetized rats (120).

3.4.8.1 Suprageniculates-limitans nuclei (Sg-Li)
Only the study by Weiner et al. (33) provided evidence of Sg-Li 

involvement in anesthesia-induced unconsciousness, reporting a 
disruption of the posterior alpha network structurally connecting 
Sg-Li to frontal cortical areas.

3.4.8.2 Posterior nucleus (Po)
A single study was found, highlighting Po involvement in the 

thalamo-cortical interactions underlying the physiological arousal 
elicited by cortical deep layer stimulation in mice, as well as in 
modulating the perturbational complexity across behavioral 
states (106).

3.4.9 Medial geniculate body
Three studies explored the relationship between the medial 

geniculate body and consciousness providing mixed evidence (see 
Supplementary Table S10).

Intracranial recordings in epileptic patients under anesthesia 
showed connectivity disruption between the posterior alpha network 
and association and sensory thalamic nuclei, including the medial 
geniculate body (33). Similarly, intracranial recordings in anesthetized 
cats detected the involvement of the medial geniculate body, as 
demonstrated by the depression of its neuronal firing during loss of 
consciousness, although the same pattern was described for other 
thalamic nuclei without determining which of them played a pivotal 
role (154). By contrast, when exploring the predictors for recovery of 
consciousness in DOC patients, its atrophy did not predict the 
6-month outcome (34).

3.4.10 Lateral geniculate body
Four studies considered the role of the lateral geniculate body for 

consciousness mainly providing negative evidence (see 
Supplementary Table S11).

The positive evidence consisted of what was already reported for 
the medial geniculate body, namely a connectivity loss during 
anesthesia-induced unconsciousness involving also the lateral 
geniculate body (33). Differently, when exploring the brain activity 
underlying arousal state transitions in healthy individuals through fast 
fMRI, the lateral geniculate body was not among the thalamic nuclei 
activating first (100). Similarly, it was not involved in the loss (52) and 
recovery of consciousness (34) in severely brain-injured patients. 
Indeed, the post-mortem tractography on a traumatic coma patient 

showed the partial sparing of connections between the lateral 
geniculate body and ARAS (52), and its atrophy degree did not predict 
the 6-month recovery of consciousness (34).

4 Discussion

The pivotal role of the thalamus for consciousness is well known 
within the underlying feedforward and feedback pathways. 
Nonetheless, literature still lacks an agreement on which thalamic 
nuclei are primarily involved in the generation, maintenance, and 
modulation of consciousness.

After having systematically reviewed all the studies published in 
the last 20 years exploring the relationship between thalamic nuclei/
nuclear groups, we found a different number of pieces of evidence 
supporting the above-mentioned relationship across distinct thalamic 
nuclei/nuclear groups. For this reason, we  first searched for the 
thalamic nuclear group most associated with consciousness which 
resulted in the intralaminar nuclear group, followed by the 
mediodorsal and ventral nuclei.

This evidence derives mainly from clinical human studies 
involving patients with DOC and absence epilepsy and adopting 
intralaminar DBS to modulate the level of consciousness. According 
to these results, the key role of the intralaminar nuclear group for 
consciousness is supported by its anatomo-functional features. 
Broadly speaking, when considering the microscopic level, thalamic 
cells can be divided into two classes: core neurons projecting to the 
middle cortical layers, and matrix neurons projecting to the superficial 
or deep cortical layers (207, 208). Although most of the thalamic 
nuclear groups generally contain a mix of core and matrix neurons, 
the intralaminar neurons are the only ones that exhibit both core- and 
matrix-like properties (209). These functional properties allow the 
intralaminar neurons to influence a wide range of cortical and 
subcortical areas (29), thus representing an ideal candidate for 
sustaining and modulating consciousness (29, 210). Taking in mind 
these anatomo-functional features, it is not surprising that, over the 
years, a growing number of studies investigating the NCCs have 
focused on intralaminar nuclei, as highlighted by the results of the 
present systematic review (see Supplementary Figure S2). Since the 
intralaminar nuclear group is composed of different nuclei, we further 
checked whether a specific intralaminar nucleus was most associated 
with consciousness resulting in the CM-Pf, followed by the CL.

The CM-Pf is relatively larger than other intralaminar nuclei (60, 
211), and, together with CL, occupies the largest part of the 
intralaminar nuclear group. When considering its connectivity map, 
CM-Pf shows prominent connectivity with both subcortical areas, 
including the brainstem nuclei and the striatum, and motor and 
sensory cortical areas (29). The strong connections with the basal 
ganglia and their reciprocal connections with the cortical areas 
support the crucial role of CM-Pf in alerting and orienting responses 
to external stimuli, motor function, and, therefore, the modulation of 
arousal and consciousness level (60, 212). The results of the present 
systematic review showed that most of the evidence exploring the 
CM-Pf ’s role within the NCCs comes from electrical stimulation 
studies on DOC patients producing significant changes in the level of 
consciousness. Indeed, a recent systematic review on the clinical 
effects of DBS (32) revealed the CM-Pf as the region most frequently 
targeted and with the best effective ratio for DOC patients, resulting 
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in both an initial arousal increase and sustained improvement in the 
level of consciousness. A possible explanation for these effects has 
been postulated within the framework of the mesocircuit model (31, 
213). Specifically, CM-Pf stimulation may relieve the inhibitory effect 
of the basal ganglia over the thalamus thus, restoring the normal 
function of the cortico-striatal-thalamus-cortical integration system 
in DOC patients, in whom brain damage reduced the background 
synaptic activities (31, 214). Moreover, CM-Pf role for consciousness 
could be further supported by data focusing on clinical disorders not 
considered in this systematic review and often associated with 
impaired awareness, such as schizophrenia (215, 216), hemispatial 
neglect (217–219) and somatoparaphrenia (218). For instance, a 
reduced CM-Pf volume has been observed in schizophrenic patients 
(215), as well as hemispatial neglect following thalamic infarct 
involving the CM-Pf (217). Consistently, a recent study highlighted 
the reduction of sensorimotor neglect in a rat model of Parkinson’s 
disease treated with CM-Pf-DBS (218). Although speculative, these 
data stress the need to broaden the study of NCCs to these 
clinical conditions.

Despite having a lower proportion of positive evidence, the CL 
nucleus seems to play a key role in the circuit for consciousness as 
well. Indeed, analogously to CM-Pf, CL electrical stimulation can 
produce an increase in physiological arousal, and thus an improvement 
in the level of consciousness. However, as opposed to CM-Pf, the 
evidence came mainly from animal studies. Taken together, the 
studies’ results suggest that both CL and CM-Pf contribute to the 
generation, maintenance, and modulation of consciousness, even 
though with different properties that remain to be clarified (210). 
Indeed, given the limited data available, to date, it is difficult to assess 
whether the positive effect during electrical stimulation is mainly 
driven by CM-Pf or CL. This is partly due to the anatomical proximity 
of these nuclei which, therefore, prevents to exclude a propagation of 
the electric current through the tissues during the DBS, and partly 
related to their simultaneous stimulation (especially in human studies) 
making it difficult to isolate the causality of the effect. However, by 
considering the anatomo-functional features of these two nuclei, there 
are substantial differences. Indeed, CL is characterized by matrix-style 
projections (207) mainly to the frontal and parietal cortices, and basal 
ganglia (29, 220–222), while CM-Pf is characterized by core-style 
projections to the basal ganglia, and matrix-style projections to 
cortical sensorimotor areas (29). One could hypothesize that, given 
the strong connections with the basal ganglia, CM-Pf dominates the 
effect on consciousness (31). However, a study adopting a more 
specific microstimulation approach suggested CL as the best 
candidate, reporting physiological arousal effects only when the 
stimulation site was centered on CL and not when limited to CM-Pf 
(83). In addition, these results have been confirmed by a computational 
model study (223) showing restoration of the wake-like flow of 
bidirectional information after the simulated stimulation of a site with 
a high proportion of matrix-to- core populations (i.e., the CL) rather 
than a site with a lower proportion of matrix-to- core nuclei (i.e., the 
CM-Pf). Taken together, these results emphasize the evidence for a 
pivotal role of the intralaminar nuclei in consciousness. However, 
future studies are needed to further frame the different mechanisms 
behind the modulation of consciousness played by the CM-Pf and CL.

Furthermore, when considering our results, it should be stressed 
that identifying the thalamic nuclei most related to consciousness can 
be useful from a therapeutic point of view. Indeed, it could help in 

choosing a precise and reliable target region of neuromodulation 
aiming at boosting the level of consciousness in DOC patients (e.g., 
DBS; low-intensity focused ultrasound; pharmacological treatment). 
Nevertheless, while this approach is practical in a clinical context, it 
must be emphasized that linking consciousness to a single nucleus 
may be overly reductionist, since current evidence highlights networks 
of subcortical and cortical areas underlying consciousness rather than 
a single driver nucleus. Indeed, over the years, the subcortical 
neuromodulatory systems’ activity has been considered a background 
condition for enabling consciousness and ensuring the adequate 
arousal state and afferent inputs to modulate and interconnect the 
cortical areas, including the fronto-parietal network (224) as well as 
temporal, parietal, and occipital areas (225) as a “posterior hot zone” 
for consciousness (226).

This systematic review shows how other nuclei could play a role 
in modulating consciousness, such as the MD and the ventral nuclei. 
Although MD is a nuclear group according to (15), it also represents 
a thalamic nucleus characterized by specific properties (45) and 
connections (227) and occupying a large anatomical thalamic portion 
as compared to the other thalamic nuclei (15). If we had considered 
MD as a thalamic nucleus instead of a nuclear group, its index would 
have been comparable to that of CM-Pf suggesting the relevance of 
both nuclei. Like what reported for the intralaminar nuclei, the 
evidence supporting MD role derives from studies highlighting a strict 
link between MD structural/functional damages and DOC. However, 
in most of the retrieved studies on DOC patients, thalamic nuclei 
other than MD have been considered showing a pivotal role for 
consciousness as well. In this line, for many of the considered 
stimulation studies the stimulation sites spanned multiple thalamic 
nuclei, even belonging to different nuclear groups, further supporting 
the contribution of several thalamic nuclei to consciousness rather 
than one. Despite the computed index identifying the intralaminar as 
the nuclear group most associated with consciousness, the 
methodological characteristics of the retrieved studies should also 
be considered when interpreting the evidence. The studies exploring 
the role of the intralaminar group for consciousness are single cases 
in a quite high percentage (around 22%), and a large proportion of 
studies did not have a control condition (around 45%), independently 
to provide positive or negative evidence. The studies exploring the role 
of other nuclear groups are characterized by larger samples and either 
a control condition or a control group with higher percentages. 
Moreover, the risk of publication bias should be considered, since 
negative findings are often underrepresented in the literature, 
potentially leading to an incomplete assessment of the evidence. For 
these reasons future investigations should better weigh the evidence 
considering both the nature of findings (i.e., positive and negative) 
and some methodological features, including the population (human 
or animal), the sample size, and the presence of a control condition. 
Furthermore, given the heterogeneity characterizing the nomenclature 
of thalamic nuclei, a standardization is needed to facilitate and 
guarantee a correct data comparison and the interpretation of results.

In conclusion, this work confirms the important role of 
intralaminar nuclei for consciousness, and, among them, the CM-Pf 
results the most positively associated with it (i.e., having the highest 
proportion of positive pieces of evidence), suggesting its importance 
as a possible target for neuromodulation. Of course, further studies 
with more rigorous methodology are needed to better clarify the 
mechanisms distinguishing the CM-Pf from the other intralaminar 
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nuclei, such as CL for sustaining and modulating consciousness. 
Finally, it is important to stress the need for further studies better 
elucidating the role of non-intralaminar thalamic nuclei for 
consciousness as well, especially considering the bias in the recent 
literature in focusing on the intralaminar nuclei.
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