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Hyperventilation during rest and 
exercise in orthostatic intolerance 
and Spiky-Leaky Syndrome
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Background: Orthostatic intolerance, with or without postural orthostatic 
tachycardia syndrome (POTS), is collectively referred to as orthostatic 
intolerance dysautonomia syndromes (OIDS). This condition often presents with 
daytime hyperventilation, which is considered to be secondary to sympathetic 
hyperactivity. This hyperventilation appears to be a key characteristic in a newly 
described subset of patients with OIDS who also exhibit craniocervical instability, 
mast cell activation syndrome (MCAS), hypermobility spectrum disorder (HSD), 
and the phenomenon of alternating intracranial hypertension with hypotension 
due to cerebrospinal fluid (CSF) leaks, collectively termed Spiky-Leaky Syndrome 
(SLS).

Methods: We performed a retrospective review of clinical metabolic exercise 
data in young patients with SLS, comparing them to matched patients with OIDS 
and healthy controls (CTL). We assessed metabolic parameters at rest, at the 
anaerobic threshold (AT), and at maximal oxygen consumption (VO2max). The 
parameters included end-tidal CO2 (ETCO2), end-tidal O2 (ETO2), peak oxygen 
pulse, total work performed, and peak oxygen uptake efficiency slope (OUESp).

Results: Of 323 reviewed exercise stress tests, 44 were conducted on patients 
with SLS, 210 on those with OIDS, and 53 on healthy controls. VO2max, AT, peak 
oxygen pulse, total work performed, and OUESp were all significantly reduced 
in patients with OIDS and were further reduced in those with SLS. ETCO2 levels 
were notably lower at rest, at the time of the anaerobic threshold, and at the 
time of maximal oxygen uptake in the OIDS group, and even more so in the SLS 
group. These lower levels of ETCO2 persisted throughout exercise. In contrast, 
ETO2 demonstrated a similarly strong but opposite trend.

Conclusion: Compared to the control group, patients with OIDS—and 
especially those with SLS—exhibited reduced metabolic parameters, particularly 
a decrease in peak oxygen pulse and ETCO2 levels during both rest and exercise. 
These findings suggest a reduction in ventricular preload and chronic daytime 
hyperventilation. These exercise parameters may serve as markers for POTS 
physiology and sympathetic hyperactivity, both of which could play a role in the 
pathophysiology of SLS.
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Introduction

Patients with parasympathetic dysfunction often experience 
orthostatic intolerance (OI) as a key symptom. This includes 
individuals who have postural orthostatic tachycardia syndrome 
(POTS) and those who have chronic OI who experience a modest or 
minimal rise in orthostatic heart rate (HR)—usually without 
orthostatic hypotension but with other indicators of autonomic 
dysfunction. These indicators often include symptoms related to the 
cardiovascular system and presentations that overlap with myalgic 
encephalomyelitis/chronic fatigue syndrome (1). This population of 
patients that is broader than that defined by POTS has been described 
by Wheeler, Raj, and Boris (1, 22, 41). For the purpose of this report, 
we  grouped these presentations under the term “orthostatic 
intolerance dysautonomia syndromes” (OIDS).

Patients with OIDS often develop chronic hyperventilation over 
the course of their illness, resulting in respiratory alkalosis. Stewart 
and Pianosi found that, at least in patients with POTS, this is mainly 
due to an increase in tidal volume with little change in the respiratory 
rate (2). They postulated that this may be  linked to enhanced 
sympathetic activity, potentially due to altered carotid body responses 
to intermittent hypoxia, acidosis, and hypoperfusion, which could 
be exacerbated by significant fluctuations between hypercarbia and 
hypocarbia (3–5). Other researchers have postulated that reduced 
ventricular stroke volume and cerebral hypoperfusion more directly 
trigger hyperpnea (6). In patients with chronic OI (with or without 
POTS), daytime measurements of end-tidal carbon dioxide (ETCO2) 
often reveal values well below the standard set point of 40 mmHg (1). 
Several investigators have shown that chronic hypocarbia can reduce 
cerebral blood flow—particularly in the upright position—indicating 
a possible explanatory mechanism behind symptoms such as 
dizziness, syncope, brain fog, and migraine headaches (1, 4, 7–11).

Clinically, we  have observed that hypocarbia, as measured 
through the surrogate measure of hypocapnia, can be assessed both at 
rest and during exercise by monitoring ETCO2 levels. Furthermore, 
measuring ETCO2 during exercise—particularly at key points such as 
the anabolic threshold (AT) and maximal oxygen uptake (VO2max)—
can help reduce the influence of anxiety-related fluctuations at rest. 
Thus, combined resting and exercise-based ETCO2 data may offer a 
reliable measure of the presence and severity of hyperventilation, 
which could, in turn, serve as a marker of sympathetic hyperactivity.

Recently, we identified a new phenotype in the clinical setting 
characterized by having OIDS (in any of its presentations listed 
above) along with hypermobility spectrum disorder (HSD)—
sometimes including hypermobile Ehlers-Danlos syndrome—mast 
cell activation syndrome (MCAS), evidence of craniocervical 
instability, upper airway resistance syndrome (UARS) at night, and 
chronic intermittent shifts between intracranial hypertension and 
hypotension. The latter can be  associated with transcranial 
cerebrospinal fluid (CSF) leaks, which may manifest in some cases as 
dribbling from the nose or down the back of the throat or, in other 
cases, as a gush of fluid from the nose upon rising in the morning 
(12–14). We  refer to this phenotype as “Spiky-Leaky Syndrome” 
(SLS), highlighting the nighttime spikes in CSF pressure and 
occasional CSF leakage through the ends of cranial nerve sheathes, 
most notably through the cribriform plate into the nasal mucosa 
when CSF pressure surpasses a modest pressure threshold. This 
phenotype has also been independently described more recently by 

two other groups (15, 16) and further discussed in a recent 
review (17).

We reviewed the most recent patients with OIDS in the 
corresponding author’s clinics to identify a cohort meeting the formal 
diagnostic criteria for POTS. This required an evaluation of 392 
patients with OIDS, of whom 100 (25%) met the formal POTS criteria. 
Among the total OIDS population, 39 patients (10%) exhibited 
anatomical features associated with Spiky-Leaky Syndrome (SLS), 
including craniocervical instability, upper airway resistance syndrome, 
and jugular venous compression, but lacked evidence of cerebrospinal 
fluid (CSF) leakage. An additional 14 patients (4%) met the full 
diagnostic criteria for SLS.

Within the subset of 100 patients diagnosed with POTS, 78 had mast 
cell activation syndrome (MCAS), 33 had hypermobility spectrum 
disorder (HSD), and 33 exhibited anatomical features associated with 
SLS but without the evidence of CSF leakage. Of these, nine patients had 
fully developed SLS. Consequently, nine of 14 patients (65%) with SLS 
also met the formal POTS criteria. The relatively high prevalence of SLS 
among patients with POTS may be influenced by referral patterns unique 
to the clinics’ locations and specialty of the provider, potentially 
introducing referral bias (14, 42).

A key proposed mechanism underlying SLS involves exaggerated 
fluctuations in carbon dioxide levels, with daytime hypocarbia 
resulting from chronic hyperventilation—likely induced by 
sympathetic hyperactivity—and nighttime hypercarbia resulting from 
compromised airway patency, which is a common feature in 
individuals with HSD. As a result, individuals with SLS are expected 
to exhibit increased daytime hypocarbia, indicated by end-tidal 
carbon dioxide (ETCO₂) levels during exercise, compared to those 
with OIDS. This study investigated the degree of daytime hypocarbia 
in SLS, using ETCO₂ levels as a surrogate measure, and compared 
these findings with data from both OIDS patients and healthy controls.

Methods

Study participants

We reviewed clinical exercise testing data from patients aged 9 to 
29 years who exhibited orthostatic intolerance (OI), as defined by 
Stewart (18) and Sandroni (9), along with at least one additional sign 
or symptom of autonomic nervous system dysfunction. These patients 
were evaluated by the corresponding author (AJM) at five cardiology 
centers between 2014 and 2024, with records selected from the 
patients referred to any of these clinics in the San Francisco Bay Area. 
The eligibility criteria included a history of orthostatic intolerance 
lasting at least 6 months, accompanied by at least one symptom such 
as syncope, palpitations, tachycardia, dizziness, fatigue, exercise 
intolerance, shortness of breath, or chest discomfort. Non-autonomic 
cardiopulmonary causes for these symptoms had to be  ruled out 
through comprehensive clinical evaluation and ancillary testing. 
Patients were included if they met the criteria for chronic orthostatic 
intolerance, with or without fulfilling the formal diagnostic criteria for 
postural orthostatic tachycardia syndrome (POTS), as defined by the 
Pediatric Writing Group of the American Autonomic Society and the 
2015 Heart Rhythm Society Expert Consensus Statement. In addition, 
patients meeting the diagnostic criteria for myalgic encephalomyelitis/
chronic fatigue syndrome (ME/CFS), with or without POTS, based on 
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the International Chronic Fatigue Syndrome Study Group definition, 
were included (19–21).

Patients who did not meet the POTS or ME/CFS criteria but 
reported chronic orthostatic intolerance with at least one additional 
symptom of autonomic dysfunction persisting for 6 months or 
longer were also included (22). The exclusion criteria included 
patients with OI symptoms lasting less than 6 months, cases where 
symptoms were attributable to medications or other identifiable 
illnesses known to cause OI, and instances where evaluation, 
identification, or resolution of the condition was brief and did not 
justify further assessment with validated autonomic function 
questionnaires such as COMPASS-31 (23). In addition, patients 
identified as having a post-COVID condition were excluded from 
the study. Those with incomplete exercise testing or an incomplete 
set of parameters were also excluded.

The patients were diagnosed with Spiky-Leaky Syndrome (SLS) 
based on the established phenotypic description (14). This diagnosis 
required the presence of OIDS alongside mast cell activation 
syndrome (MCAS), hypermobility spectrum disorder (HSD), and 
radiological and/or clinical evidence of craniocervical instability 
(CCI). Furthermore, the patients with SLS exhibited upper airway 
resistance syndrome (UARS), as confirmed by sleep studies 
incorporating continuous CO2 monitoring, specifically using end-tidal 
CO2 (ETCO2) and/or transcutaneous CO2 measurements throughout 
the study (14).

The control group consisted of healthy individuals who underwent 
exercise stress testing for reasons such as sports participation, 
employment clearance, or minor cardiac concerns. No individuals 
were excluded due to cultural or language barriers, and no participants 
received compensation for their involvement. A larger clinical 
database was compiled, from which a statistically balanced dataset was 
generated. The participants were matched based on age, weight, BMI, 
and sex, while the selection process remained blinded to ensure an 
unbiased final matched dataset.

Exercise testing

Patients underwent metabolic exercise testing (Ultima CPX 
Metabolic Stress Testing System, MCG Diagnostics) with either a 
graded treadmill protocol (Modified Bruce Protocol, with step 
parameters adjusted for age) or a bicycle ergometer protocol 
(Continuous Ramp, with age-appropriate workload increments). 
Throughout the test, all patients were monitored via continuous 
pulse oximetry, electrocardiogram (ECG) recording, and 
intermittent blood pressure measurements. A headgear-mounted 
mask was used to measure the levels of end-tidal oxygen (ETO2) 
and end-tidal carbon dioxide (ETCO2). The exercise continued 
until the patients either voluntarily terminated the test or the 
operator determined that discontinuation was necessary for safety. 
Pulmonary function testing was performed before and 
after exercise.

The key metabolic parameters measured included ETCO2, ETO2, 
oxygen consumption at the anaerobic threshold (AT) and maximum 
effort (VO2max), peak oxygen pulse, total work performed, and peak 
oxygen uptake efficiency slope (OUESp). The anaerobic threshold 
(AT) was determined using the V-slope method developed by 

Wasserman (24–26). In the event that two inflection points occurred 
(i.e., AT1 and AT2), the more marked inflection point was selected. 
Peak oxygen pulse was derived by dividing VO2 by the heart rate (HR) 
at any given time, serving as a surrogate measure of stroke volume (27, 
28). According to the Fick Principle, left ventricular (LV) stroke 
volume is calculated using the equation VO2 / 
(HR × AVO2 × Hbg × 1.36), where AVO2 represents the arteriovenous 
oxygen difference and Hbg denotes hemoglobin concentration (29). 
Given that stroke volume increases significantly during exercise while 
AVO2 undergoes relatively minor changes, oxygen pulse can reliably 
serve as a surrogate for stroke volume, measured in mL O2 per beat. 
The correlation between oxygen pulse and stroke volume has been 
reported with an R-value of approximately 0.73 (27). This parameter 
is typically reported at its peak value during exercise.

The peak oxygen uptake efficiency slope (OUESp) was calculated 
based on the linear relationship between oxygen consumption (VO2) 
and the logarithm of minute ventilation (VE), represented by the 
equation VO2 = OUIS × log(VE) + b, where b is a constant (30). This 
value was normalized to the patient body surface area (BSA) and 
reported at its peak (31). The OUESp has been validated as a reliable, 
effort-independent surrogate for VO2max, with a normal reference 
range of 1,000 to 2,200 mL O2/min/m2 BSA (31, 32).

Statistical approach

Statistical analyses were conducted using IBM® SPSS Statistics 
(Version 29) and Python’s scientific libraries. To ensure homogeneity 
between the groups, a rebalancing procedure was employed using an 
iterative removal process, which was validated through analysis of 
variance (ANOVA) tests on all continuous variables. Differences in 
key physiological variables between the control and dysautonomia 
groups were assessed using one-way ANOVA, with Tukey’s HSD post-
hoc tests applied for pairwise comparisons to identify significant 
intergroup differences. To control for the family-wise error rate, 
multiple comparisons were adjusted using the Bonferroni correction. 
Categorical variables, such as sex distribution and ergometer use, were 
analyzed using chi-squared tests.

Ethical considerations

This study was reviewed by an independent institutional review 
board (Ethical and Independent Review Services) and was 
determined to be exempt due to its retrospective nature. Informed 
consent was obtained as a condition of clinic enrollment. The 
corresponding author had full access to all study data and assumes 
responsibility for the integrity of the data and the accuracy of 
the analysis.

Results

From clinical records, 323 exercise stress tests belonging to 
individuals diagnosed with SLS (47), those with general OIDS 
(215), and healthy controls (CTL, 60) were selected for analysis and 
subjected to a balancing program to match age, weight, BMI, and 
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sex. From this pool, 44 individuals with SLS, 201 with OIDS, and 
53 controls were matched and subsequently selected blindly for 
comparison. Consistent with other published studies involving 
OIDS (22, 33), the vast majority of our population was female and 
Caucasian, even though these clinics serve regions with significant 
racial diversity (22, 34). Patient characteristics are summarized in 
Table 1.

Metabolic parameters

Aerobic fitness is traditionally assessed using maximum oxygen 
consumption (VO2max) and anaerobic threshold (AT) as gold-
standard measures. In this study, there were no significant differences 
in VO2 at rest between the three groups. However, AT and VO2max 
were significantly lower in the SLS group compared to controls, 
indicating impaired oxygen uptake and delivery in SLS patients 
(Figure 1).

The OUESp was significantly reduced in the OIDS group 
compared to controls and was further reduced in the SLS group 
compared to the other two groups (Figure  2). This suggested a 
progressive decline in cardiopulmonary efficiency among patients 
with OIDS and SLS.

ETO2 was elevated at all stages of exercise in OIDS patients 
compared to controls, with even greater elevations observed in SLS 
patients. The increase in ETO2 in SLS patients was significantly higher 
compared to those with OIDS, indicating a greater inefficiency in 
oxygen exchange. Conversely, ETCO2 showed an opposite trend across 
the three groups. ETCO2 levels at rest were significantly lower in SLS 
patients (33 ± 4 mmHg) compared to controls (38 ± 4 mmHg) and 
OIDS patients (36 ± 4 mmHg). This pattern was maintained across 
anaerobic threshold (ATt) and peak oxygen consumption (VO2maxt), 
demonstrating a consistent difference in the ventilatory response 
(Figures 3, 4).

Peak oxygen pulse, an indirect measure of stroke volume, was 
significantly lower in both the OIDS and SLS groups compared to 
the controls, with the SLS group showing the most pronounced 
reduction (Figure  5). In addition, when analyzing the bicycle 
ergometry data, total work performed was significantly lower in 
both OIDS and SLS groups compared to the controls (Figure 6). 
This reduction in exercise capacity further supports the hypothesis 
of impaired oxygen utilization and cardiovascular efficiency in these 
patient groups.

Discussion

This study demonstrated significant reductions in VO2max, AT, 
peak oxygen pulse, total work performed, and peak oxygen uptake 
efficiency slope (OUESp) in patients with OIDS, with an even greater 
reduction observed in those with SLS. ETCO2 levels were significantly 
lower in the OIDS group at rest, at the anaerobic threshold (ATt), and 
at maximal oxygen uptake (VO2maxt), with an even more pronounced 
decrease in the SLS group. This reduction in ETCO2 levels persisted 
throughout the exercise, following an inverse trend to ETO2, which 
was elevated in both patient groups. Among these findings, three key 
parameters—ETCO2, peak oxygen pulse, and OUESp—are 

TABLE 1 Participant demographics.

Demographic and exercise characteristics

Parameter Control OIDS SLS p-value

N 53 210 44

Age 18.8 ± 2.5 17.8 ± 3 18.7 ± 3.1 0.06

Weight (kg) 65 ± 14 62 ± 13 60 ± 14 0.25

BMI (kg/m2) 24.5 ± 4.8 23.1 ± 4.9 22.7 ± 5.8 0.13

% Female 96.2 93.8 90.9 0.55

% Ergometer use 98.1 96.7 93.3 0.40

Baseline HR 87 ± 19 95 ± 23** 99 ± 25** 0.01

FIGURE 1

VO2 measures of the controls (CTL), patients with orthostatic 
intolerance dysautonomia syndromes (OIDS), and patients with 
Spiky-Leaky Syndrome (SLS) at three stages of the exercise—rest and 
at the times of anaerobic threshold (AT) and VO2max (VO2maxt). 
Significance levels are indicated as follows: *p ≤ 0.05.

FIGURE 2

Peak oxygen uptake efficiency slope (OUESp) of the controls (CTL), 
patients with orthostatic dysautonomia intolerance syndromes 
(OIDS), and patients with Spiky-Leaky Syndrome (SLS). Significance 
levels are indicated as follows: *p ≤ 0.05, ***p ≤ 0.001.
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particularly relevant to understanding the pathophysiology of OIDS 
and SLS and are discussed in detail below.

End-tidal carbon dioxide

Among the metabolic parameters evaluated, ETCO2 depression 
throughout the entire course of the exercise is one of the most notable 
findings due to its potential role in assessing chronic hyperventilation 
and serving as a surrogate marker for sympathetic hyperactivity. A 
slight reduction in ETCO2 levels at rest is not unexpected before an 

exercise test, as anticipatory anxiety can induce mild hyperventilation. 
This likely explains why the controls had an ETCO2 level of 
38 ± 3 mmHg, slightly lower than the expected 40 mmHg. However, 
the persistence of significantly reduced ETCO2 throughout exercise in 
OIDS and SLS patients suggests a sustained hyperventilatory drive. 
While ETCO2 in controls increased to 43 ± 4 mmHg during peak 
exercise, it remained at 37 ± 6 mmHg in those with SLS, indicating a 
continuous state of hyperventilation.

This abnormal ventilatory response is likely driven by two 
interrelated mechanisms. First, the carotid body, which plays a key 
role in chemoreception and ventilatory regulation, may be hyperactive 

FIGURE 4

End-tidal CO2 (ETCO2) measures of the controls (CTL), patients with 
orthostatic intolerance dysautonomia syndromes (OIDS), and 
patients with Spiky-Leaky Syndrome (SLS) at three stages of the 
exercise—rest and at the times of anaerobic threshold and VO2max. 
Significance levels are indicated as follows: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001.

FIGURE 5

Peak oxygen pulse measures of the controls (CTL), patients with 
orthostatic intolerance dysautonomia syndromes (OIDS), and 
patients with Spiky-Leaky Syndrome (SLS) at three stages of the 
exercise—rest and at the times of anaerobic threshold and VO2max. 
Significance levels are indicated as follows: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001. The lower oxygen pulse values during rest are a 
consequence of the higher baseline heart rates in the OIDS and SLS 
groups.

FIGURE 6

Total work performed of the controls (CTL), patients with orthostatic 
intolerance dysautonomia syndromes (OIDS), and patients with 
Spiky-Leaky Syndrome (SLS). Significance levels are indicated as 
follows: *p ≤ 0.05.

FIGURE 3

End-tidal O2 (ETO2) measures of the controls (CTL), patients with 
orthostatic intolerance dysautonomia syndromes (OIDS), and 
patients with Spiky-Leaky Syndrome (SLS) at three stages of the 
exercise—rest and at the times of anaerobic threshold and VO2max. 
Significance levels are indicated as follows: *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001.

https://doi.org/10.3389/fneur.2025.1512671
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hashemizad et al. 10.3389/fneur.2025.1512671

Frontiers in Neurology 06 frontiersin.org

as part of the sympathetic overdrive observed in these patients (5). 
Second, chronic respiratory alkalosis, induced by persistent daytime 
hyperventilation, is likely compensated by renal metabolic acidosis, 
which maintains blood pH homeostasis. Evidence for this renal 
correction was not extracted from the records and remains a subject 
for future studies. In the context of SLS, this chronic hypocarbia may 
have profound effects on cerebral blood flow, leading to a reduction in 
cerebral perfusion during waking hours. At night, airway obstruction 
and resultant hypercarbia could induce a rapid increase in cerebral 
blood flow, leading to spikes in CSF pressure (14).

Peak oxygen pulse

Peak oxygen pulse, which serves as a surrogate for stroke volume, 
was another critical metabolic parameter in this study. It is widely 
used in assessing cardiovascular function, particularly in pediatric and 
congenital heart disease populations, as well as in patients with 
autonomic dysfunction. Athletic training enhances oxygen pulse, 
while deconditioning flattens the oxygen pulse curve (35). A reduction 
in oxygen pulse is associated with diminished stroke volume, which 
can result from impaired myocardial contractility, reduced left 
ventricular (LV) chamber size, or decreased ventricular filling 
volume (36).

In the context of OIDS and SLS, a flattened oxygen pulse curve 
was expected, as it mirrors the low-flow state commonly observed in 
POTS, where reduced ventricular filling leads to low stroke volume 
(37). Given this, the significantly reduced oxygen pulse in OIDS 
patients, regardless of whether they met POTS criteria, was not 
surprising. Had the OIDS cohort been restricted to patients formally 
diagnosed with POTS, and if POTS was not fully managed at the time 
of testing, the reduction would likely have been even more 
pronounced. The SLS group exhibited an even flatter oxygen pulse 
curve than the OIDS group, further supporting the presence of 
compromised stroke volume and impaired cardiovascular efficiency 
in these patients. This may simply be a consequence of the higher 
prevalence of POTS patients in our SLS cohort compared to the 

general OIDS cohort (~ 65% vs. 25%, respectively). Figure 7 illustrates 
the curve of a typical healthy person and two extremes from this study.

Peak oxygen uptake efficiency slope

Recent advancements in exercise physiology have introduced 
improved methods for assessing peak fitness, particularly in 
individuals with congenital heart disease (32). One such metric, the 
oxygen uptake efficiency slope (OUES), was first introduced by Baba 
et al. (38) and later refined for clinical application by Meucci (31). The 
OUES is considered an effort-independent measure of exercise 
capacity, making it particularly useful for populations in which 
maximal exertion may not be achievable. The OUES is calculated as 
the best-fit slope of the logarithmic (base 10) relationship between 
minute ventilation (VE) and oxygen uptake (VO2). A steeper slope 
indicates greater exercise capacity. Meucci recently demonstrated that 
the peak oxygen uptake efficiency slope (OUESp) correlates strongly 
with peak VO2 and follows a linear increase with age throughout 
childhood and adolescence (31, 39, 40). This makes the OUESp 
particularly valuable for assessing patients who terminate exercise 
early, before reaching their peak heart rate, such as those with 
OIDS. Given the underlying physiological impairments in OIDS and 
SLS, a reduction in the OUESp is expected. Indeed, most SLS cases in 
this study exhibited OUESp values ranging from 1,000 to 1,600 mlO2/
min/m2 BSA, placing them between normal averages and the lower 
limit of normal, as defined by Meucci (31). Figure 8 illustrates two 
extreme examples from this study, further demonstrating the reduced 
OUESp in the SLS population.

Limitations

This study was a retrospective review and carried the inherent 
limitations of such a design. To minimize selection bias, researchers 
were blinded to group categorization and data outcomes when 
selecting cases for the original database. In addition, the final dataset 
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FIGURE 7

Oxygen pulse curves of the patients through the course of the exercise, showing those of a control with average fitness, (Average CTL), a control with 
athletic fitness (Athletic CTL), and a patient with Spiky-Leaky Syndrome (SLS). The curve rises to peak exercise, with a peak oxygen pulse of 
approximately 11 mlO2/beat in a healthy person with average fitness. It rises to 22 in a person who is aerobically trained, and it is depressed at all levels 
of exercise in a person with POTS physiology.
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was subjected to a balancing program that was also blinded to the 
outcomes, further reducing the potential bias in selection.

The study population was drawn from five clinics within a limited 
geographic area, all under the care of a single complex care 
cardiovascular specialist. As a result, geographic, environmental, and 
referral biases likely influenced the sample, favoring patients with 
OIDS, HSD, and MCAS over typical POTS and straightforward OIDS 
cases. One notable effect of this referral bias is the absence of 
neurogenic orthostatic hypotension (nOH) as a primary presentation, 
as such patients are less likely to be  referred to a cardiologist or 
remain under the care of their primary care physician. In addition, 
the decision to include a broader dysautonomia population rather 
than focusing solely on POTS might have impacted the results. This 
approach aligns with that of Wheeler et al. (1), who emphasized the 
need to assess dysautonomia patients who do not meet POTS criteria. 
Our broader selection better reflects the SLS population, which, like 
OIDS, often presents without POTS. However, 25% of OIDS patients 
and 65% of SLS patients in this study met the formal POTS criteria.

Another limitation is the reliance on surrogate measures, a 
necessary consequence of using non-invasive data collected during 
routine patient care. In this study, ETCO2 served as a surrogate for 
hypocapnia during the exercise, which, in turn, was used as a proxy 
for hypocarbia and postulated as a potential objective marker of 
sympathetic hyperactivity. Similarly, oxygen pulse was used as a 
surrogate for stroke volume, which itself was considered a proxy for 
preload and, therefore, a marker of POTS physiology.

Conclusion

Patients with OIDS exhibit reduced metabolic exercise parameters 
and frequently display flattened oxygen pulse curves, suggesting reduced 
ventricular stroke volume. This reduction may be due to insufficient 
cardiac preload, a hallmark of POTS physiology, regardless of whether 
tachycardia is present. Although the underlying mechanisms remain 
unclear, many of these patients also develop persistently low levels of 
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FIGURE 8

Oxygen Uptake Efficiency Slopes of two extremes from this study; (a) that of a control patient with athletic fitness (Athletic CTL), and (b) of a patient 
with Spiky-Leaky Syndrome (SLS). x axis: Minute Ventilation VE at BTPS (body temperature (37C, ambient pressure and gas saturated with water vapor), 
y axis: Oxygen consumption normalized to BSA. Note that the scales of the two Y axes are quite different resulting are much different slopes. Normal 
values for OUESp is 1,400 to 2,000 ml O2/min/m2BSA. An aerobically-trained healthy athlete can approach 4,000 while those with cardiovascular 
compromise may fall below 1,400 ml O2/min/m2BSA. Normal values for OUESp is 1,000 to 2,200 mL O2/min/m2BSA (31, 32).
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ETCO2, both at rest and during exercise, indicating a pattern of chronic 
hyperventilation. These two exercise parameters—peak oxygen pulse 
and ETCO2—may serve as objective markers for POTS physiology and 
sympathetic hyperactivity, respectively. Patients diagnosed with Spiky-
Leaky Syndrome (SLS) exhibit even more pronounced reductions in 
ventricular stroke volume and awake hyperventilation, as measured by 
these same parameters. We  postulate that these physiological 
abnormalities contribute to episodic spikes in cerebrospinal fluid (CSF) 
pressure, leading to intermittent occult CSF leaks, as outlined in our 
recent description of SLS (14).
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