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Background: Accurately predicting the short-term in-hospital mortality risk for 
patients with stroke and TBI (Traumatic Brain Injury) is crucial for improving the 
quality of emergency medical care.

Method: This study analyzed data from 2,125 emergency admission patients 
with stroke and traumatic brain injury at two Grade a hospitals in China from 
January 2021 to March 2024. LASSO regression was used for feature selection, 
and the predictive performance of logistic regression was compared with six 
machine learning algorithms. A 70:30 ratio was applied for cross-validation, and 
confidence intervals were calculated using the bootstrap method. Temporal 
validation was performed on the best-performing model. SHAP values were 
employed to assess variable importance.

Results: The random forest algorithm excelled in predicting in-hospital 3-day 
mortality, achieving an AUC of 0.978 (95% CI: 0.966–0.986). Time series 
validation demonstrated the model’s strong generalization capability, with an 
AUC of 0.975 (95% CI: 0.963–0.986). Key predictive factors in the final model 
included metabolic syndrome, NEWS2 score, Glasgow Coma Scale (GCS), 
whether surgery was performed, bowel movement status, potassium level (K), 
aspartate transaminase (AST) level, and temporal factors. SHAP value analysis 
further confirmed the significant contributions of these variables to the predictive 
outcomes. The random forest model developed in this study demonstrates 
good accuracy in predicting short-term in-hospital mortality rates for stroke and 
traumatic brain injury patients. The model integrates emergency scores, clinical 
signs, and key biochemical indicators, providing a comprehensive perspective 
for risk assessment. This approach, which incorporates emergency data, holds 
promise for assisting decision-making in clinical practice, thereby improving 
patient outcomes.
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Introduction

Stroke and TBI are major causes of death and disability 
worldwide, placing a significant burden on public health and 
healthcare systems (1). The first 72 h after hospital admission 
represent a critical window for patients with stroke and traumatic 
brain injury, during which the risk of mortality is particularly high 
due to complications such as cerebral edema, hemorrhagic 
transformation, and secondary brain injury (2). Accurate prediction 
of mortality risk within this crucial period is vital for several 
reasons: It enables early identification of high-risk patients who 
may require more intensive monitoring and aggressive intervention; 
It facilitates timely medical decision-making, including the need for 
surgical intervention or admission to intensive care units; It allows 
for more efficient allocation of medical resources and specialized 
care; and It provides objective evidence for early communication 
with families regarding prognosis and treatment options (3). Studies 
have shown that early risk stratification and subsequent targeted 
interventions can significantly improve patient outcomes and 
potentially reduce mortality rates. Moreover, accurate prediction of 
short-term mortality risk helps healthcare providers implement 
preventive measures for specific complications and optimize 
treatment protocols, ultimately contributing to improved quality of 
emergency care. Accurately predicting the short-term mortality risk 
for these patients is crucial for optimizing treatment strategies, 
resource allocation, and improving patient outcomes (4). In recent 
years, the application of machine learning in the medical field has 
become increasingly widespread, particularly showing significant 
potential in the development of predictive models (5). Multiple 
studies indicate that machine learning algorithms outperform 
traditional statistical methods in predicting outcomes for stroke 
and trauma patients (6). Several machine learning models have 
been developed for predicting outcomes in stroke and TBI cases. 
For stroke, existing models primarily focus on predicting long-term 
functional outcomes (measured scores at 3–6 months), mortality 
beyond 30 days, and rehabilitation potential. These models typically 
utilize clinical variables, imaging features, and demographic data 
(7). Regarding TBI -related research, machine learning models have 
been designed to predict various outcomes, including Glasgow 
Outcome Scale (GOS) scores, the need for intensive care, and long-
term survival rates. These models often incorporate neurological 
examination findings, CT characteristics, and biochemical markers. 
However, these existing models predominantly target long-term 
outcomes or specific complications, rather than acute phase 
mortality prediction. Furthermore, most models focus exclusively 
on either stroke or TBI, lacking the capability to address both 
conditions within a single predictive framework. However, most 
existing models primarily focus on long-term prognoses, with 
relatively few studies addressing the prediction of mortality risk 
during the acute phase (such as within the first 3 days of 
hospitalization) (8). Emergency clinical data, including vital signs, 
laboratory test results, and scoring systems like NEWS2 and GCS, 
have proven to be effective indicators for predicting patients’ short-
term prognosis (9, 10). Machine learning models that incorporate 
these data have the potential to offer more accurate and timely risk 
assessments (10, 11). Recent research shows that ensemble learning 
methods, like Random Forests and XGBoost, excel in managing 
complex medical data (12, 13). Additionally, using interpretative 

techniques such as SHAP (shapley additive explanations) has 
clarified the decision-making processes of complex models, thus 
improving clinical interpretability (14).

Currently, there is a lack of comprehensive predictive models 
specifically for in-hospital mortality within 3 days for stroke and 
trauma patients (15). Developing such a model could fill gaps in 
existing research and provide valuable support tools for emergency 
medical decision-making (16).

Methods

Research population

This retrospective study included 2,125 patients who visited the 
emergency department of two top-tier hospitals in China from 
January 2021 to March 2024, among whom 937 were stroke patients 
and 1,188 were brain injury patients. Inclusion criteria comprised: 
age ≥ 18 years, emergency department visit, confirmed diagnosis of 
stroke or brain injury, and complete baseline admission data and 
biochemical examination results. Exclusion criteria included: 
age < 18 years, non-emergency visit, already in a terminal state upon 
admission, incomplete data, transfer to another hospital within 48 h, 
or refusal to allow data to be used for research.

Baseline data

Gather baseline data from the electronic medical record system, 
including demographic details (age, gender), lifestyle habits (smoking, 
alcohol use), clinical characteristics (bowel habits, sleep patterns, 
metabolic syndrome, admission time, surgery status), laboratory test 
results (blood urea nitrogen, creatinine, albumin, potassium, total 
bilirubin, aspartate aminotransferase), and clinical scores (NEWS2 
score, Glasgow Coma Scale—GCS). The primary outcome is 
in-hospital mortality within 3 days of patient admission (see Table 1 
for baseline information).

Feature selection

To reduce multicollinearity and select the most relevant predictive 
variables, we used LASSO (Least Absolute Shrinkage and Selection 
Operator) regression for feature selection (see Supplementary Figure 1). 
LASSO regression introduces an L1 regularization term, which can 
shrink the coefficients of unimportant features to zero, thus achieving 
feature selection. We utilized cross-validation to determine the optimal 
regularization parameter, balancing the model’s complexity and 
predictive performance. In this study, we initially included 17 variables 
as the preselected factors for the model. Through LASSO regression 
analysis, we ultimately selected 8 independent variables for inclusion 
in the model. These variables include instances of incontinence 
(defecation), metabolic syndrome (Metabolic Syndrome), time from 
onset to admission (time), serum potassium levels (k), aspartate 
aminotransferase levels (ast), NEWS2 score (news2), Glasgow Coma 
Scale score (gcs), and surgical status (surgery). This approach not only 
effectively reduced the number of features, enhancing the model’s 
interpretability and generalizability but also lowered the risk of 
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overfitting. The refined set of selected variables represents the most 
influential factors on the predictive outcomes, providing more concise 
and effective input features for subsequent machine learning models. 
These chosen predictive factors encompass multiple aspects of the 
patients’ physiological status, clinical assessments, biochemical 
indicators, and therapeutic interventions.

Model selection in machine learning

This study evaluates the performance of seven machine learning 
models: logistic regression (serving as the baseline model), support 
vector machine (SVM), Random forest, XGBoost, LightGBM, Neural 
networks, and Bayesian models. These models include both linear and 
nonlinear methods, along with various ensemble learning algorithms, 
to thoroughly assess the effectiveness of different machine learning 
approaches in predicting short-term mortality risk in patients with 
stroke and traumatic brain injury.

Model evaluation methods

We adopt multiple approaches to comprehensively assess model 
performance. First, we utilize 10-fold cross-validation to evaluate 
the model’s performance across different data subsets, and 
we  calculate the 95% confidence interval using the bootstrap 
method (repeated 1,000 times) to ensure result robustness. 
Evaluation metrics include Area Under the Curve (AUC), Recall, 

accuracy, F1 Score, and Precision. These metrics provide a 
comprehensive reflection of the model’s classification performance 
and predictive accuracy. To enhance the model’s interpretability, 
we employ SHAP (Shapley Additive explanations) value analysis to 
assess variable importance. SHAP values can explain the 
contribution of each feature to individual predictions, helping to 
understand the model’s decision-making process and identify key 
predictive factors. To evaluate the model’s generalization capability 
and temporal stability, we  also conduct time series validation. 
Specifically, we divide the dataset into training and testing sets in 
chronological order, with a ratio of 7:3. This means we use the first 
70% of the data (in temporal order) as the training set and the last 
30% (approximately corresponding to the last year of data) as an 
independent testing set. This approach simulates the model’s 
performance in real-world applications, where historical data is 
used to predict future outcomes, thus better assessing the model’s 
predictive ability on new data. By combining cross-validation, 
bootstrap methods, SHAP value analysis, and time series validation, 
we can comprehensively evaluate the model’s performance, stability, 
interpretability, and generalization capability.

Statistical methods

All statistical analyses were conducted using R software 
(version 4.3.2). Continuous variables are presented as 
mean ± standard deviation or median (interquartile range), 
depending on their distribution characteristics; categorical 

TABLE 1 Neurological signs upon emergency admission for patients with cerebrovascular accident (stroke) and traumatic brain injury.

Characteristic Survivors (n = 1709) Non-survivors (n = 416) P-value

Male (%) 1,076 (63.0%) 273 (65.6%) 0.339

Age, years, mean (SD) 61.4 (12.1) 60(21.9) 0.76

Stroke (%) 781(83.4%) 156(16.6%) <0.001

TBI (%) 928(78.1%) 260(21.9%) <0.01

Current smoker, n (%) 448 (26.2%) 120 (28.8%) 0.305

Alcohol consumption, n (%) 459 (26.9%) 123 (29.6%) 0.294

Drinking alcohol (%) 505 (27.2) 125 (29.7) 0.31

Normal defecation, n (%) 1,481 (86.7%) 281 (67.5%) <0.001

Metabolic syndrome, n (%) 914 (53.5%) 243 (58.4%) 0.079

Surgery, n (%) 288 (16.9%) 98 (23.6%) 0.0019

Time, hours, mean (SD) 4.9 (5.0) 4.5 (4.6) 0.103

Bun, mmol/L, mean (SD) 5.8 (3.0) 7.5 (4.2) <0.001

Creatinine, μmol/L, mean (SD) 69.5 (35.3) 89.1 (70.2)

Albumin, g/L, mean (SD) 38.5 (4.5) 36.2 (5.7) <0.01

k, mmol/L, mean (SD) 3.9 (0.4) 3.8 (0.5) <0.01

Total, g/L, mean (SD) 66.9 (6.9) 64.8 (9.7) <0.01

Ast, U/L, mean (SD) 20.4 (10.8) 38.7 (25.3) <0.01

NEWS2 score, mean (SD) 2.5 (2.3) 8.3 (2.4) <0.01

Glasgow Coma Scale score, mean (SD) 12.9 (3.2) 6.4 (2.5) <0.01

Fecal and/or urinary incontinence refers to the inability to control bowel movements and/or urination. Time indicates the time of hospital admission. Metabolic syndrome denotes a cluster of 
conditions, including hyperglycemia, dyslipidemia, and hypertension. BUN stands for Blood Urea Nitrogen. Creatinine refers to serum creatinine levels. Albumin indicates serum albumin 
concentration. K represents serum potassium levels. AST (Aspartate Aminotransferase), also known as serum glutamic oxaloacetic transaminase (SGOT), is a liver enzyme. Total protein refers 
to the total amount of protein in the serum. Surgical intervention indicates whether a patient underwent any surgical procedures.
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variables are presented as frequency (percentage). Group 
comparisons were performed using t-tests, Mann–Whitney U 
tests, chi-square tests, or Fisher’s exact tests, as appropriate for the 
data type. To visually illustrate the relationship between baseline 
data and in-hospital mortality, we constructed a forest plot (see 
Figure 1). This forest plot displays the impact of various baseline 
characteristics on in-hospital mortality, including odds ratios 
(OR) and their 95% confidence intervals, facilitating the rapid 
identification of potential risk factors, The forest plot displays the 
relative differences between survival and early mortality groups 
using percentage changes. The wide range of the x-axis (−2,000 to 
250%) was necessary to accurately represent the substantial 
magnitude of differences in continuous variables between groups. 
This scaling allows for comprehensive visualization of both subtle 
and dramatic differences across all variables, though some may 
appear extreme due to the relative percentage calculation method. 
We employed LASSO regression for feature selection, with the 
regularization parameter determined via 10-fold cross-validation. 
The model performance evaluation metrics include AUC, 
sensitivity, specificity, accuracy, precision, and F1 score, which 
were obtained through 10-fold cross-validation and computed 
using the bootstrap method (1,000 iterations) to determine 95% 
confidence intervals. SHAP value analysis was conducted to 
evaluate variable importance. Temporal validation of the model 
utilized a 70:30 split of the dataset to assess its reliability. All 
statistical tests conducted were two-sided, with p < 0.05 
considered statistically significant.

Results

Baseline characteristics

This study included 2,125 patients, with 1,709  in the survival 
group and 416 in the early mortality group. There were no significant 
differences in gender and age between the groups. The proportion of 
patients with traumatic brain injury (TBI) was significantly higher in 
the early mortality group compared to the survival group (21.9% vs. 
78.1%, p < 0.012). Clinically, the incidence of urinary and fecal 
incontinence was significantly higher in the early mortality group 
(32.5% vs. 13.3%, p < 0.001), and the rate of surgical intervention was 
also greater (23.6% vs. 16.9%, p = 0.0019).

In terms of laboratory indicators, patients in the early mortality 
group had significantly higher levels of urea nitrogen (7.5 vs. 
5.8 mmol/L) and AST (38.7 vs. 20.4 U/L) compared to the survival 
group, while levels of albumin (36.2 vs. 38.5 g/L), potassium (3.8 vs. 
3.9 mmol/L), and total protein (64.8 vs. 66.9 g/L) were significantly 
lower in the early mortality group (all p < 0.01). Regarding scores, the 
NEWS2 score was significantly higher in the early mortality group (8.3 
vs. 2.5), while the GCS score was significantly lower (6.4 vs. 12.9, both 
p < 0.01). These results indicate that patients in the early mortality 
group had a more severe overall clinical status upon admission.

Our variable selection followed a systematic multi-stage process. 
Initially, univariate analyses were performed to identify potentially 
significant variables (as shown in Figure 1). Subsequently, LASSO 

FIGURE 1

Forest plot: differences in various characteristics between the deceased group and the surviving group among patients with stroke and traumatic brain 
injury.
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regression was employed for variable selection, followed by 
multivariate logistic regression to control for potential confounders. 
This stepwise approach explains why some variables (such as 
Metabolic Syndrome) show different significance levels across various 
analyses, as their statistical importance was reassessed at each stage 
while accounting for inter-variable relationships.

Model development results

In predicting inpatient mortality rates for stroke and traumatic 
brain injury, we compared the performance of multiple machine 
learning models (see Table 2). The baseline model used logistic 
regression, which performed well, achieving an AUC of 0.973 (95% 
CI: 0.960–0.983), a recall of 0.963 (95% CI: 0.944–0.978), an 
accuracy of 0.928 (95% CI: 0.904–0.945), an F1 score of 0.955 (95% 
CI: 0.941–0.967), and a precision of 0.948 (95% CI: 0.926–0.965). 
However, the random forest model slightly outperformed logistic 
regression across all metrics and was ultimately selected as the 
optimal model. The random forest model achieved an AUC of 0.978 
(95% CI: 0.966–0.986), a recall of 0.965 (95% CI: 0.946–0.980), an 
accuracy of 0.936 (95% CI: 0.913–0.953), an F1 score of 0.960 (95% 
CI: 0.946–0.972), and a precision of 0.956 (95% CI: 0.933–0.971). 
Notably, other advanced machine learning models such as XGBoost, 
LightGBM, and neural networks also demonstrated excellent 
performance, comparable to logistic regression and random forest. 
This indicates that in this study, multiple machine learning methods 
can effectively predict inpatient mortality, but random forest has a 
slight edge in overall performance. Additionally, results from time 
series validation (AUC 0.975, 95% CI: 0.963–0.986) indicate that 
the model maintains good predictive capability on new data, 
confirming its generalization performance.

Model performance

To thoroughly assess the model’s performance, we developed a 
nomogram for the Logistic regression model (see Supplementary  
Figure  2) and plotted the ROC curve (see Figure  2), calibration 
curve (see Figure 3), and DCA (Decision Curve Analysis) curve (see 
Supplementary Figure 3). The nomogram provides clinicians with a 
practical visual tool for individualized survival prediction in stroke 

and TBI patients. To use this nomogram, clinicians first locate the 
patient’s values for each predictor on their respective axes: metabolic 
syndrome status (present/absent), surgical intervention (yes/no), 
AST level, GCS score, and NEWS2 score. Each value corresponds to 
a point score on the topmost “Points” scale. The sum of these points 
is then located on the “Total points” line, and a vertical line drawn 
down to the bottom scale reveals the predicted probability of 
in-hospital survival. For example, a patient with metabolic syndrome 
(20 points), no surgery (0 points), AST of 40 U/L (25 points), GCS 
score of 9 (35 points), and NEWS2 score of 6 (44 points) would have 
a total score of 124 points, corresponding to a predicted survival 
probability of 0.073. This rapid risk assessment can assist clinicians 
in several ways: (1) early identification of high-risk patients requiring 
intensive monitoring, (2) informed decision-making regarding 
intervention strategies, and (3) facilitating transparent risk 
communication with patients and their families. The nomogram’s 
straightforward visual format allows for quick risk stratification 
within 2–3 min, making it particularly valuable in time-sensitive 
clinical settings. These visualization tools help in intuitively 
understanding the model’s predictive ability, calibration level, and 
clinical decision-making value. In comparing performance metrics, 
the random forest model slightly outperformed the Logistic 
regression model. The AUC for the random forest model was 0.978 
(95% CI: 0.966–0.986), while the Logistic regression model was 
0.973 (95% CI: 0.960–0.983). In other metrics, the random forest 
model also showed excellent results, with a recall of 0.965 (95% CI: 
0.946–0.980), accuracy of 0.936 (95% CI: 0.913–0.953), F1 score of 
0.960 (95% CI: 0.946–0.972), and precision of 0.956 (95% CI: 0.933–
0.971). In contrast, while the Logistic regression model’s metrics 
were also high, they were slightly lower than those of the random 
forest model. These results indicate that, although both models 
demonstrated outstanding predictive capabilities, the random forest 
model had a slight edge in overall performance, providing more 
reliable support for clinical decision-making.

Model interpretation

To better understand the decision-making process of the random 
forest model, we examined feature importance and SHAP values. The 
feature importance analysis (Supplementary Figure 4) shows that the 
NEWS2 score is the most crucial predictor, followed by the GCS score 

TABLE 2 Performance comparison of machine learning models for predicting in-hospital mortality of stroke and traumatic brain injury.

Model AUC (95% CI) Recall(95% CI) Accuracy (95% 
CI)

F1Score(95% CI) Precision (95% 
CI)

Logistic 0.973(0.960–0.983) 0.963(0.944–0.978) 0.928(0.904–0.945) 0.955(0.941–0.967) 0.948(0.926–0.965)

SVM 0.956(0.930–0.964) 0.690(0.500–0.730) 0.900(0.890–0.910) 0.740(0.630–0.760) 0.800(0.730–0.840)

Random Forest 0.978(0.966–0.986) 0.965(0.946–0.980) 0.936(0.913–0.953) 0.960(0.946–0.972) 0.956(0.933–0.971)

XGBoost 0.974(0.960–0.983) 0.950(0.930–0.970) 0.928(0.904–0.945) 0.955(0.941–0.967) 0.960(0.940–0.970)

LightGBM 0.975(0.964–0.985) 0.953(0.932–0.971) 0.928(0.903–0.945) 0.955(0.940–0.967) 0.957(0.935–0.971)

Neural network 0.975(0.964–0.985) 0.953(0.932–0.971) 0.928(0.903–0.945) 0.955(0.940–0.967) 0.957(0.935–0.971)

Bayesian 0.974(0.960–0.983) 0.963(0.944–0.978) 0.928(0.904–0.945) 0.955(0.941–0.967) 0.948(0.926–0.965)

Time series validation 0.975(0.963–0.986) 0.803(0.751–0.855) 0.937(0.921–0.952) 0.825(0.799–0.850) 0.854(0.815–0.892)

CI, Confidence Interval.
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and AST levels. The SHAP value analysis (Figure 4) further highlights 
the specific impact of each feature on the predicted outcomes: higher 
NEWS2 scores and lower GCS scores are significantly linked to an 
increased risk of mortality, while elevated AST levels also show a 
similar trend. Although blood potassium levels, temporal factors, 
incontinence status, surgical status, and metabolic syndrome have 
relatively smaller impacts, they still provide valuable information for 
predictions. For instance, electrolyte disturbances, particularly 
potassium abnormalities, could be critical indicators in patients with 

cardiac dysfunction or those receiving certain medications. These 
findings not only enhance the model’s interpretability but also offer 
essential insights for clinical practice, emphasizing the importance of 
timely assessments of patients’ vital signs, neurological status, and 
liver function, which can help healthcare teams optimize patient 
management strategies and resource allocation. These findings not 
only enhance the model’s interpretability but also offer essential 
insights for clinical practice, emphasizing the importance of timely 
assessments of patients’ vital signs, neurological status, and liver 

FIGURE 2

Comparison of ROC curves: in-hospital survival and mortality rates for predicting stroke and traumatic brain injury—logistic regression vs. random 
forest model.

FIGURE 3

Comparison of calibration curves for predictive models of stroke and traumatic brain injury: logistic regression vs. random forest.
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function, which can help healthcare teams optimize patient 
management strategies and resource allocation.

Discussion

The main findings of this study underscore the robust performance 
of machine learning methods, particularly the random forest model, 
in predicting inpatient mortality rates for patients with stroke and 
traumatic brain injury. Our random forest model exhibited 
outstanding predictive capability, achieving an AUC of 0.978 (95% CI: 
0.966–0.986), significantly surpassing the traditional logistic 
regression model (AUC 0.973, 95% CI: 0.960–0.983). This result is not 
only statistically significant but also holds substantial clinical 
importance. The model performed remarkably well on other key 
metrics, including a high recall rate (0.965), accuracy (0.936), and 
precision (0.956), further confirming its reliability in identifying high-
risk patients. The excellent performance of these metrics aligns with 
previous findings in research on predicting traumatic brain injury 
(17). Feature importance analysis reveals that the NEWS2 score, GCS 
score, and AST levels are key factors in predicting mortality risk, 
aligning well with clinical experience while offering new insights. This 
finding highlights the significance of clinical scores and biochemical 
indicators in forecasting patient outcomes. Notably, our model 
effectively captures the complexity of disease progression by 
integrating diverse predictive factors, including physiological 
indicators, clinical scores, and biochemical markers. This 
comprehensive approach not only enhances predictive accuracy but 
also provides extensive informational support for clinical decision-
making, aligning with recent research perspectives that utilize 
electronic health records for deep learning (18). These findings 
underscore the potential of advanced machine learning techniques to 
improve prognostic assessments in critically ill patients, offering 
powerful tools for developing personalized treatment strategies and 
optimizing healthcare resource allocation. This conclusion further 
supports the significant role of machine learning in clinical decision 
support, resonating with recent viewpoints in the study of survival 
prediction models for trauma patients (19, 20).

In this study, the analysis of feature importance highlighted the 
critical roles of the NEWS2 score, GCS score, and AST levels in 
predicting the prognosis of patients with stroke and traumatic brain 
injury. These indicators are not only statistically significant but also 
carry profound clinical implications (20, 21). The NEWS2 score, as a 
comprehensive early warning system, sensitively reflects changes in 
the physiological status of patients. A higher NEWS2 score typically 
indicates unstable vital signs, suggesting a higher risk of mortality and 
poorer prognosis. The GCS score has long been regarded as the gold 
standard for assessing neurological function, particularly in patients 
with traumatic brain injury. A lower GCS score is often associated 
with more severe impaired consciousness and neurological deficits, 
directly affecting the patient’s short-term and long-term prognosis. 
Elevated AST levels, an important indicator of liver function, may 
reflect multi-organ dysfunction or liver injury, commonly seen in 
critically ill patients and closely linked to adverse outcomes (22).

The combination of these features offers a multidimensional 
assessment of the patient’s condition. The NEWS2 score reflects the 
overall physiological state, the GCS score focuses on neurological 
function, and AST levels provide insights into specific organ function. 
This multifaceted evaluation approach allows the model to capture the 
complexity of the patient’s condition more comprehensively, thereby 
enhancing predictive accuracy. For instance, one study indicated that 
combining physiological indicators with laboratory test results can 
significantly improve the accuracy of prognostic predictions (23, 24). 
Moreover, the importance of these features highlights the necessity for 
early intervention. Timely identification of patients with elevated 
NEWS2 scores can facilitate early treatment, potentially improving 
outcomes (25). Similarly, the dynamic monitoring of GCS scores can 
guide neuroprotective strategies, while monitoring AST levels aids in the 
prompt detection and management of potential liver dysfunction or 
multiple organ dysfunction.

This study utilizes an innovative methodological combination of 
LASSO (Least Absolute Shrinkage and Selection Operator) feature 
selection and Random Forest models, which offer significant 
advantages over traditional Logistic regression. LASSO, as a powerful 
feature selection tool, effectively manages high-dimensional data by 
automatically selecting the most relevant predictor variables while 
reducing the risk of overfitting through regularization (26). This 
feature is particularly important in our research as it helps filter out 
the most predictive variables from numerous potential predictors, 
such as NEWS2 score, GCS score, and AST levels, thereby enhancing 
the interpretability and generalization capacity of the model. The 
Random Forest model, as an ensemble learning method, offers 
multiple advantages compared to traditional Logistic regression. 
Firstly, Random Forest is capable of capturing nonlinear relationships 
and complex interactions between variables, which is especially 
crucial in complex biomedical data. Secondly, Random Forest is 
robust to outliers and noisy data, representing a significant advantage 
in clinical data analysis (27). Additionally, through the voting 
mechanism of multiple decision trees, Random Forest provides more 
stable and reliable predictive results, reducing bias that a single model 
might introduce (28). In our study, the Random Forest model 
demonstrated outstanding predictive performance, achieving an AUC 
of 0.978, clearly surpassing that of traditional Logistic Regression 
(AUC 0.973). This performance enhancement is not only statistically 
significant but may also lead to substantial improvements in clinical 
applications. For instance, more accurate risk predictions can assist 

FIGURE 4

Analysis of SHAP value influences of features on prediction results in 
random forest models.
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physicians in better allocating medical resources and providing more 
timely and targeted interventions for high-risk patients.

While both our LASSO and traditional logistic regression models 
achieved high predictive accuracy (AUROC 0.978 and 0.973 
respectively), the LASSO model was ultimately selected for its advantages 
in feature selection and model regularization, which enhance model 
parsimony and clinical interpretability. The integration of our model 
with existing electronic health record (EHR) systems allows for 
automated risk assessment using routinely collected data, including 
NEWS2 components, without adding manual calculation burden to 
healthcare providers. This automation supports standardized risk 
evaluation while maintaining efficient clinical workflows.

The implementation of this model in clinical practice requires 
addressing several practical challenges. The integration of machine 
learning models into clinical workflows needs consideration of both 
technical and operational aspects. Real-time implementation 
depends on appropriate infrastructure for data flow from the 
electronic health record (EHR) system, including automated data 
extraction protocols, quality control mechanisms, and strategies for 
handling missing data. The integration with existing EHR systems 
involves system compatibility, interface design, and alert mechanism 
implementation. To address these issues, we  propose a phased 
implementation approach: First, developing data extraction and 
processing protocols for consistent data collection. Second, designing 
interfaces within the EHR system that provide risk predictions while 
maintaining workflow efficiency. Third, implementing alert systems 
that inform healthcare providers of high-risk patients. Fourth, 
establishing regular model performance monitoring and updating 
processes. The implementation plan includes training programs for 
healthcare providers and technical support systems. Future work will 
consider mobile application development and multi-center validation 
networks. This implementation approach aims to translate the 
model’s capabilities into practical clinical applications.

In our comparative analysis of modeling approaches, the Random 
Forest model showed a modest improvement in AUC (0.005) over the 
Logistic regression model. While this difference appears small, it reflects 
important methodological distinctions. The Logistic regression model, 
constructed with five statistically significant variables from multivariate 
analysis, prioritizes interpretability and clinical explicability. In contrast, 
the Random Forest model, utilizing eight LASSO-selected variables, 
demonstrates advantages in capturing non-linear relationships and 
complex variable interactions. Despite the minimal AUC difference, the 
Random Forest model exhibited superior stability and generalization 
across validation sets, while providing valuable variable importance 
rankings. We maintained both models in our analysis as they serve 
complementary purposes: the Logistic regression offers clear statistical 
interpretation and accessible risk coefficients, while the Random Forest 
provides more comprehensive risk assessment through its algorithmic 
advantages. This dual-model approach enhances clinical decision 
support, where even marginal performance improvements can translate 
to significant benefits in large-scale patient risk identification.

The Nomogram developed from the logistic regression model serves 
as an intuitive and convenient risk assessment tool in clinical practice. 
This visual representation allows clinicians to quickly estimate individual 
patient risk by simply locating feature values on corresponding axes. The 
straightforward nature of the Nomogram enhances its practical utility in 
clinical decision-making, making it particularly valuable for rapid risk 
assessment and patient communication in busy clinical settings.

Future research directions could explore more advanced machine 
learning approaches to enhance predictive performance. Promising 
algorithms include CatBoost, which excels in handling categorical 
features, Generalized Additive Models (GAMs) for capturing non-linear 
relationships, AutoML frameworks for automated model optimization, 
and CNN-SVR hybrid models for complex pattern recognition. 
Furthermore, investigating model ensemble techniques, particularly 
Stacked Ensembles, could potentially improve prediction accuracy by 
combining the strengths of multiple algorithms. Additionally, 
comprehensive comparisons with established clinical scoring systems, 
such as the Adelaide Score, would provide valuable insights into the 
relative performance and clinical utility of these advanced modeling 
approaches. These future developments could offer more robust and 
diverse tools for clinical decision support, ultimately enhancing risk 
prediction in clinical practice.

In our methodological approach, we  made several key design 
decisions to ensure robust and comparable results. First, we deliberately 
used the same set of variables across all models to ensure fair comparison. 
While allowing each model to select its own variables might potentially 
enhance individual performance, our primary objective was to evaluate 
the models’ capabilities with identical input features. This approach 
effectively isolated the impact of model architecture from feature 
selection, providing clearer insights into each algorithm’s inherent 
performance characteristics, a methodology well-established in machine 
learning research for model comparison studies.

Regarding performance evaluation, we  employed recall 
(sensitivity) and precision (positive predictive value) as our key 
metrics, as these are both mathematically equivalent to traditional 
medical statistics and increasingly adopted in modern medical 
research. This choice bridges the gap between machine learning and 
clinical medicine terminology while maintaining statistical rigor.

The comprehensive evaluation of seven different models across 
various machine learning paradigms (linear, tree-based, ensemble 
methods) provided valuable insights into the relationship between 
model complexity and performance. Notably, while some models 
showed similar performance metrics, this finding itself is significant 
as it suggests that simpler models might be sufficient for this clinical 
application. This comparative analysis helps clinicians and researchers 
make informed decisions about model selection, balancing both 
performance and practical implementation considerations.

Limitations

Despite achieving favorable results in predicting the prognosis of 
stroke and traumatic brain injury patients, this study has certain 
limitations that should be considered. Firstly, although the data were 
sourced from two hospitals, which adds some representativeness, 
expanding the sample size and the number of institutions involved 
could yield more robust results, especially for rare prognostic events 
or subgroup analyses (29). Secondly, while the data from the two 
hospitals provide some diversity, they may still not fully reflect the 
medical practices and patient characteristics across a broader 
geographical range, which could impact the model’s generalizability 
(30). The study employs a retrospective design, which inherently 
includes limitations such as potential selection bias and information 
bias (31). Furthermore, although cross-validation was utilized, the 
lack of an independent external validation dataset remains a 
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limitation, which is critical for assessing the model’s performance in 
entirely different environments (32). This research primarily focuses 
on short-term outcomes and does not evaluate long-term results or 
quality of life, both of which are equally important for patients and 
medical decision-making (33). Lastly, despite the model 
demonstrating excellent predictive performance, its clinical utility 
and impact on actual patient management require further validation 
through prospective studies (34).

Our study has several important limitations regarding potential 
biases and demographic representation that warrant discussion. The 
model’s performance may vary across different demographic subgroups, 
which requires careful consideration. In our analysis, we  observed 
variations in model performance across age groups, with slightly lower 
prediction accuracy in elderly patients (>75 years) compared to younger 
adults. Gender-based analysis showed comparable performance between 
male and female patients, though the sample size for female patients was 
relatively smaller. Socioeconomic factors might also influence the 
model’s performance, as access to healthcare and timing of hospital 
admission can vary across different social groups. Additionally, our 
training data predominantly came from urban medical centers, which 
may limit the model’s generalizability to rural healthcare settings. The 
presence of comorbidities also affected model performance, with more 
complex cases showing wider confidence intervals in predictions. To 
address these limitations, future research should focus on: expanding the 
dataset to include more diverse patient populations, conducting 
systematic subgroup analyses across different demographic and clinical 
characteristics, implementing specific calibration strategies for different 
patient subgroups, and validating the model across different healthcare 
settings. Understanding these performance variations is crucial for 
ensuring the model’s fair and effective application across all 
patient populations.

This study involves the class imbalance in our patient data, with 
death cases accounting for approximately 20% and survival cases for 
80% of the dataset. While this distribution reflects real-world clinical 
scenarios, it may potentially affect model performance. Although our 
model demonstrated satisfactory sensitivity and specificity in 
predicting death cases under the current data structure, we did not 
implement specific techniques such as SMOTE or class weights to 
address this imbalance. Future research could explore these data 
balancing techniques to potentially enhance model performance, 
particularly in improving prediction accuracy for minority classes 
and developing more robust prediction models.

A methodological limitation of this study lies in our validation 
approach, which utilized a single 70:30 time-based split for model 
validation. While this approach provided sufficient samples for model 
evaluation and aligned with common practices in related research, 
more sophisticated time series validation methods, such as rolling 
windows or sliding windows, could potentially offer more 
comprehensive assessment of model stability over time. Although our 
study period was relatively short with stable clinical practices and 
patient characteristics, future research could benefit from 
implementing these more dynamic validation approaches to better 
evaluate model performance across different time periods and ensure 
temporal robustness.

A limitation of our study lies in the inability to develop a Nomogram 
for the random forest model. Unlike logistic regression, which features 
linear additive relationships that can be easily visualized, random forest 
models incorporate multiple decision trees and complex non-linear 
feature interactions. These sophisticated modeling characteristics, while 

contributing to the model’s predictive performance, make it challenging 
to represent the relationship between features and outcomes through 
simple graphical tools like Nomograms. This highlights the inherent 
trade-off between model complexity and interpretability in machine 
learning approaches.

Our model was developed and validated using a general 
neurological patient population, without specific subgroup analyses 
for conditions such as stroke or traumatic brain injury. This approach 
was chosen to maintain adequate statistical power and avoid issues 
associated with multiple testing. While our model selection process 
considered both LASSO and traditional logistic regression 
approaches, we  prioritized practical clinical utility over formal 
statistical testing of AUROC differences between models. Further 
validation studies with larger datasets will be valuable to assess the 
model’s performance in specific neurological conditions and confirm 
its generalizability across different patient subgroups.

Conclusion

The study, utilizing emergency data, developed a robust predictive 
model (AUC 0.978) for assessing the prognosis of patients with stroke 
and traumatic brain injury by integrating LASSO feature selection 
and a random forest model. The research identified that readily 
available features in the emergency setting, such as the NEWS2 score, 
GCS score, and AST levels, are important predictors. This predictive 
tool, when integrated into electronic health record systems, can 
provide emergency medical teams with automated risk assessment 
capabilities, supporting the identification of high-risk patients and 
resource allocation decisions. The model leverages routinely collected 
clinical data to assist in clinical decision-making, such as evaluating 
the need for neurosurgical intervention or ICU admission. While 
acknowledging limitations in sample size and data sources, this study 
presents a practical framework for prognostic prediction in 
emergency care settings. Future research should focus on broadening 
the data scope, conducting prospective validation, and evaluating the 
model’s integration into clinical workflows through EHR systems to 
assess its impact on clinical outcomes.

In summary, this study not only advances prognostic prediction 
methods based on emergency data but also provides a powerful tool for 
enhancing the quality of emergency management for patients with stroke 
and traumatic brain injury, with the potential to significantly contribute 
to precision medicine practices in emergency care.
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SUPPLEMENTARY FIGURE 1

LASSO regression model feature coefficient path diagram for stroke/TBI 
survival prediction，The LASSO coefficient path plot demonstrates the 
selection process of 17 predictive variables in the survival prediction 
model for stroke/traumatic brain injury patients. The x-axis represents 
the logarithmic values of the regularization parameter Lambda, while 
the y-axis shows the coefficient values of each predictive variable. Each 
colored curve represents the coefficient trajectory of a predictive 
variable as Lambda changes. The red dashed line (lambda.min) and blue 
dashed line (lambda) indicate the point of minimum cross-validation 
error and the Lambda value within one standard deviation of this 
minimum, respectively. Through LASSO regression variable selection, 
eight significant predictive variables (with non-zero coefficients) were 
ultimately selected at the optimal lambda value, which have substantial 
impact on patient survival prediction.

SUPPLEMENTARY FIGURE 2

Nomogram for Predicting In-Hospital Survival of Stroke and TBI 
Patients，This nomogram is designed to predict in-hospital survival rates 
for stroke and traumatic brain injury (TBI) patients. It incorporates five 
independent predictors: Metabolic Syndrome, surgery status, aspartate 
aminotransferase (AST), Glasgow Coma Scale (GCS), and National Early 
Warning Score 2 (NEWS2). To use the nomogram, locate each patient 
indicator on the corresponding variable axis, draw a line upward to 
intersect with the Points axis to obtain a score, sum all scores to get the 
Total Points, and finally locate the corresponding survival probability 
Pr(survive) on the bottom probability axis. This nomogram provides an 
intuitive and convenient method for assessing patient prognosis risk.

SUPPLEMENTARY FIGURE 3

Comparison of decision impact curves for in-hospital mortality 
prediction models in stroke and traumatic brain injury: logistic 
regression vs. random forest. The figure compares decision curves 
between logistic regression and random forest models in predicting 
in-hospital mortality for stroke and traumatic brain injury patients. The 
left panel shows the logistic regression model (AUC=0.973), while the 
right panel displays the random forest model (C-index=0.978). Each 
graph contains three curves: model prediction strategy (solid red line), 
treat-all strategy (dashed blue line), and treat-none strategy (dashed 
green line). The x-axis represents risk threshold probability (0-1), and the 
y-axis shows net benefit values. The red curves of both models 
significantly outperform other strategies and maintain high net benefits 
across most threshold ranges, indicating that both prediction models 
have good clinical decision-making value. The random forest model 
performs slightly better than the logistic regression model in high 
threshold ranges, providing important reference for clinicians' decision-
making under different risk thresholds.

SUPPLEMENTARY FIGURE 4

Feature Importance in Predicting In-Hospital Mortality for Stroke and 
Traumatic Brain Injury. The figure shows the feature importance ranking 
for predicting in-hospital mortality among stroke and traumatic brain 
injury patients. It displays importance scores for 8 key predictive 
features, ranked from highest to lowest: National Early Warning Score 2 
(NEWS2, highest score), Glasgow Coma Scale (GCS, 95.16), Aspartate 
Aminotransferase (AST, 70.68), Potassium (K, 29.05), Time (17.10), 
Defecation Status (8.41), Surgery Status (7.34), and Metabolic Syndrome 
(4.54). The color gradient from deep purple to light yellow reflects the 
decreasing importance levels. Among these, the top three features 
(NEWS2, GCS, and AST) have significantly higher importance scores than 
the others, indicating their crucial role in predicting patient outcomes. 
This provides valuable reference information for clinicians in conducting 
risk assessments.
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