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Introduction: Malnutrition is associated with increased morbidity and mortality

from multiple diseases. However, the relationship between cerebral small vessel

disease (CSVD) andmalnutrition or malnutrition risk remains underexplored. This

retrospective study investigated the association between malnutrition risk and

CSVD, along with its common imaging markers.

Methods: A total of 806 participants from a neurology department underwent

cranial MRI scans and nutritional assessments. The presence of imaging markers

of CSVD, including white matter hyperintensities, lacune, perivascular spaces,

and cerebral microbleeds, was evaluated by expert neurologists. Malnutrition risk

was assessed using the Geriatric Nutritional Risk Index (GNRI) and Controlling

Nutritional Status (CONUT) scores. Logistic regression, subgroup, and interaction

analyses were performed to evaluate the associations between malnutrition risk,

CSVD, and its common imaging markers.

Results and discussion: After adjusting for potential confounders, patients

at risk of malnutrition, as identified by both the GNRI and CONUT scores,

exhibited more severe CSVD and its common imaging markers. Further analyses

revealed interactions between GNRI score and smoking, highlighting potential

modifying e�ects on the relationship between malnutrition risk and CSVD.

Collectively, malnutrition risk, as assessed by objective nutritional indices, is

independently associated with CSVD and its common imaging markers. These

results emphasize the importance of addressing malnutrition in the prevention

and management of CSVD.

KEYWORDS

cerebral small vessel disease,malnutrition risk, imagingmarkers, geriatric nutritional risk

index, controlling nutritional status

1 Introduction

Cerebral small vessel disease (CSVD), as the primary cause of vascular dementia, can

result in a significant decline in cognitive function, gait, and balance (1). It contributes

to 25% of ischemic strokes (2). The early stages of CSVD are frequently asymptomatic

and challenging to diagnose clinically, underscoring the importance of neuroimaging in

the early detection and management of the disease. Cranial MRI is a key modality for

assessing CSVD. The typical neuroimaging manifestations of CSVD include white matter

hyperintensities (WMH) of presumed vascular origin, perivascular spaces (PVS), lacune
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(also of presumed vascular origin), recent subcortical small infarcts

cerebral microbleeds (CMB), and brain atrophy (3).

Malnutrition is a multifaceted disease characterized by a

reduction in body fat and/or muscle mass resulting from

inadequate nutrient intake or absorption (4). It has detrimental

effects on daily activities, leading to a decline in the quality of life

and physical functioning (5). Moreover, malnutrition is associated

with increased morbidity and mortality from multiple diseases (6).

On a broader scale, the recurrent hospitalizations and prolonged

stays caused by malnutrition pose a significant financial burden on

the healthcare system (7).

The diagnostic criteria for malnutrition established by the

European Society for Clinical Nutrition and Metabolism (ESPEN)

(8) and the Global Leadership Initiative on Malnutrition (GLIM)

(9) are widely applied in clinical practice. However, these criteria

do not include an assessment of malnutrition risk. Several objective

nutritional indicator assessment tools have been developed and

effectively applied, such as the Geriatric Nutritional Risk Index

(GNRI) (10) and the Controlling Nutritional Status (CONUT) (11).

The GNRI and CONUT have demonstrated good accuracy and

predictive capability in evaluating the risk of moderate to severe

malnutrition (12, 13).

Malnutrition can affect individuals of all age groups. However,

elderly people (≥65 years) are particularly susceptible due to

a combination of risk factors (14). Currently, it is estimated

that approximately one-quarter of elderly individuals are either

malnourished or at risk of malnutrition (15). Furthermore,

the incidence of CSVD tends to increase with age (16).

However, studies examining the relationship between CSVD and

malnutrition risk are currently limited.

In this study, we aimed to investigate the association between

CSVD and malnutrition risk, assessed using GNRI and CONUT.

Our findings suggest the importance of improving the nutritional

status of the population with CSVD.

2 Methods

2.1 Study participants

This retrospective cross-sectional study recruited patients

who were either outpatients or inpatients at the Department of

Neurology, Quanzhou First Affiliated Hospital of Fujian Medical

University from September 2020 to December 2024. Inclusion

criteria: (1) Age ≥18 years old; (2) Patients underwent 3.0T cranial

MRI scans, including T1-weighted imaging (T1WI), T2-weighted

imaging (T2WI), Fluid Attenuated Inversion Recovery (FLAIR),

Diffusion Weighted Imaging (DWI) and Susceptibility Weighted

Imaging (SWI), within 7 days of hospitalization; (3) Patients

received blood routine, routine biochemistry, and other related

tests within 24 h of treatment or hospitalization. Exclusion criteria:

(1) Patients with acute cerebral infarction with high signal intensity

lesions on DWI and diameter >20mm, history of large-area

cerebral infarction due to large vessel occlusion, or conditions that

hindered the diagnosis of CSVD; (2) Patients with severe stenosis

and occlusion of large vessels in the head or neck on computed

tomography angiography or digital subtraction angiography; (3)

Patients with acute cerebral hemorrhage, acute subarachnoid

hemorrhage, or history of cerebrovascular malformation or

aneurysmal subarachnoid hemorrhage; (4) Patients with definite

non-vascular white matter lesions, such as multiple sclerosis, adult

white matter dysplasia, metabolic encephalopathy, etc.; (5) Patients

who suffered from severe organic diseases, such as severe liver

and kidney dysfunction, malignant tumors (especially chronic

lymphocytic leukemia), etc.; (6) Patients with recent infections

within the past 2 weeks; (7) Patients with incomplete clinical

data. This study was approved by the Ethics Committee of the

First Hospital of Quanzhou (approval No. [2020] 168). Informed

consent was obtained from all participants, ensuring that their

private data remained anonymous and confidential.

2.2 Clinical data collection

Demographic and clinical characteristics of patients were

collected upon admission, including blood routine results, blood

biochemistry results, hypertension, diabetes mellitus, stroke

history, coronary heart disease, dyslipidemia, current smoking

history, current alcohol consumption, medication use (antiplatelets

and statins), etc.

2.3 MRI and image analysis

Patients received plain MRI scans, including T1WI, T2WI,

FLAIR, DWI, and SWI sequences, using a 3.0T MRI scanner

(Signa, GE Healthcare, Milwaukee, WI, USA), equipped with an 8-

channel head-neck combined coil. To minimize motion artifacts,

a foam pillow secured the head of each participant within the

coil. The imaging parameters for each sequence were as follows:

T1WI, repetition time (TR) of 6.67ms, echo time (TE) of 2.99ms,

flip angle (FA) of 8.0◦, field of view (FOV) of 240 × 240 mm2,

slice thickness of 1.0mm, slice gap of 0.5mm, matrix of 240

× 240, and number of excitations (NEX) of 1; T2WI, TR of

4000ms, TE of 115.76ms, FA of 90.0◦, FOV of 230 × 230 mm2,

slice thickness of 5.0mm, slice gap of 6.0mm, and NEX of 1;

FLAIR, TR of 4800ms, TE of 340ms, FA of 90.0◦, FOV of 250 ×

250 mm2, slice thickness of 2.0mm, slice gap of 1.0mm, matrix

of 224 × 223, and NEX of 1; DWI, TR of 2688.11ms, TE of

74.90ms, FA of 90.0◦, FOV of 230 × 230 mm2, slice thickness

of 5.0mm, slice gap of 6.0mm, matrix of 128 × 114, and NEX

of 1; and, SWI, TR of 31ms, FA of 17.0◦, FOV of 230 × 230

mm2, slice thickness of 15.0mm, slice gap of 1.0mm, and NEX

of 1.

Two expert neurologists, each with 10 years of clinical

experience, independently analyzed the cranial MRI scans of the

patients, blinded to baseline data. In cases of disagreement, the

two neurologists discussed until reaching a consensus or consulted

a third experienced radiologist, who was also blinded to baseline

data. The evaluation of WMH, lacune, PVS, and CMB was

conducted following the standards for reporting vascular changes

on neuroimaging-2 (3). WMH was defined if there was high signal

intensity on T2WI or FLAIR and iso- or hypo-intensity on T1WI.

The severity grading of WMH was primarily based on the Fazekas

scale (17), with separate assessments for periventricular WMH
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(PWMH) and deep WMH (DWMH). The study population was

categorized into mild (0–2 points) and moderate to severe (3–6

points) groups based on the severity of the total burden of WMH,

calculated as the cumulative score of PWMH and DWMH on a

scale of 0–6 points. Subsequently, the WMH severity at different

locations was assessed, with PWMH and DWMH classified into

mild (0–1 point) and moderate to severe (2–3 points) categories.

PVS showed a resemblance to vascular tracts with well-defined

borders, appearing linear on axial sections and oval or round on

longitudinal sections, with high signal intensity on T2WI and low

signal intensity on T1WI. PVS generally have a diameter of<3mm,

and differentiation from lacunar infarction and WMH is necessary

when their diameter is >3mm. FLAIR sequences are helpful in

this distinction. We also examined basal ganglia PVS (BG-PVS)

and centrum semiovale PVS (CSO-PVS), calculated the number

of PVS in one hemisphere at the most severely affected level in

various brain regions, and assigned grades according to specific

criteria (18): grade 0 for no PVS, grade 1 for ≤10 PVS, grade 2

for 11–20 PVS, grade 3 for 21–40 PVS, and grade 4 for >40 PVS.

Based on the PVS grades, the study cohort was divided into a mild

group (PVS≤ 10) and a moderate to severe group (PVS > 10) (19).

The quantification of PVS at various sites led to the classification

of PVS burden in the BG and CSO into mild (PVS ≤ 10) and

moderate to severe (PVS > 10) groups. Lacune was defined as

round or oval hyperintensities on T2WI sequences, with diameters

ranging from 3 to 15mm, predominantly found in subcortical,

thalamic, and basal ganglia regions. Their signal intensity was

similar to cerebrospinal fluid, showing hypointense on T1WI,

centrally hypointense on FLAIR sequences, and surrounded by

hyperintense rings. CMB was defined as rounded, hypodense

lesions with sizes of 2–10mm in SWI sequences. The total

CSVD score (0–4 points) was calculated based on the presence

of WMH, lacune, PVS, and CMB, with 1 point each for WMH

burden (PWMH 3 points and/or DWMH 2–3 points), presence

of lacune, moderate-to-severe BG-PVS (N > 10), and presence of

CMB (16).

2.4 Malnutrition risk evaluation

The GNRI score was calculated as [1.489 × serum albumin

(g/L) + 41.7 × current body weight (kg)/ideal body weight (kg)]

(10). If the current weight exceeded the ideal weight, the current

weight (kg)/ideal weight (kg) was set to 1. The ideal weight was

determined using the Lorentz formula (20), which was as follows:

for males, ideal weight= height (cm) – 100 – [(height cm – 150)/4];

and for females, ideal weight = height (cm) – 100 – [(height cm –

150)/2.5]. GNRI scores greater than 98, 92 to 98, 82 to 91, and less

than 82 were considered indicative of normal, mild, moderate, and

severe malnutrition risk, respectively.

The CONUT evaluated the risk of malnutrition score based

on serum albumin, total cholesterol, and total lymphocyte count

(11). Scores ranging from 0 to 1, 2 to 4, 5 to 8, and 9 to 12 were

categorized as representing normal, mild, moderate, and severe

malnutrition risk levels. The moderate and severe malnutrition

status was combined into moderate-severe malnutrition according

to the previous description (21).

2.5 Statistical analyses

Statistical analyses were conducted using R version 4.4.2

(R Foundation for Statistical Computing, Vienna, Austria) and

GraphPad Prism 8 (GraphPad Software Inc., San Diego, CA,

USA). The categorical variables are presented as percentages and

compared with χ
2 test or Fisher’s exact test. The continuous

variables are expressed as medians with interquartile ranges or

means with standard deviations and analyzed with the Mann–

Whitney U test or Student’s t-test. Univariate and multivariate

logistic regression analyses were utilized to identify factors

influencing CSVD and its imaging markers. In multivariate

logistic regression model 1, the age and sex were adjusted. The

multivariate logistic regression model 2 was based on model

1 and the factors of systolic blood pressure, body mass index

(BMI), history of stroke, hypertension, diabetes, coronary heart

disease, dyslipidemia, smoking, alcohol consumption, laboratory

parameters (neutrophil-to-lymphocyte ratio, hemoglobin A1c,

homocysteine, and estimated glomerular filtration rate), and

medication use (antiplatelets and statins) were adjusted.

Additionally, subgroup analyses and interaction tests were

conducted to assess the association between GNRI, CONUT,

and CSVD across different subgroups. All statistical tests were

two-tailed, and significance was considered for P < 0.05.

3 Results

3.1 Baseline characteristics

Initially, 1,119 participants were enrolled in the study. After

excluding individuals with cerebral infarction, severe stenosis

and occlusion of large vessels in the head or neck, cerebral

hemorrhage, missing laboratory tests or clinical data, recent

infection history within 2 weeks, and cancer, a total of 806 patients

were included for analysis (Figure 1). Their baseline characteristics

are presented in Supplementary Table 1. Based on the total CSVD

score, the patients were grouped into the non-CSVD group

(total CSVD score = 0) (n = 450) and the CSVD group (total

CSVD score ≥ 1) (n = 356). Patients in the CSVD group were

older, predominantly male, and exhibited a higher prevalence of

hypertension, diabetes, coronary heart disease, history of stroke,

dyslipidemia, and current smoking (P < 0.05). Furthermore, they

demonstrated elevated levels of systolic blood pressure, diastolic

blood pressure, neutrophil count, neutrophil-to-lymphocyte ratio,

hemoglobin A1c, and homocysteine (P < 0.05). Additionally,

a larger proportion of patients in the CSVD were prescribed

medications compared to those in the non-CSVD group (P< 0.05).

Notably, the CSVD group also presented higher rates of mild and

moderate-to-severe malnutrition risk, as assessed by GNRI and

CONUT scores, than the non-CSVD group (P < 0.05).

3.2 Malnutrition risk according to GNRI and
CONUT scores

The GNRI and CONUT were used to assess the risk of

malnutrition. A total of 503 (62.41%) patients were at risk of
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FIGURE 1

Flow chart of patient enrollment.

malnutrition. Among them, 347 (43.05%) cases were identified by

GNRI, 356 (44.17%) cases by CONUT, and 200 (24.81%) patients

by both GNRI and CONUT (Figure 2A). A total of 133 (16.50%)

patients were at risk of moderate to severe malnutrition. Of them,

109 (13.52%) and 64 (7.94%) patients were at moderate to severe

risk of malnutrition according to GNRI and CONUT scores,

respectively (Figure 2B). Notably, as assessed by both GNRI and

CONUT scores, 40 (4.96%) patients were at moderate to severe risk

of malnutrition.

Based on the GNRI score, patients with malnutrition risk,

when compared to those without malnutrition risk, were older and

had lower BMI, lymphocyte count, total cholesterol, triglycerides,

low-density lipoprotein, high-density lipoprotein, albumin, and

estimated glomerular filtration rate (Supplementary Table 2).

Moreover, this group consisted of more males, had higher

proportions of patients with hypertension, history of stroke, and

smokers, as well as higher neutrophil-to-lymphocyte ratio, and

showed higher grades for total WMH, PWMH, DWMH, total

PVS, BG-PVS, CSO-PVS, and more lacune and CMB. Similarly,

patients at risk of malnutrition by CONUT were older and

demonstrated higher systolic blood pressure, but lower BMI,

lymphocyte count, total cholesterol, triglycerides, low-density

lipoprotein, high-density lipoprotein, albumin, and estimated

glomerular filtration rate. Additionally, they were more likely

to be male and there were higher proportions of patients with

hypertension, diabetes, coronary heart disease, history of stroke,

and medicine use. This group also displayed a higher neutrophil-

to-lymphocyte ratio and higher grades for total WMH, PWMH,

DWMH, total PVS, BG-PVS, CSO-PVS, and more lacune and

CMB (Supplementary Table 2).

The analysis based on BMI classification showed that among

patients with normal or low BMI, 23.1% had a mild risk of

malnutrition and 13.0% had a moderate to severe risk according

to the GNRI score, while based on the CONUT score, 26.9% had

a mild risk and 6.8% had a moderate to severe risk (Figure 3). In

contrast, among overweight or obese patients, 6.5% were at risk for

mild malnutrition and 0.5% for moderate to severe malnutrition

based on the GNRI score, whereas based on the CONUT score,

9.3% were at risk for mild malnutrition and 1.1% for moderate to

severe malnutrition.

3.3 Association between malnutrition risk
and CSVD

Univariate analysis revealed significant associations between

both mild and moderate-to-severe malnutrition risk, assessed by

either the GNRI or the CONUT, and the presence of CSVD

along with its corresponding imaging markers. The association

between malnutrition risk, as defined by GNRI scores, and the

presence of CSVD and its imaging markers remained significant

after adjusting for age and sex (Model 1) (Figure 4). Similarly, using

the CONUT score, the mild and moderate-to-severe malnutrition

risk demonstrated a significant association with the presence of

CSVD and its imaging markers, except for mild malnutrition

risk, which was not associated with BG-PVS (Model 1) (Figure 5).

Following further adjustments for factors not included in the

scoring system or other clinical considerations (Model 2), the

association between malnutrition risk, as determined by the GNRI

score, and the presence of CSVD and its imaging markers remained

significant (Figure 4). However, no significant associations were

identified between malnutrition risk and DWMH, moderate to

severe malnutrition risk and lacunes, or mild malnutrition risk and

the presence of CMB, as defined by the CONUT score (Model 2)

(Figure 5).

3.4 Subgroup and interaction analyses of
the relationship between GNRI and CONUT
scores and the presence of CSVD

To determine whether the impact of malnutrition risk was

affected by other factors, we performed subgroup and interaction

analyses on the relationship between the GNRI and CONUT scores

and the presence of CSVD. As shown in Figure 6A, significant

associations were observed between the GNRI score and the

presence of CSVD across all subgroups (P < 0.05). However,

there was no significant association between the CONUT score

and CSVD in the subgroups with current drinking, hypertension,

dyslipidemia, and medication use (antiplatelets and statins)

(Figure 6B). Notably, there were significant associations of GNRI

and CONUT scores with CSVD in the age subgroups of ≥60 years

and <60 years (Figures 6A, B). After adjusting for confounding

variables, an interaction effect betweenGNRI score and smoking on

the presence of CSVD was observed (Figure 6A). However, no such

interaction was found between the CONUT score and the presence

of CSVD (Figure 6B).

4 Discussion

In this study, we evaluated the risk of malnutrition upon

admission in patients from the neurology department by
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FIGURE 2

Venn diagram of malnutrition risk assessed by GNRI and CONUT. (A) Malnutrition risk as identified by the GNRI and CONUT. (B) Moderate to severe

malnutrition risk as identified by the GNRI and CONUT scores.

FIGURE 3

Prevalence of malnutrition in di�erent subgroups of patients according to BMI. Based on body mass index (BMI), patients were divided into

underweight (<18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), and obese (≥30 kg/m2).

utilizing objective malnutrition scores, namely the GNRI and

CONUT. Additionally, we explored the relationship between

malnutrition risk and CSVD and its imaging markers. Our results

indicated that individuals at risk of malnutrition exhibited a

more severe CSVD compared to those not at risk. Moreover,

an increased risk of malnutrition correlated with increased

severity of imaging markers of CSVD, even after adjusting for

confounding variables.

In the study cohort, 43.05% of participants were identified as

being at risk of malnutrition based on the GNRI definition, while

44.17% were classified as at risk by the CONUT definition. This

indicates a marginal difference in assessing malnutrition between

GNRI and CONUT. Interestingly, even in individuals classified

as overweight or obese, 7.0% scored as malnourished according

to the GNRI, and 10.4% according to the CONUT criteria.

These results suggest a potential risk of malnutrition among

patients with elevated BMI, challenging common perceptions.

This phenomenon is recognized as the double burden of

malnutrition (22). Given the rapid global nutrition transition,

an increasing number of individuals are experiencing diverse

forms of malnutrition throughout their lives, bearing the dual

burden directly. Malnutrition and overweight exhibit intricate

physiological connections and interactions (23), underscoring the

importance of addressing malnutrition concerns in overweight or

obese patients.

There are still few studies on the association between

malnutrition risk or malnutrition and CSVD, and only a small

number of studies on WMH have been reported (24, 25). In

this study, we found that malnutrition risk based on GNRI and

CONUT assessment was associated with CSVD and its common

imaging markers, suggesting that malnutrition may be a potential

risk factor for CSVD. However, the mechanisms underlying

this association remain unclear. We speculate several possible

causes. First, malnutrition may be induced by inflammation

and may trigger inflammation (26, 27). Inflammation leads to

decreased appetite and increased muscle and lipolysis, exacerbating

malnutrition by upregulating the expression of pro-inflammatory

factors such as tumor necrosis factor-α, monocyte chemoattractant

protein-1, and IL-6 (28, 29). Notably, the rapid turnover of

immune cells also requires nutrient supply (28), and malnutrition

adversely affects both innate and adaptive immunity (30, 31),

thereby increasing susceptibility to infections. Second, altered

nutritional status has also been associated with increased oxidative

stress (27, 32). Malnutrition increases levels of hydroxynonenal

and malondialdehyde (33), which serve as circulating markers

of oxidative stress that can lead to structural protein changes,

loss of enzyme activity, DNA damage, and apoptosis (34–36).

Oxidative stress is negatively correlated with nutritional status in

elderly populations (37) and contributes to vascular endothelial

injury and dysfunction (38, 39). Furthermore, oxidative stress
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FIGURE 4

Forest plots for the association between malnutrition risk, as assessed by GNRI, and CSVD along with its common imaging markers. Two

multivariable logistic regression models were constructed. Model 1: the covariates of age and sex were adjusted. Model 2: The following covariates

were adjusted: age, sex, hypertension, diabetes, coronary heart disease, history of stroke, dyslipidemia, smoking, drinking, body mass index, systolic

blood pressure, neutrophil-to-lymphocyte ratio, hemoglobinA1c, homocysteine, estimated glomerular filtration rate, and medication use

(antiplatelets and statins). GNRI, geriatric nutritional risk index; CSVD, cerebral small vessel disease; OR, odds ratio; CI, confidence interval; WMH,

white matter hyperintensity; DWMH, deep white matter hyperintensity; PWMH, periventricular white matter hyperintensity; PVS, perivascular spaces;

BG-PVS, basal ganglia perivascular spaces; CSO-PVS, centrum semiovale perivascular spaces; CMB, cerebral microbleed.

and inflammation are known to interact; circulating oxidative

metabolites can activate inflammatory signaling pathways, while

inflammation can promote oxidative stress (40). Thus, there may

be a complex interaction between malnutrition, inflammation,

and oxidative stress. The pathogenesis of CSVD involves both

inflammation and oxidative stress (39, 41), suggesting that

malnutrition may exacerbate the development of CSVD through

these mechanisms. Third, both GNRI and CONUT scores include

serum albumin as an indicator. Albumin is an important protein

affecting the physiological function of the circulatory system and

has physiological characteristics such as anti-inflammation, anti-

oxidation, and anti-thrombosis (42). Furthermore, albumin levels

are also closely related to cardiovascular and cerebrovascular

diseases (43, 44). Albumin plays a vital role in maintaining

capillary membrane stability and fluid balance (45) and provides

protective effects against endothelial dysfunction caused by

inflammation and oxidative stress (46). Given that endothelial

dysfunction in small vessels is a significant factor in CSVD

pathogenesis (47), this may further elucidate the association

between malnutrition risk, as assessed by the GNRI and CONUT,

and CSVD.

Our further analysis showed that CONUT-defined

malnutrition risk was associated with PWMH but not with

DWMH. In contrast, GNRI-defined malnutrition risk was

associated with both PWMH and DWMH. We believe

this difference is mainly due to the inclusion of different

indicators in the two scoring systems. Specifically, the

lymphocyte and cholesterol measures are included in the

CONUT score. Inflammation is associated with PWMH

but not DWMH (41), while lymphocytes as inflammatory

markers may contribute to this difference. PWMH is more

affected by hypotension, hypoperfusion, and atrophy (48),

whereas DWMH is more susceptible to arteriolosclerosis

(49). Cholesterol plays a crucial role in the formation and

maintenance of new synapses in the central nervous system

(50) and helps buffer brain tissue against hypoxia following

cerebral ischemia (51). Therefore, low cholesterol may

mitigate DWMH and aggravate PWMH. The association
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FIGURE 5

Forest plots for the association between malnutrition risk, as assessed by CONUT, and CSVD along its common imaging markers. Two multivariable

logistic regression models were constructed. Model 1: the covariates of age and sex were adjusted. Model 2: The following covariates were adjusted:

age, sex, hypertension, diabetes, coronary heart disease, history of stroke, dyslipidemia, smoking, drinking, body mass index, systolic blood pressure,

neutrophil-to-lymphocyte ratio, hemoglobinA1c, homocysteine, estimated glomerular filtration rate, and medication use (antiplatelets and statins).

CONUT, controlling nutritional status; CSVD, cerebral small vessel disease; OR, odds ratio; CI, confidence interval; WMH, white matter hyperintensity;

DWMH, deep white matter hyperintensity; PWMH, periventricular white matter hyperintensity; PVS, perivascular spaces; BG-PVS, basal ganglia

perivascular spaces; CSO-PVS, centrum semiovale perivascular spaces; CMB, cerebral microbleed.

between higher CONUT scores and lower cholesterol levels

may explain why CONUT is associated with PWMH rather

than DWMH.

The association of malnutrition or malnutrition risk with

lacune, PVS, and CMB has not been previously reported. Here,

we found that the risk of malnutrition was significantly associated

with lacune, PVS (including BG-PVS and CSO-PVS), and CMB.

The underlying mechanisms may be related to the aforementioned

factors of inflammation, oxidative stress, and endothelial cell

dysfunction. Notably, BG-PVS and CMB were only associated

with the risk of moderate-severe malnutrition as defined by

CONUT, but not with the risk of mild malnutrition. This

may suggest that a higher degree of malnutrition is required

to exhibit an association with these imaging markers. Lacune,

however, was associated with mild malnutrition risk as defined

by CONUT, but not with moderate-severe malnutrition risk.

This may be due to the inclusion of cholesterol in the CONUT

score. Most lacunes are attributed to small subcortical infarcts

(i.e., lacunar ischemic strokes) (52), and high cholesterol is

associated with an increased risk of such strokes (53). Higher

CONUT scores, which reflect lower cholesterol levels, may

influence the association of other indicators within CONUT,

potentially weakening the relationship between moderate to

severe malnutrition risk and lacunes. Nonetheless, this finding

should be interpreted cautiously, potentially due to sample size

limitations. Additionally, in the subgroup analysis, we identified

an interaction between the GNRI score and smoking on the

presence of CSVD. Consistently, it has been proposed that nicotine

in tobacco could potentially decrease food consumption (54),

which might exacerbate malnutrition. No significant association

between CONUT and CSVD was observed in the subgroup with

current drinking, which may be due to the small sample size

and requires further study validation. Hypertension, particularly

in its chronic and severe forms, plays a critical role in

cerebrovascular dynamics (55, 56). In this study, the continuous

variable of systolic blood pressure was adjusted as a confounding

variable alongside the categorical variable for hypertension

(presence/absence). We found that there was a lack of association
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FIGURE 6

Subgroup analyses of the relationship between GNRI, CONUT, and the presence of CSVD. (A) GNRI score and the presence of CSVD. (B) CONUT

score and the presence of CSVD. In each subgroup analysis, the following factors were adjusted, including age, sex, hypertension, diabetes, coronary

heart disease, history of stroke, dyslipidemia, smoking, drinking, body mass index, systolic blood pressure, neutrophil-to-lymphocyte ratio,

hemoglobinA1c, homocysteine, estimated glomerular filtration rate, and medication use (antiplatelets and statins). CSVD, cerebral small vessel

disease; GNRI, geriatric nutritional risk index; CONUT, controlling nutritional status; OR, odds ratio; CI, confidence interval.

between CONUT and CSVD specifically in patients with

hypertension and dyslipidemia. This may be because hypertensive

patients often have dyslipidemia (57), and high cholesterol

decreases the CONUT score. Additionally, there are conflicting

relationships between medication use, including combination

therapies involving multiple drugs, and malnutrition (58). Some

scholars have suggested avoiding antiplatelet drugs in occult CSVD

and do not support the use of lipid-lowering drugs (47), and

there are also views that antiplatelet drugs and lipid-lowering

drugs have contradictory effects on WMH (59). In this study,

we found that CONUT lacked an association with CSVD in the

subgroup taking antiplatelets and statins, indicating that these

drugs may offer some protective effects against malnutrition in

CSVD. However, this was not observed in the malnutrition risk

defined by GNRI scores.

Our study has several limitations. Firstly, due to the

unavailability of necessary variables, we were unable to assess

the malnutrition status using the ESPEN and GLIM diagnostic

criteria and consequently could not compare them with the

GNRI and CONUT scores. Secondly, other common imaging

markers of CSVD (e.g., recent subcortical small infarcts) were not

analyzed in this study. Thirdly, due to the retrospective nature

of our study, we were unable to collect data on participants’

income levels and other socioeconomic indicators, which limits our

ability to fully assess how these factors may have influenced the

observed relationships between malnutrition and CSVD. Future

studies should aim to incorporate comprehensive socioeconomic

assessments to better delineate the role of economic and social

factors in the prevalence of malnutrition, thus enhancing the

understanding of its impact on cognitive and vascular health.

Fourthly, certain classes of antihypertensive drugs exhibit adverse

patterns of cerebral blood flow regulation (56). However, due

to limitations in our data collection process, specific classes

of antihypertensive medications used by participants were not

systematically recorded. Further studies are needed to understand

their potential effects on CSVD. Lastly, this study is a single-

center, retrospective data analysis, and thus a causal relationship

cannot be established. Prospective studies are needed to confirm

our findings.

This study suggests an association between malnutrition

risk (measured by objective nutritional indices GNRI and

CONUT) and CSVD along with its common imaging markers.

Our findings imply that nutritional interventions may prevent

the progression of CSVD. Moreover, our findings underscore

the potential for using imaging markers of CSVD as indicators

for assessing malnutrition risk. As such, routine screening for

malnutrition should be considered in clinical settings where

patients present with CSVD. We propose that healthcare

providers implement nutritional assessments and develop

targeted intervention strategies, such as dietary modification

or nutritional supplements, to address identified risks.

Future research should focus on evaluating the effectiveness

of these interventions on clinical outcomes for patients

with CSVD.
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