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Background: The incidence of ventilator-associated pneumonia (VAP) in 
ischemic stroke (IS) patients is linked to a variety of detrimental outcomes. 
Current approaches for the early identification of individuals at high risk for 
developing VAP are limited and often lack clinical interpretability. The goal of 
this study is to develop and validate an interpretable machine learning (ML) 
model for early predicting VAP risk in IS patients in the intensive care unit (ICU).

Methods: Data on IS patients were extracted from versions 2.2 and 3.0 of the 
Medical Information Mart for Intensive Care-IV database, with version 2.2 being 
used for model training and internal validation and version 3.0 for external 
testing. The primary outcome was the incidence of VAP post-ICU admission. 
The Boruta algorithm was used to select features prior to developing 10 ML 
models. The Shapley Additive Explanation (SHAP) method was employed to 
assess the global and local interpretability of the model’s decision-making 
process. The final model and Streamlit were used for developing and launching 
an online web application.

Results: A total of 419 IS patients were included, with 401 in the derivation and 
118 in the test group. Following feature selection, seven clinical characteristics 
were incorporated in the ML model: systolic and diastolic blood pressure, 
international normalized ratio, length of stay before mechanical ventilation, 
dysphagia, antibiotic counts and suctioning counts. Among the 10 evaluated 
ML models, the Random Forest (RF) model outperformed the others, achieving 
an internal validation AUC of 0.776, accuracy of 0.704, sensitivity of 0.900, and 
specificity of 0.588. In external testing, performance dropped to an AUC of 
0.644, accuracy of 0.610, sensitivity of 0.688, and specificity of 0.519, raising 
concerns about the model’s generalizability.

Conclusion: The RF model is reliable in early identifying high-risk IS patients for 
VAP. The SHAP method offers clear and intuitive explanations for individual risk 
assessment. The web-based tool has the potential to improve clinical outcomes 
by promptly recognizing patients at increased VAP risk and facilitating early 
intervention, further multicenter prospective studies are required to validate its 
generalizability and practical utility.
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1 Introduction

According to World Stroke Organization statistics for 2022, stroke 
continues to be the second leading cause of mortality and the third 
leading cause of disability worldwide, thereby posing a significant 
threat to public health (1). Ischemic stroke (IS) is the most prevalent 
type, accounting for 60%–70% of all instances (2). Mechanical 
ventilation (MV) is frequently essential to prevent potentially fatal 
respiratory failure or apnea in IS patients, particularly in the intensive 
care unit (ICU), due to the significant neurological abnormalities 
these patients frequently suffer.

Stroke patients undergoing MV are at increased risk for a 
serious pulmonary complication known as ventilator-associated 
pneumonia (VAP), which may have a devastating impact on their 
respiratory function and overall prognosis (3). Early and accurate 
identification of IS patients at high risk for VAP remains a critical 
yet challenging aspect of clinical management, as delayed diagnosis 
can result in worsened patient outcomes and increased clinical 
burden (4, 5).

Although machine learning (ML) methods have demonstrated 
promising results in predictive modeling within clinical research (6, 
7), early predictive models specifically targeting VAP risk in IS patients 
remain scarce. To address this gap, we developed and validated an 
interpretable ML model utilizing stroke-related clinical data from a 
large public database. The SHapley Additive exPlanation (SHAP) 
method (8) was employed to enhance the interpretability of 
predictions. We  also constructed an accessible web-based tool 
designed to assist clinicians in rapidly identifying IS patients at 
increased VAP risk.

2 Methods

2.1 Study population

The Medical Information Mart for Intensive Care (MIMIC)—IV 
database, specifically versions 2.2 and 3.0, was used for this 
retrospective analysis (9, 10). MIMIC-IV is a publicly accessible, large-
scale intensive care database organized and maintained by the 
Laboratory for Computational Physiology at the Massachusetts 
Institute of Technology (MIT). This study utilized version 2.2, which 
includes medical data from approximately 300,000 patients treated at 
the Beth Israel Deaconess Medical Center (BIDMC) from 2008 to 
2019, for model training and internal validation. Version 3.0, which 
includes data from 2020 to 2022 was utilized for model external 
testing. The use of MIMIC-IV data was ethically approved by the 
Institutional Review Boards of BIDMC and MIT. Since all personal 
data in the database are anonymized, informed consent was waived. 
The author (Heshan Cao) was granted access to the database 
(certification number: 63137030). Reporting of this study followed the 
Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD+AI) guidelines 
(Supplementary Table 1) (11).

This study included patients aged 18 and above who were 
admitted to the ICU primarily for IS and had MV for more than 48 h. 
The primary outcome measure was the incidence of VAP. Patients with 
IS and VAP were identified in the MIMIC-IV database using the 
International Classification of Diseases, Ninth Revision (ICD-9), or 

Tenth Revision (ICD-10) codes. By restricting the diagnostic sequence 
to IS > VAP, we ensured that the diagnosis of IS was prioritized over 
that of VAP. Supplementary Table  2 lists the relevant ICD codes. 
Exclusion criteria included VAP diagnoses preceded IS and deaths 
within 7 days of ICU admission. For patients who had multiple ICU 
admissions, only the initial admission was considered. Figure 1 depicts 
a flowchart of inclusion and exclusion criteria.

2.2 Data collection and feature selection

The MIMIC-IV database was queried using Structured Query 
Language (SQL) to extract features such as demographics, 
comorbidities, vital signs, laboratory test indicators, and ventilator 
settings. Records within the first 24 h of MV were used to extract data 
on vital signs, laboratory indicators, and ventilator settings; variables 
with multiple records were averaged. Records were also acquired for 
antibiotic usage, suctioning procedures, and invasive catheter 
placements during the first 24 h of MV. We encoded comorbidities 
and VAP incidence as binary values.

A total of 59 features were obtained. Features with more than 20% 
missing data were first excluded to reduce missing data bias. Features 
with a missing data rate below 20% were addressed using multiple 
imputation methods, as indicated in Supplementary Figure  1. 
Following that, a correlation analysis was conducted on all features, 
and those with a correlation coefficient greater than 0.7 were excluded 
to prevent multicollinearity from impacting model performance 
(Supplementary Figure 2). Finally, the Boruta algorithm was applied 
to select the most relevant features. Boruta is an all-relevant feature 
selection method that uses a random forest (RF) classifier to compare 
the importance of original features with that of randomly permuted 
“shadow” features. By iteratively eliminating features that do not 
outperform their shadow counterparts, the algorithm robustly 
identifies truly informative features (12). In this study, Boruta was 
executed with a confidence level of 0.01, iterated 500 times to exclude 
rejected features, as presented in Figure 2.

2.3 Model development

The MIMIC-IV database data, which ranges from 2008 to 2019, 
was randomly divided into two sets: 80% for training and 20% for 
validation, using a stratified sampling strategy. To predict the risk 
of VAP in IS patients, 10 widely recognized ML models based on 
different principles were constructed: adaptive boosting (AdaBoost), 
category boosting (CatBoost), extra trees (ET), light gradient 
boosting machine (LightGBM), logistic regression (LR), multilayer 
perceptron (MLP), naive Bayes (NB), RF, support vector machine 
(SVM), and extreme gradient boosting (XGBoost). This 
comprehensive approach allowed us to identify the model that best 
balances performance for early VAP prediction in IS patients. To 
optimize the prediction models and avoid overfitting, the final 
hyperparameters for each model were determined using a 
combination of five-fold cross-validation and Bayesian search. For 
external validation, the trained models were tested on the 
MIMIC-IV database version 3.0, which covers the years 2020–2022.

The models’ performance was evaluated using metrics such as the 
area under the receiver operating characteristic (ROC) curve (AUC), 
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accuracy, sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). The optimal cutoff value was 
determined by maximizing the Youden index (sensitivity + specificity 
− 1). Calibration and decision curves were used to evaluate the 
model’s calibration and clinical decision-making capability.

2.4 Model explanation

The SHAP method quantifies the contribution of each input feature 
to the final prediction by leveraging concepts from cooperative game 
theory, addressing the “black-box” nature of ML models (8). This 
approach incorporates global and local explanations. Global explanations 
reveal the impact of features on the overall model, whereas local 

explanations examine the contribution of features in specific samples. 
The decision-making process of the final model is visually depicted, with 
both global and local explanations provided via the SHAP method.

2.5 Webpage deployment

To facilitate its application in clinical contexts, the final 
prediction model was integrated and released into a web 
application built with the Streamlit Python library. When values 
are entered into the required features settings, the application 
generates a risk score for VAP in individual IS patients, as well as 
a force plot showing the effect of each feature on the 
risk assessment.

FIGURE 1

Inclusion and exclusion flowchart and study workflow.
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2.6 Statistical analysis

Data preprocessing, model construction, performance 
evaluation, and result visualization were conducted using Python 
(version 3.9.18) and R (version 4.3.2). The variance inflation factor 
(VIF) was employed to assess potential multicollinearity among the 
selected features, as detailed in Supplementary Table 3. Continuous 
variables with a normal distribution were presented as means and 
standard deviations, while non-normally distributed data were 
reported as medians (m) and inter-quartile range (IQR). 
Categorical variables were presented as numbers (n) and 
percentages (%). Differences in continuous variables were 
compared using Student’s t-tests or Wilcoxon rank-sum tests, while 
categorical variables were analyzed using Chi-square tests or 
Fisher’s exact tests. Statistically significant differences were defined 
as two-tailed p values <0.05.

3 Results

3.1 Patient characteristics

Using ICD-9/10 codes and the defined inclusion–exclusion 
criteria, we extracted data on 401 and 118 IS patients from versions 
2.2 and 3.0 of the MIMIC-IV database, respectively. In the derivation 
cohort, 149 IS patients developed VAP, while 64 patients in the test 
cohort experienced VAP. Table 1 outlines the baseline characteristics 
of both cohorts. The baseline characteristics of the VAP and 

non-VAP groups in the derivation cohort are detailed in 
Supplementary Table 4.

3.2 Selection of features

Six of the initial 59 potential predictive features were removed due to a 
missing rate of more than 20%, while 7 were excluded due to a correlation 
coefficient greater than 0.7, as shown in Supplementary Table  5 and 
Supplementary Figure 2. Additionally, 39 features were removed during the 
Boruta algorithm phase. After considering clinical practicality, 7 features 
were eventually included to construct the ML models, including Systolic 
Blood Pressure (SBP), Diastolic Blood Pressure (DBP), International 
Normalized Ratio (INR), Length of Stay before Mechanical Ventilation 
(LOS Before MV), Dysphagia, Antibiotic counts, and Suctioning counts, as 
illustrated in Figure 2.

3.3 Model performance

The performance of the 10 ML models is presented in Table 2 and 
Supplementary Table 6. In the derivation cohort, the NB model performed 
best with an AUC of 0.790, followed by the RF and LightGBM models, both 
of which had an AUC of 0.776. In the test cohort, the RF model exhibited 
the best generalization capability with an AUC of 0.644. Figure  3A 
compares the AUC values of the 10 ML models in the internal validation 
and external test sets, while Figures  3B–D present the ROC curve, 
calibration curve, and decision curve of the final model.

FIGURE 2

Results of feature selection using the Boruta algorithm.
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3.4 Model explanation

The SHAP method was employed to interpret the final model. 
Figure  4A presents a bar plot of features ranked by their mean 
absolute SHAP values. Figure 4B shows a beeswarm plot, illustrating 
the relationship between each feature’s value and the predicted risk 
of VAP. These plots indicate that antibiotic counts, LOS before MV, 
and INR are the top three contributors. Figure 4C shows SHAP 
dependence plots that further reveal the distribution of each feature 
and its global relationship with VAP risk.

In addition, the SHAP method was used to conduct local 
interpretation for the final model. Figure  5 shows detailed local 
interpretations using SHAP waterfall plots and force plots. As shown 
in Figure 5A, for patient who did not eventually develop VAP, the 
SHAP analysis indicates that higher INR, the administration of 
antibiotics twice, a shorter LOS before MV, normal SBP and DBP, the 
absence of dysphagia, and fewer suctioning operations negatively 
contribute to the model’s prediction of VAP, resulting in a low-risk 
classification. In contrast, as depicted in Figure 5B, for patient who 
eventually developed VAP, the SHAP analysis reveals that multiple 
suctioning operations, higher SBP, and the presence of dysphagia 
positively support the prediction of VAP, while the administration of 
antibiotics four times and a shorter LOS before MV have a negative 
impact. The aggregated contributions of these features incline the 
model toward predicting a high risk of VAP for the patient.

TABLE 1 Baseline characteristics of the derivation and test cohorts.

Variables Derivation 
cohort

Test cohort p-value

(n = 401) (n = 118)

Demographics

Age, years 67.0 (56.0, 77.0) 67.0 (59.3, 72.8) 0.669

Gender, male, n (%) 220 (54.9) 73 (61.86) 0.178

Height, cm 168 (160, 178) 170 (163, 178) 0.172

Vital signs

Heart rate, bpm 85 (74, 96) 85 (74., 98) 0.919

SBP, mmHg 123 (110, 135) 117.50 (107, 128) 0.011

DBP, mmHg 63 (56, 71) 63 (54, 68) 0.461

MBP, mmHg 80 (73, 89) 79 (74, 86.75) 0.674

Respiratory rate, bpm 19 (17, 23) 21 (18, 24) 0.008

Temperature, °C 37.2 (36.8, 37.6) 37.2 (36.8, 37.5) 0.144

SpO2, % 98 (97, 99) 98 (96, 99) 0.044

Laboratory tests

Hematocrit, % 31.0 (27.5, 36.2) 31.0 (26.6, 35.0) 0.212

Hemoglobin, g/dL 10.3 (9.0, 12.0) 10.0 (8.4, 11.4) 0.018

Platelet, K/μL 188 (131, 258) 202 (142, 276) 0.526

WBC, K/μL 12.0 (9.0, 15.8) 13.1 (9.4, 17.0) 0.202

Aniongap, mmol/L 14 (12, 16) 13 (11, 15) <0.001

Bicarbonate, mmol/L 22 (20, 25) 23 (20, 26) 0.631

Creatinine, mg/dL 1.1 (0.8, 1.7) 1.3 (0.9, 2.1) 0.014

BUN, mg/dL 21.0 (14.0, 35.0) 27.0 (17.3, 42.8) 0.005

Glucose, mg/dL 143 (117, 182) 162 (131, 195) 0.003

Sodium, mmol/L 140 (137, 143) 140 (136, 144) 0.940

Potassium, mmol/L 4.1 (3.8, 4.5) 4.2 (3.8, 4.6) 0.106

Calcium, mg/dL 8.2 (7.9, 8.7) 8.4 (8.0, 8.8) 0.140

Chloride, mmol/L 106 (102, 110) 105 (99, 108) 0.009

INR 1.3 (1.2, 1.5) 1.3 (1.2, 1.5) 0.409

PT, s 14.1 (12.7, 16.4) 14.1 (12.7, 16.6) 0.747

PTT, s 31.7 (27.6, 40.9) 31.2 (27.8, 44.4) 0.862

PO2, mmHg 143 (106, 201) 108 (85, 144) <0.001

PCO2, mmHg 38 (34, 44) 42 (36, 46) 0.007

PH 7.4 (7.3, 7.4) 7.4 (7.3, 7.4) 0.041

Base excess, mmol/L -1 (−3, 1) -1 (−5, 2) 0.751

A-ado2 198 (139, 284) 225 (156, 303) 0.085

PaO2/FiO2 242 (172, 337) 187 (128, 299) <0.001

Ventilator settings

Tidal volume, mL 476.8 ± 88.2 443.4 ± 96.4 <0.001

Minute volume, L/min 9.2 (7.7, 10.5) 8.9 (7.8, 10.0) 0.163

Plateau pressure,  

cmH2O
18 (15, 21) 18 (16, 22) 0.426

PEEP, cmH2O 5 (5, 8) 6 (5, 9) 0.210

FiO2, % 50 (44, 58) 50 (40, 60) 0.192

(Continued)

TABLE 1 (Continued)

Variables Derivation 
cohort

Test cohort p-value

(n = 401) (n = 118)

Comorbidities, n (%)

Smoking history 82 (20.5) 28 (23.7) 0.443

Hypertension 191 (47.6) 41 (34.8) 0.013

Diabetes 139 (34.7) 51 (43.2) 0.090

Hyperlipidemia 144 (35.9) 36 (30.5) 0.279

Chronic heart failure 59 (14.7) 26 (22.0) 0.059

Chronic pulmonary 

disease
59 (14.7) 12 (10.2) 0.207

Chronic liver disease 12 (3.0) 2 (1.7) 0.659

Chronic renal disease 88 (22.0) 32 (27.1) 0.241

Others

GCS 15 (9, 15) 15 (10, 15) 0.136

Dysphagia, n (%) 64 (16.0) 26 (22.0) 0.126

Tracheostomy, n (%) 10 (2.5) 6 (5.1) 0.259

Tube feed, n (%) 73 (18.2) 30 (25.4) 0.084

LOS before MV, days 0.1 (0.0, 1.4) 0.5 (0.0, 3.2) 0.026

Antibiotic counts 1 (0, 3) 1 (0, 3) 0.586

Suctioning counts 4 (2, 5) 3 (1, 4) <0.001

Invasive line counts 2 (1, 3) 0 (0, 1) <0.001

SBP, systolic blood pressure; DBP, Diastolic blood pressure; MBP, Mean blood pressure; 
A-aDO2, pulmonary alveolus-arterial difference of oxygen pressure; PaO2/FiO2, the partial 
pressure of arterial oxygen/ fraction of inspired oxygen; PEEP, positive end-expiratory pressure; 
GCS, Glasgow Coma Scale; LOS before MV, length of stay before mechanical ventilation.
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TABLE 2 Performance of 10 machine learning models in validation and test cohort.

Models Val AUC Accuracy Sensitivity Specificity PPV NPV Test AUC

NB 0.790 0.728 0.867 0.647 0.591 0.892 0.554

RF 0.776 0.704 0.900 0.588 0.563 0.909 0.644

LightGBM 0.776 0.753 0.833 0.706 0.625 0.878 0.621

AdaBoost 0.771 0.753 0.800 0.725 0.632 0.860 0.626

CatBoost 0.761 0.716 0.867 0.627 0.578 0.889 0.605

XGboost 0.740 0.741 0.667 0.784 0.645 0.800 0.618

ET 0.722 0.642 0.867 0.510 0.510 0.867 0.598

LR 0.710 0.642 0.767 0.569 0.511 0.806 0.587

MLP 0.701 0.630 0.833 0.510 0.500 0.839 0.592

SVM 0.670 0.630 0.800 0.529 0.500 0.818 0.637

AdaBoost, adaptive boosting; AUC, area under the receiver-operating-characteristic curve; CatBoost, category boosting; ET, extra trees; LightGBM, light gradient boosting machine; LR, 
logistic regression; MLP, multilayer perceptron; NB, naive bayes; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; SVM, support vector machine; XGboost, 
eXtreme gradient boosting.

FIGURE 3

Selection and performance visualization of the final model. (A) AUC values for 10 machine learning models in the validation and test sets, with the final 
selected model indicated by a dashed line. (B) ROC curve for the final model. (C) Calibration curve for the final model. (D) Decision curve for the final 
model.
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3.5 Online application

Based on the final RF model, an interactive web-based tool 
was developed to facilitate clinical application.1 Clinicians can 
input patient-specific clinical parameters to obtain an 

1 https://isvaprisk.streamlit.app/

individualized prediction of VAP risk, along with a SHAP force 
plot clearly depicting each feature’s contribution. As illustrated in 
Figure  6, red features on the left side like LOS Before MV, 
suctioning counts, INR, and dysphagia push the prediction toward 
“VAP,” while the blue features on the right side like antibiotic 
counts, DBP, and SBP drive the prediction toward “non-VAP.” For 
the selected scenario shown in Figure  6, the model predicts a 
68.51% probability of VAP occurrence, indicating a high risk 
for VAP.

FIGURE 4

Global SHAP interpretation of the final model. (A) Global bar plot of SHAP values. (B) Global beeswarm plot of SHAP values. (C) Global dependence 
plots for individual features.
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4 Discussion

This study developed and validated a ML model using clinical 
features to predict the risk of VAP in IS patients in the ICU, based on 
an open-source database. We  employed the Boruta algorithm for 
feature selection before building the model, which enabled the 
identification of seven predictive parameters and the use of a limited 
number of clinical variables to enhance clinical practicality. SBP, DBP, 
INR, suctioning and antibiotic counts were extracted within the first 
24 h of MV, allowing for a short predictive window to identify IS 
patients at high risk of developing VAP. To the best of our knowledge, 
this study is the first to predict VAP risk in ICU IS patients using an 
interpretable ML approach.

Our study found dysphagia as a significant risk factor for the 
incidence of VAP in stroke patients, which is consistent with prior 
research (13, 14). Stroke patients often experience dysphagia, with 
incidence rates ranging from 30 to 50% (15, 16). Dysphagia is 
associated with prolonged hospital stays, increased healthcare 
costs, and an elevated risk of persistent disability and mortality 
(17–21). Due to impaired swallowing function and a diminished 
cough reflex, patients with dysphagia struggle to clear oral 
secretions, rendering them more susceptible to aspiration events 
and subsequent pneumonia. Recent studies have further 
confirmed that stroke-related dysphagia significantly increases the 
risk of pulmonary infection, underscoring the clinical importance 
of early dysphagia screening in stroke patients (22, 23). Large-
scale prospective studies have reported similar findings, 

demonstrating that dysphagia following acute ischemic stroke 
markedly increases the risk of pneumonia and is independently 
associated with poor outcomes and higher mortality (24, 25). 
Furthermore, early dysphagia screening (within 24 h of admission) 
has been proven to reduce the risk of stroke-associated 
pneumonia (24).

Suctioning of secretions, primarily subglottic secretion 
drainage, is a commonly recommended treatment for clearing 
lower airway secretions using an endotracheal tube to prevent 
VAP. Multiple studies have demonstrated that subglottic suctioning 
can significantly reduce the incidence of VAP by limiting microbial 
colonization around the endotracheal tube (26, 27). However, our 
study observed a significant link between increased suctioning 
frequency and a higher risk of VAP in IS patients, which is 
consistent with the findings of Abdallah et al. (28). Although this 
may seem contradictory, frequent invasive suctioning can impair 
mucociliary function and compromise airway mucosal integrity, 
thereby weakening the natural immune barrier and increasing 
susceptibility to bacterial colonization (29, 30). Moreover, 
excessive suctioning may introduce exogenous pathogens into the 
respiratory tract, further elevating the risk of infection (30). A 
higher frequency of suctioning may also reflect a greater secretion 
burden, suggesting the presence of a subclinical or early-stage 
infection. Our findings highlight the importance of carefully 
balancing suctioning frequency while effectively managing airway 
secretions to minimize harm, especially in vulnerable populations 
such as IS patients.

FIGURE 5

Local SHAP interpretations of the final model. (A,C) Representative waterfall and force plots for ischemic stroke patients without VAP. (B,D) 
Representative waterfall force plots for ischemic stroke patients with VAP. Red indicates that the feature positively contributes to the risk of VAP; blue 
indicates a negative contribution.
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INR, a critical indicator of coagulation function, was also 
identified as a significant risk factor for VAP in IS patients. In the 
context of a stroke, an increased INR usually indicates the use of 
vitamin K antagonists, especially warfarin. Warfarin has been shown 
to have a protective effect for community-acquired pneumonia, 
probably due to its effect on disturbed thrombin formation and 
alveolar fibrin deposition (31). Our findings revealed that IS patients 
with higher INR had a lower risk of VAP, which may be  due to 
warfarin medication. The underlying mechanism deserves further 
investigation in larger populations.

According to current guidelines on VAP treatment (32), 
prophylactic antibiotic use is generally not recommended to 
prevent VAP, due to the risk of long-term or unnecessary 
antibiotic use fostering resistant bacterial strains, increasing the 
burden of antibiotic resistance for both patients and hospitals. 
However, our findings suggest that administering antibiotics 

within the first 24 h of MV may lower the incidence of 
VAP. We speculate that this effect may be attributed to the serious 
and intricate nature of stroke as well as the existence of 
concomitant infectious diseases in the ICU. An early and 
appropriate use of antibiotic may reduce the incidence of VAP by 
preventing the colonization and proliferation of potential 
pathogens in the respiratory tract.

Our research indicates that a longer ICU stay before MV may 
increase the incidence of VAP, which is consistent with previous 
studies (33, 34), presumably due to the positive link between ICU 
stay duration and infection risk. Furthermore, the SHAP 
dependency plots in this study suggest a potential non-linear 
relationship between DBP, SBP, and the risk of VAP. Higher values 
of DBP and SBP are associated with an increased risk of VAP, while 
in the lower blood pressure range, although there is a tendency for 
low blood pressure to elevate the risk of VAP, the limited number 

FIGURE 6

The web application deployment based on the final model.
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of data points prevents us from drawing a definitive conclusion. 
Future studies should incorporate more data from patients with 
low blood pressure to further investigate and clarify this potential 
non-linear relationship.

ML excels in processing and analyzing complex multimodal 
and high-dimensional data. However, ML algorithms’ complicated 
nature makes it difficult to understand how they make prediction 
and decisions, presenting a “black box” issue that hinders its 
widely use in healthcare. As highlighted by Stinear et  al. (35), 
developing operational and interpretable ML models is crucial for 
clinical practice. In this study, we utilized the SHAP method to 
address the “black box” problem of ML models. SHAP, a unified 
framework for ML interpretability proposed by Lundberg et al. 
(8), quantifies the contribution of each feature in the model to the 
final prediction, aiming to enhance user understanding of 
decision-making processes and increase confidence and trust in 
the predictive model’s outcomes. In addition, we  deployed a 
web-based application that medical staff can use to predict VAP 
in IS patients, and we released it to the public based on the final 
RF model.

This study has several limitations. Firstly, it is a single-center 
retrospective study, utilizing health data from multiple time 
periods at this center for model training, validation, and testing. 
External validation at additional medical centers is necessary to 
further evaluate the model’s generalizability. Relying on a single 
database may also introduce potential data quality issues and 
selection bias. Secondly, identifying VAP patients using ICD codes 
in the MIMIC-IV database presents challenges in retrospectively 
determining the exact timing of VAP diagnosis. Lastly, our study 
focused primarily on the average or cumulative occurrence of 
clinical features within the first 24 h of MV, ignoring the impact 
of dynamic changes in clinical features during ICU stay. Therefore, 
future multicenter prospective studies conducted across diverse 
clinical settings are needed to comprehensively validate the 
robustness and applicability of our predictive model.

5 Conclusion

We developed and evaluated multiple ML algorithms to 
determine the risk of VAP in ICU patients with IS. Both the internal 
validation and the external testing showed that the RF model 
performed reliably. Our findings indicate that SBP, DBP, INR, 
antibiotic usage, frequency of suctioning within the first 24 h of MV, 
LOS Before MV, and dysphagia have a substantial impact on risk 
assessment. The ML model and online web tool developed in this 
study can help clinicians identify high-risk IS patients for VAP 
effectively at an early stage. Further multicenter prospective studies 
are warranted to validate the model’s generalizability and 
practical utility.
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