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Multiple sclerosis (MS) is a neuroinflammatory disease affecting the brain and 
spinal cord and characterized by demyelination, neurodegeneration and chronic 
inflammation. More than 90% of people with MS present with peripheral muscle 
dysfunction and a progressive decline in mobility. Current treatments attenuate 
the inflammatory processes but do not prevent disease progression. Therefore, 
there remains an unmet medical need for new and/or additional therapeutic 
approaches that specifically improve muscle function in this patient population. The 
development of novel treatments targeting skeletal muscle dysfunction in MS will 
depend on suitable preclinical models that can mimic the human musculoskeletal 
manifestations of MS. Using a non-invasive approach to assess muscle function, 
we demonstrate in vivo that Experimental Autoimmune Encephalomyelitis (EAE) 
impairs skeletal muscle strength. Our data reveal a 28.3% (p < 0.0001) lower muscle 
force in animals with EAE compared to healthy control mice during electrically 
evoked tetanic muscle contractions that occur at intervals of 0.25 s and thus mimic 
fatiguing tasks. As we conduct force measurements by direct transcutaneous 
muscle stimulation in anesthetized animals, our setup allows for the repeated 
evaluation of muscle function, and in the absence of primary fatigue or reduced 
nerve input which constitute important confounding factors in MS. Taken together, 
our data highlight important similarities between MS in humans and EAE in mice 
with regards to skeletal muscle contractile impairments, and provide first evidence 
for a non-invasive in-vivo setup that will enable the preclinical profiling of novel 
drug candidates directed at specifically improving muscle function in MS.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease characterized by immune cell 
infiltration into the central nervous system (CNS), diffuse glial activation, axonal demyelination 
and neurodegeneration. Common symptoms of MS include fatigue and mobility impairments, 
which are reported by 37–78 and >90% of people with MS (pwMS), respectively (1–3).

Fatigue is defined as a “subjective sensation of weariness, an increasing sense of effort, a 
mismatch between effort expended and actual performance, or exhaustion” (4). This condition 
can result from CNS damage (primary fatigue) or only indirectly be related to MS (secondary 
fatigue) (5). Secondary fatigue can be  due to sleep disturbances, chronic urinary tract 
infections, side effects of pharmacological interventions, or impairments at the musculoskeletal 
level (5). The latter is referred to as motor fatigability and describes the reduced capacity of 
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skeletal muscle to produce and maintain voluntary or evoked force 
during physical activity (5, 6). It has been shown that motor fatigability 
remains more pronounced in pwMS than in healthy controls even 
when evoking contractions directly on muscle by electrical 
stimulation, thus bypassing the CNS and eliminating the contribution 
of primary fatigue (7). These data suggest that motor fatigability in MS 
is not inextricably linked with primary fatigue. Instead, muscle-
intrinsic alterations drive or at least importantly contribute to motor 
fatigability in MS.

Indeed, detailed investigations into human skeletal muscle 
morphology revealed mild atrophies of the quadriceps (rectus 
femoris) and the gastrocnemius muscle in pwMS (8). These atrophies 
pertain to specific fiber types, particularly to type IIA fibers (9). 
Noteworthy, type IIA fibers contribute to both fatigue resistance and 
muscle strength and are recruited for tasks requiring greater muscle 
strength and fatigue resistance (10). In addition, impairments in the 
metabolic capacity have been found in muscle tissue of pwMS. To 
be  precise, analyses of mitochondrial activity in skeletal muscle 
showed a reduced expression of complex I  and II of oxidative 
phosphorylation (OXPHOS) (2).

Importantly, current treatments for MS are not directed at restoring 
any of these musculoskeletal impairments. Rather, these treatments, 
including interferons, glatiramer acetate, teriflunomide, sphingosine 
1-phosphate receptor modulators, fumarates, cladribine, and 
monoclonal antibodies targeting either CD20, integrins, or CD52, were 
designed to induce anti-inflammatory effects systemically and/or in the 
CNS (11). In addition, there is a potassium-channel blocker that is 
prescribed to treat walking disabilities in pwMS. This inhibitor is called 
Fampridine and improves gait balance in subjects with MS (12). 
Fampridine acts on the central and peripheral nervous systems and is 
the only pharmacological therapy that has been approved for gait 
imbalance in these patients (12). Overall, given the limited treatment 
options for musculoskeletal dysfunctions in MS, there is an unmet 
medical need for adjunct therapies to restore functional independence.

Here we  investigated whether Experimental Autoimmune 
Encephalomyelitis (EAE) as a rodent model for MS preclinically 
mimics key musculoskeletal impairments that occur in pwMS, and 
whether these impairments can be monitored non-invasively in vivo.

Materials and methods

Animals

All animal studies described were performed according to the 
official regulations effective in the Canton of Basel-City, Switzerland. 
The mice were housed at 25°C with a 12:12 h light–dark cycle and fed 
a standard laboratory diet (Nafag, product # 3890, Kliba, Basel, 
Switzerland). Food and water were provided ad libitum. Prior to the 
study the animals were acclimatized to the research facility in Basel 
(Switzerland) for 7 days. EAE was induced as previously described 
(13). In brief, 8 weeks old, female C57Bl/6 J mice were subcutaneously 
injected with 200 μg rat Myelin Oligodendrocyte Glycoprotein 
(MOG) emulsified with 4 mg/mL complete Freund’s adjuvant and 
intraperitoneally injected with 100 ng pertussis toxin. Two days later 
the animals received a pertussis toxin boost. Body weight was 
continuously monitored throughout the study and the clinical disease 
course was assessed using a 0–4 score scale. Mice displaying a 3%–5% 

weight loss but no other motor impairments received a score of 0 
(weight-loss stage), animals showing a limp tail were scored as 0.5–1 
(day of clinical onset), mice displaying a partial weakening of hind 
limbs received a score of 1.5–2 and animals presenting hind limb 
paraparesis/paraplegia were scored with 2.5–3 (symptomatic disease 
peak). Mice displaying hindlimb paralysis and forelimbs paraparesis 
were scored with 4 and met termination criteria. On day 31 post 
disease induction, muscle fatigability of the left leg was measured. On 
day 32, the animals were euthanized, and muscle tissues were collected 
from the right, unstimulated leg.

Neurofilament light chain, glial fibrillary 
acidic protein, and insulin-like growth 
factor 1 ELISA

GFAP (Creative Diagnostics—Ref#DEIA7378), NF-L (Uman 
Diagnostics—Ref#10–7,001) and IGF-1 (Rockland—Ref#KOA0195) 
ELISA were performed in cerebrospinal fluid (CSF) diluted 1/50 and 
1/125, and in plasma diluted 1/5 in the sample diluent provided in 
each kit, respectively. Diluted sample and standard (in duplicates) 
were incubated on the coated plate, followed by incubation with the 
biotinylated antibody. After several washing steps, the HRP-conjugated 
antibody was added and the amount of GFAP or NF-L was revealed 
by a TMB (tretramethylbenzine) solution. The reaction was stopped 
by addition of the stop solution, and the plate was measured at 450 nm 
in a Spectramax340 photometer.

For the analysis, the optic density of the blank was subtracted 
from each measurement. The concentrations of NF-L, GFAP, and 
IGF-1 in the well were extrapolated from the linear regression. Finally, 
the dilution factor was applied to determine the sample concentration.

Muscle force measurement

Motor function of the left hind leg was measured non-invasively 
using a setup described previously (14). In brief, the animals were 
anesthetized and electrodes for transcutaneous stimulation were put 
in place on the shin and the thigh. The foot was then positioned on a 
homemade pedal connected to a force transducer. Muscle contractions 
were evoked via electrical stimulation of the hind leg through the 
transcutaneous electrodes and the force generated was recorded. In 
contrast to the method previously described, stimulation of the leg 
muscles was done at a low frequency (40 Hz) with a new tetanic 
stimulus every 0.25 s and the force generated was recorded for 120 
stimulations to evaluate motor fatigability.

Gene expression profiling

Total RNA was extracted from skeletal muscle using TRIzol 
reagent (Invitrogen). Reverse transcription was performed with 
random hexamers on 1 μg of total RNA using a high-capacity reverse 
transcription kit (Applied Biosystems), and the reaction mixture was 
diluted 20-fold. RT-PCRs were performed in duplicates in 384-well 
plates on an AB7900HT cycler (Applied Biosystems) using specific 
TaqMan probes (Applied Biosystems). Data were normalized to two 
housekeeping genes using the ΔΔCT threshold cycle (CT) method. 
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Fluorescence was measured at the end of each cycle, and after 40 
reaction cycles, a profile of fluorescence versus cycle number was 
obtained. Automatic settings were used to determine the CT. The 
comparative method using 2−ΔΔCT was applied to determine the 
relative expression. Results are expressed as fold changes over controls.

Statistical analyses

Statistical analyses were performed using t-tests in Prism 10 
(GraphPad Software, Inc., La Jolla, CA). As the sole deviation, analyses 
of CSF and plasma samples were conducted using a nonparametric 
test (Mann–Whitney U) in Prism 10 (GraphPad Software, Inc., La 
Jolla, CA). Differences were considered to be significant when the 
probability value was <0.05.

Results

EAE overall exerted limited lasting effects on body weight in mice 
(Figure  1a). Following disease induction, the animals showed an 
initial drop in body weight (probably due to the stress associated with 
the injections) on the first day, but then readily resumed normal 
growth. Around day 12, the body weight started to decline rapidly 
(Figures  1a,b). The average decrease in body weight reached 8% 
maximally, was only transient and coincided with the onset of EAE 
(Figure 1c). In fact, the animals already caught up growth again as of 
the 16th day post disease induction (Figure 1b). In accordance, the 
clinical scores accumulated until day 16. Thereafter, a remission/
chronic phase set in (Figure 1d).

The EAE model is a model of relapsing–remitting MS and is thus 
characterized by alternating phases of acute flare-ups and symptom 
remissions. To avoid confounding caused by acute inflammation 
during a flare-up, all in-vivo and ex-vivo measurements were 
conducted in the remission/chronic phase of EAE. More precisely, 
skeletal muscle function was assessed on day 30, when the animals 
had returned to their normal body weight and clinical symptoms had 
only partially subsided (Figures 1b,d). However, the disease was active 
at this time point (remission/chronic phase), as indicated by the 
significant upregulation of NF-L, a biomarker of neuronal injury, in 
the CSF (Figure 2a). Moreover, elevated levels of GFAP were detectable 
in the CSF, hinting toward persisting astrocyte activation and 
astrogliosis (Figure 2b). By contrast, IGF-1 as a circulating growth 

hormone altering muscle mass was similar between the two groups 
(Figure  2c). Using repeated tetanic muscle stimulations in  vivo, 
we  found that animals with EAE displayed lower muscle strength 
during a protocol that simulated fatiguing tasks than their healthy 
controls (Figure  3a). Quantification of the areas under the curve 
further highlighted a significant overall reduction of −28.3% 
(p < 0.0001) in muscle strength in mice with EAE (Figure 3b).

To evaluate whether similar changes in muscle weight occur in EAE 
and MS in humans, we determined in this study the muscle weight and 
gene expression of myosin heavy chains (MyHC) and OXPHOS 
components ex vivo (post-mortem). Muscle weight of larger muscle 
groups, such as the gastrocnemius-soleus complex and the quadriceps 
muscle were not statistically significantly different between groups, 
although the quadriceps showed a trend toward lower muscle weight in 
diseased mice (−14.3%, p = 0.06) (Figure 3c). A reduced metabolic 
capacity and altered contractile properties have been reported in skeletal 
muscles of pwMS (2). Therefore, we assessed the mRNA expression of 
representative subunits of the five complexes that mediate OXPHOS. No 
differences in the mRNA expression of OXPHOS components in 
skeletal muscle were detected between the two groups (Figure 3d). 
However, we observed a significant reduction by 50.2% (p > 0.05) in 
MyHC2 mRNA expression in the muscles of mice with EAE (Figure 3e). 
MyHC2 is predominantly expressed in type IIA muscle fibers. In 
contrast, the expression of MyHC1, which is found in IIX/D fibers, and 
the expression of MyHC7, which prevails in type I fibers, were not 
differentially expressed between sham or animals with EAE. Intriguingly, 
specific atrophies of IIA fibers have been reported in pwMS (9). As these 
fibers are important to generate and maintain forces over a prolonged 
period, the reduced expression of MyHC2  in the EAE model is 
consistent with the observed functional deficits.

Discussion

Mobility disability is an important contributor to disease burden 
in pwMS (1, 2). Treatment options to address the underlying muscle 
dysfunctions are limited and there is a high unmet medical need for 
treatments that can complement current therapies. To develop such 
novel treatments, preclinical models for specific features of MS are 
required. Those animal models need to reflect human disease patterns 
to have the potential for clinical translatability. Various animal models 
for MS exist (15, 16). They differ in the species, strains and immunizing 
agents used, and show a heterogenous disease presentation ranging 

FIGURE 1

Clinical parameters in EAE. Body weight (a) and body weight change (b) in female mice following experimentally induced autoimmune 
encephalomyelitis. Percentage of animals showing first signs of EAE in relation to the timepoint of symptom onset (c) and clinical scores (d). Data in 
(a–d) have only been collected for mice with EAE (not for sham animals). n = 12. Values are expressed as mean ± SEM.
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from acute to chronic-progressive (15, 16). The EAE model is a 
widely-used animal model for MS as it represents both clinical and 
pathological features of MS. We  here employed C57Bl/6 J mice, 

displaying a monophasic clinical course characterized by subtle, 
continuous neuroinflammation as evidenced by the described GFAP 
and NFL release in the chronic clinical phase. In this and other EAE 

FIGURE 2

Biomarkers of axonal damage, neuroinflammation, and muscle growth. Levels of NF-L as biomarker of axonal damage (a) and GFAP as biomarker of 
astrocyte activation and astrogliosis (b) in cerebrospinal fluid. Plasma levels of IGF-1 as growth hormone regulating muscle function (c). n = 4 for sham 
and n = 12 for EAE. Values are expressed as mean ± SEM.

FIGURE 3

Characterization of musculoskeletal function in EAE. Excursion curves of muscle strength during fatiguing muscle contractions induced by 
transcutaneous electrical stimulation (a) and corresponding area under the curve (AUC) (b). Muscle weight of the gastrocnemius-soleus complex (GS) 
and quadriceps muscle (c). Relative mRNA expression of OXPHOS subunits; Ndufb5 for complex I, SDHB for complex II, Uqcrc2 for complex III, Cox5b 
for complex IV and ATP5o for complex V (d). Relative mRNA expression of myosin heavy chains (e). n = 4 for sham and n = 10–12 for EAE. Values are 
expressed as mean ± SEM.
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models the impact of neuroinflammation on the musculoskeletal 
system has not been well-characterized.

While attempts have been made to investigate muscle function in 
EAE, these studies suffer from a couple of limitations. For instance, 
they either relied on ex-vivo analyses of isolated muscles not yet shown 
to be  heavily affected by MS in humans (e.g., soleus, extensor 
digitorum longus etc.), or used invasive in-situ procedures (17, 18). A 
further disadvantage of those methods is that they are terminal and 
do not allow for continuous monitoring of muscle strength. To address 
such limitations, we established a setup that is completely non-invasive, 
measures the function of larger muscle groups critical for mobility, 
and can be applied repeatedly on individual animals. We have shown 
here that in an experimental setup which mimics fatiguing tasks, 
muscle strength is significantly reduced in animals with active EAE 
compared to healthy controls. These differences could be observed in 
the chronic stage of the model, in which acute inflammation has 
subsided but neurodegeneration/neuroinflammation remain 
detectable in the mouse CNS as evidenced by MS-relevant biomarkers 
such as GFAP and NF-L in the CSF. Notably, at the same stage, 
systemic factors potentially influencing muscle mass such as IGF-1 
were not different from control mice. Thus, our method enables the 
assessment of baseline values prior to profiling a novel drug candidate 
and the subsequent evaluation of the efficacy of specific drug 
substances directed at altering muscle function. The suitability of the 
EAE model is further underscored by the fact that the model displays 
alterations in MyHC expression that are reminiscent of the MyHC 
changes reported in pwMS. Our findings hold promise for the future 
development of novel drug candidates improving muscle function and 
restoring mobility in pwMS.
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