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Localization of the epileptic seizure onset zone (SOZ) as a step in presurgical

planning leads to higher e�ciency in surgical and stimulation treatments.

However, the clinical localization procedure is a di�cult, long procedure with

increasing challenges in patients with complex epileptic foci. The interictal

methods have been proposed to assist in presurgical planning with simpler

procedures for data acquisition and higher speeds. In this study, spatio-

temporal component classification (STCC) is presented for the localization of

epileptic foci using resting-state functional magnetic resonance imaging (rs-

fMRI) data. This method is based on spatio-temporal independent component

analysis (ST-ICA) on rs-fMRI data with a component-sorting procedure based

on the dominant power frequency, biophysical constraints, spatial lateralization,

local connectivity, temporal energy, and functional non-Gaussianity. STCC was

evaluated in 13 patients with temporal lobe epilepsy (TLE) who underwent

surgical resection and had seizure-free surgical outcomes after a 12-month

follow-up. The results showed promising accuracy, highlighting valuable

features that serve as SOZ functional biomarkers. Unlike most presented

methods, which depend on simultaneous EEG information, the occurrence of

epileptic spikes, and the depth of the epileptic foci, the presented method is

entirely based on fMRI data making it independent of such information, simpler

to use in terms of data acquisition and artifact removal, and considerably easier

to implement.

KEYWORDS

epilepsy, epileptogenic zone, source localization, fMRI, independent component

analysis (ICA), functional connectivity (FC), local network features

Highlights

• Novel fMRI-only method localizes epileptic foci for presurgical evaluation.

• Uses spatio-temporal ICA features to classify components from rs-fMRI data.

• Achieves high accuracy without EEG, seizure events, or depth limitations.

• Evaluated in 13 unilateral TLE patients with seizure-free post-surgical outcomes.

• Simplifies data acquisition, making the method accessible, fast, and non-invasive.
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1 Introduction

Epilepsy is one of the most widespread neurological disorders

(1) causing spontaneous seizures as a result of excessive, abnormal,

or synchronous neuronal activities (2). The seizures can originate

from one or several specific zones or generalize over the brain

tissue. Using anti-seizure drugs, seizures can be controlled, but

can also be drug-resistant in about 20–30% of cases (3). For

refractory epilepsy, surgical resection is among the well-established

approaches to control seizures (4). However, presurgical planning

should include a localization step for epileptic foci. This allows the

surgeon to orient the skull opening and proceed more efficiently

with the surgical steps. Removal of the epileptogenic zone may

lead to cognitive deficits, particularly when the resection areas are

associated with working memory, attention, or executive functions.

Targeted rehabilitation helps regain lost functions or compensating

for them through neural plasticity (5–8). Cognitive therapies and

neurostimulation techniques have shown promise in enhancing

recovery and improving patients’ quality of life post-surgery.

They also allow better integration into daily activities and social

environments (9–12).

In this work, we refer to an epileptic focus as the specific

brain region where seizures originate (often identified as the

seizure onset zone on EEG or imaging). An epileptic network

denotes the broader set of interconnected regions that participate

in seizure generation and propagation beyond the initial focus

(13). In contrast, the epileptogenic zone (EZ) is the brain area

indispensable for seizure generation—the region that must be

completely removed or neutralized to achieve seizure freedom. The

seizure onset zone (SOZ) is typically used as the best available

estimator of the EZ in clinical practice (14). By clearly defining

these terms, we avoid confusion. Our method aims to localize the

SOZ (epileptic focus) non-invasively, which is assumed to closely

approximate the epileptogenic zone in our cohort of temporal lobe

epilepsy (TLE) patients.

Various methods using ictal, interictal, invasive, and non-

invasive data recordings, have been developed to localize the

generation area, spatial extent, and propagation pathways of

epileptic activity. These approaches face a constant challenge to

balance accuracy against the simplicity of data acquisition and

implementation (15). The current gold standard for localizing

epileptic foci relies on ictal (seizure) onset, which requires

recording multiple typical seizures from the patient (16).

However, seizure frequency is relatively low compared to interictal

epileptiform discharges (IEDs). Invasive approaches such as

intracranial electroencephalography (iEEG) offer high yet local

spatial resolution. They are therefore used to localize the seizure

focus and define the epileptogenic zone (EZ) during later steps of

presurgical planning (17). Despite the time-consuming process of

the clinical protocol, the success rate of the resection surgery varies

depending on several factors. Post-surgical follow-ups can range

from a few months to more than 5 years. Surgical outcomes are

classified by the Engel criteria (18): Engel I for seizure freedom

(about 50–70% of cases); Engel II with warning signs or minor

seizures for <3 days per year (about 10–30% of cases); Engel III for

a>80% reduction in seizure frequency or worthwhile improvement

in the seizure-related disability (about 10–30% of cases); and Engel

IV for <80% reduction in seizure frequency or no worthwhile

improvement (<10% of cases) (4).

Although localizing epileptic foci from seizure-free (interictal)

periods remains challenging, especially in the absence of IEDs, non-

invasive methods have gained attention in recent years, especially

those based on EEG-correlated fMRI (EEG-fMRI) (19, 20). This

combination benefits from the high temporal resolution of the

EEG signal and the high spatial resolution of blood oxygen level-

dependent (BOLD) fMRI at the same time. Khoo et al. (21)

showed that an IED adjacent to a maximum BOLD response, which

often corresponds to the seizure onset zone, is more likely to

precede IEDs in remote locations during widespread intracranial

discharges. Therefore, simultaneous EEG-fMRI is a unique non-

invasive method to reveal the origin of IEDs. Notably, localizing

epileptic foci with these approaches is a key step in presurgical

planning, as it provides surgeons with an approximate region of

interest for opening the skull. The final resection is then guided by

precise intracranial electrode investigation during surgery.

The conventional approach for localizing epileptic foci using

simultaneous EEG-fMRI is based on statistical parametric mapping

(SPM). It simply assumes IEDs found in the EEG signal as zero-

duration events and uses their timing to generate a regressor for

the general linear model (GLM) analysis on the simultaneous

fMRI. Activations and deactivations can be localized for a regressor

in GLM referring to positive and negative BOLD responses,

respectively. The concordance with IEDs, however, seems to be

more associated with positive BOLD responses and less associated

with the deactivations (22). The study by Zijlmans et al. (23) is an

important work on the conventional method with 29 patients, who

were rejected for surgery because of multifocality or unclear foci,

and 46 IED sets to study. They found a considerable improvement

in localizing epileptic foci during the presurgical assessment. Eight

patients showed BOLD responses topographically related to their

IEDs. In a commentary on this study using 49 IED sets from 29

patients, Jackson et al. (24) revealed 15 BOLD responses, providing

new predictions for surgery. However, it is noticeable that IEDsmay

generally be revealed in the brain regions well beyond the presumed

area in which they are generated (25), and are not a perfect option

as a base for concordance evaluation.

De Tiège et al. (26) recruited six children with refractory

focal epilepsy and analyzed their EEG-fMRI data using the

conventional method. In four children, the results showed BOLD

responses concordant with the assumed epileptic foci. In another

study, Zhang et al. (27) investigated the results of pre-surgical

conventional EEG-fMRI analysis and iEEG monitoring in a patient

with seizure recurrence after epilepsy surgery. They suggested that

EEG-fMRI is a useful tool for pre-surgical evaluation but requires

caution. The intact seizure foci in the remaining brain may also

cause a non-seizure-free outcome.

In the localization of epileptic foci, combining two

neuroimaging modalities has generated more accurate results

than a single modality (28, 29). Ebrahimzadeh et al. (8) showed that

localizing based on EEG data alone even when using independent

component analysis (ICA) leads to poor results. However,

localization of epileptic foci based on fMRI data alone is still

receiving attention. Several studies argue that the relationships

between BOLD and local field potential (LFP) are not always linear
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and may change depending on various factors. It has been shown

that functional connectivity (FC) measured by BOLD and EEG

signals have relatively weak correlations (30). Not many studies

have investigated the neural basis of such spontaneous fluctuations

in fMRI signals (31, 32). These two modalities measure different

phenomena related to epilepsy possibly occurring at different

time scales. We might see specific electrophysiological features

of epileptic networks in stereotactic EEG (SEEG), while rs-fMRI

normally reflects the functionality of such networks (30).

The influence of EEG spikes on BOLD signals is not quite

clear (30). Simultaneous EEG-fMRI recordings have revealed that

spikes can lead to increased, decreased, or unchanged BOLD signals

(33, 34). The hypothesis of neurovascular decoupling has also been

questioned as explain this complexity (35). EEG-fMRI is generally

limited by the detection of frequent spikes on scalp EEG and the

underestimation of those not expressed properly on surface EEG

may be due to sources in deep brain structures (12, 30, 36–38). This

can cause a false BOLD signal baseline. IEDs may themselves be

at least in part responsible for the discrepancy between EEG and

BOLD coupling, but already found negative correlations between

these two signals in regions spared by epileptiform abnormalities

suggest that spikes are not solely responsible (30).

There are useful tools to analyze and study abnormal activities

with specific sources within the brain volume. The idea of exploring

fMRI data for candidate sources related to epilepsy was discussed

by Zhang et al. (39) and more recently by Banerjee et al. (40) who

analyzed components obtained from spatial ICA (sICA). Temporal

clustering analysis (TCA) (41), temporal ICA (tICA) (42), and

fractional power spectrum contribution (fPSC) (43) are also shown

to be useful to find and confirm epileptic activity. Moreover,

functional connectivity analysis is a promising way to look for the

functionally integrated relationships within a cluster and between

spatially separated brain regions. This can be helpful to define local

network topological features, localize the significantly connected

areas to the SOZ, and identify the propagation pathways of epileptic

activity (44). In Table 1, pivotal studies that present interictal

methods for epileptic foci localization using EEG, fMRI, and EEG-

fMRI and include seizure-free surgical outcomes for evaluation are

reported chronologically. Themethodsmentionedmight have been

used and evaluated in other studies after their presentation as well,

in different groups of patients.

According to Table 1, localization methods using interictal data

have been tested for several years. From a major investigation

(19), only 23% of the presented methods in the literature have

been evaluated with seizure-free surgical outcomes. The evaluation

criterion in these studies is primarily the visual matching of the

detected seizure foci with the true SOZ. The average accuracy of the

presented studies in Table 1 is 61%, which is equivalent to a total of

152 concordant results out of 250 subjects who underwent surgery

and were free from epileptic attacks.

In this study, a novel method is presented to localize the

epileptic foci using fMRI data, that is easily implemented and avoids

the previously mentioned disagreements. Our dataset included

the fMRI data from 13 patients with temporal lobe epilepsy

who were candidates for resection surgery. Ten patients had

resection surgery with seizure-free outcomes after a follow-up of

more than 12 months. The method presented in this paper is

non-invasive in nature with no requirement of simultaneously

recorded EEG signals. This mainly simplifies data acquisition,

artifact removal, and implementation, in addition to avoiding the

mentioned questions about the basis of EEG-fMRI studies by being

independent of the spike detection process and the foci depth.

2 Materials and methods

The presented method in this study is based on ST-ICA

on rs-fMRI data with a component-sorting procedure based

on dominant power frequency, biophysical constraints, spatial

lateralization, local connectivity, temporal energy, and functional

non-Gaussianity. Figure 1 shows the diagram of the method

presented in detail, including each step of the whole analysis

algorithm from the raw data to the SOZ localization and

concordance assessment.

2.1 Patients and data

This research was reviewed and approved by the Research

Ethics Board (Institutional Review Board, IRB) of the Tehran

University of Medical Sciences. Patients with severe cognitive

impairment or other neurological diseases were excluded from

the study. Patients whose cognitive impairments prevented

participation in the full structural, diffusion, or functional MRI

study were also excluded. All volunteers signed informed consent

to participate in the study. Thirteen unilateral TLE subjects who

had undergone resection surgery and had seizure-free (Engel I)

outcomes after a 12-month follow-up were recruited. The dataset

includes pre-surgical MRI and fMRI data for all patients along with

post-surgical MRI images for 10 of them. All subjects were scanned

using a 3-Tesla Siemens Magnetom Prisma MRI. Anatomical

images were acquired for clinical diagnosis including transverse

T1-weighted images with TR = 1,840ms, TE = 3.47ms, flip angle

= 8◦, matrix = 256 × 256, and slice thickness = 1.0mm. The

rs-fMRI were acquired in transverse planes covering the whole

brain with 330 measurements. The parameters of the echo planar

imaging sequence included TR = 3,000ms, TE = 30ms, flip

angle = 90◦, matrix = 640 × 640, slice thickness = 2.4mm.

For each subject, the duration of each fMRI measurement was

∼16.5min. All subjects were asked to keep their eyes closed during

the rs-fMRI scanning process. Emphasis was placed on them not

sleeping and confirmation was obtained after the scan that they had

remained awake throughout. The clinical and electrophysiological

characteristics of the patients are available in Table 2.

2.2 Preprocessing

The fMRI data were preprocessed and analyzed using

FSL (FMRIB Software Library, https://fsl.fmrib.ox.ac.uk/fsl) and

Python. The first 10 volumes were discarded to ensure steady-

state magnetization. A high-pass temporal filter with a cutoff

of 100 s was applied to the fMRI data to eliminate the

low-frequency drifts. Head motion correction was performed
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TABLE 1 Studies presenting epileptic foci localization methods using EEG, fMRI, and EEG-fMRI data and including seizure-free surgical outcome data

for evaluation.

Study Year Sample
size

Method data Method Accuracy/results

Brodbeck et al. (57) 2010 10 EEG Eelctrical source imaging (ESI) using LAURA

on the IEDs.

8/9 (88%) within the resection

margins.

Thornton et al. (58) 2010 34 EEG-fMRI Conventional EEG-fMRI method using the

extracted timing of IEDs convolved with

canonical hemodynamic response function

(HRF) as the regressor for GLM on fMRI

data.

10/34 (30%) had surgical resection

and significant activation on

EEG-fMRI, 7/10 were seizure-free

following surgery, and 6/7 had

concordant results with resection.

Grouiller et al. (59) 2011 23 EEG-fMRI The EEG voltage map of the IED template

was correlated with Intra-MRI EEG voltage

maps to construct the epileptic activity for

further GLM analysis.

10/18 (55%) fully concordant and

4/18 (22%) were moderately

concordant to the postoperative

areas with seizure freedom.

Hauf et al. (51) 2012 10 EEG-fMRI Three different threshold criteria were

applied to detect hemodynamic responses to

the IEDs: peak activation (criterion 1), fixed

threshold at P < 0.05 corrected for multiple

comparison (criterion 2), and fixed numbers

of activated voxels (4,000± 200) within the

brain (criterion 3).

5/10 (50%) concordance with

criterion 1, 6/10 (60%)

concordance with criterion 2, 8/10

(80%) concordance with criterion

3.

Pouliot et al. (60) 2012 3 EEG-fMRI Non-linear hemodynamic responses using

the second-order expansion of the Volterra

kernel with epileptic spikes as

time-dependent inputs and BOLD,

oxyhemoglobin (HbO), and

deoxyhemoglobin (HbR) time series at a

certain fMRI voxel as the outputs.

3/3 (100%) concordance of

significant non-linearities with the

epileptic foci and negative BOLD

response regions.

An et al. (61) 2013 35 EEG-fMRI Conventional method with combined t map

of four HRFs peaking at three, five, seven,

and 9 s.

10/35 (29%) fully lobe concordant,

9/35 (26%) partially lobe

concordant, 5/35 (14%) partially

lobe discordant, 11/35 (31%) fully

lobe discordant.

van Houdt et al. (62) 2015 8 fMRI sICA was applied to two fMRI data epochs

with and without visible IEDs separately and

the epileptic sIC was found using spatial

correlation with the resection area and

EEG-fMRI correlation patterns.

7/8 (88%) remarkable resemblance

between the epileptic sICs in the

two states suggesting that

epilepsy-related sICs are not

dependent on the presence of IEDs.

Hunyadi et al. (63) 2015 12 EEG-fMRI Most correlated sICs with resection areas

were obtained from EEG tICA and fMRI

sICA, and correlation coefficients were

calculated for all possible pairs of EEG-eICs

convolved with HRF and fMRI-eICs.

3/12 (25%) epileptic sICs were

matched between EEG and fMRI

and overlapped to the epileptic

zone.

Zhang et al. (39) 2015 9 fMRI sICA was applied to fMRI data extracting 30

sICs and the epileptic sIC was found using

biophysical constraints, temporal features,

and lateralization index.

7/9 (78%) lobe concordant results.

Coan et al. (64) 2016 30 EEG-fMRI The regressor proposed in Grouiller et al.

(49) plus the conventional regressor were

used together in GLM analysis.

81% sensitivity and 79% specificity

of results to identify patients with

good surgical outcome.

Centeno et al. (65) 2017 53 EEG and EEG-fMRI EEG-fMRI global maxima (GM) along with

ESI.

17/53 (32%) localized by ESI, 11/53

(21%) localized by GM, and 11/53

(21%) localized by both with the

mean distance of 14.6mm in their

maxima.

Maziero et al. (66) 2018 18 EEG-fMRI 2dTCA presented for mapping the seizure

onset zone.

13/18 (72%) concordant results not

confined to the presence of IEDs.

Chaudhary et al. (67) 2021 8 iEEG-fMRI 38 different topographic IEDs were classified

and extracted from iEEG and BOLD changes

associated with individual IED classes were

assessed over the whole brain using GLM.

27/38 (71%) IED classes resulted in

concordant BOLD maps.
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FIGURE 1

Diagram of the presented method algorithm.

via a six-parameter rigid-body transformation based on the

MCFLIRT algorithm. Temporal autocorrelations were corrected

with an autoregressive model of order one. The data were

spatially smoothed using a Gaussian filter with 6-mm full-

width at half-maximum (FWHM) to increase the signal-to-noise

ratio (SNR).

Functional images were first registered to the pre-surgical

structural MRI. They were then normalized to the MNI152

brain template with a 2-mm voxel size using 7 degrees of

freedom (DoF). For later concordance assessment, the full-

skull post-surgical structural MRI was normalized to the non-

brain-extracted MNI152 template with 1-mm voxel size using

7 DoF. A mutual-information cost function was used to retain

the shape of the resected brain region. We also calculated the

transformation from normalized pre-surgical structural MRI scan

to the MNI152 brain template with 1-mm voxel size using 6

DoF. This allows the resulting SOZ to be mapped into high-

resolution space for concordance assessment with the normalized

post-surgical scan.

sICA was applied to fMRI data to explore and classify

the candidate components associated with epilepsy (45). Thirty

components with variance-normalized time courses were first

computed for each patient (39). The voxel intensities of each sIC

map were then converted to Z-scores to represent the spatial

distribution of each component. Five levels of clustering were

considered for feature extraction of each sIC: significance clustering

required every cluster to have more than 10 contiguous voxels

with Z-score >3.1; morphologically operated clusters were made

after opening and closing with a 2-voxel disk; the main connected

component was the connected cluster containing the sIC center,

defined as the voxel with the maximum Z-score; the central local

average was the averaged fMRI data in a 3-voxel neighborhood

of the sIC center; and the central voxel was the fMRI data of the

sIC center.

2.3 Feature extraction

For feature extraction, a set of potential functional biomarkers

for epileptic focal activity were considered. A key innovation of

our method is the extraction of a comprehensive set of features

from each independent component (IC) of the rs-fMRI. These

features serve as indicators to distinguish the epileptic ICs from

non-epileptic ones. We extracted six features from each spatial

IC identified by ICA, chosen based on known characteristics of

epileptic foci and networks. This set is based on frequency features,

biophysical constraints, spatial lateralization, local connectivity,

temporal energy, and functional non-Gaussianity as follows.

2.3.1 Biophysical constraints (voxel-based
outside-to-inside ratio)

A spatial feature measuring the ratio of an IC’s activity in

peripheral/meningeal areas vs. core brain regions. According to the

expectation that neurological activities being generated by neurons

residing within the gray matter of the cortex, those components

confounded with external sources of artifacts should have been

excluded. Therefore epileptic ICs reflecting true neuronal activity

should be largely contained within the brain parenchyma. A

high outside-to-inside ratio might indicate that an IC represents

noise, motion, or physiological artifacts (e.g., head movement or

cardiovascular pulsation affecting edges of the brain). We apply

this constraint in order to exclude ICs that do not represent

genuine neural signals. In practice, all candidate ICs must have a

low outside-to-inside ratio (i.e., predominantly intracerebral) to be

considered a potential SOZ network. This feature therefore acts

as an initial filter to improve specificity and reduce false positives

from non-neuronal signals. To this end, fMRI voxels outside of the

brain, which are caused by noise, were retained before performing

sICA. Because they were included in the noisy components, they
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TABLE 2 Clinical and electrophysiological information of the patients.

No. Frequency Onset
(years)

Handedness Semiology
(salient features)

Ictal EEG (LTM) Epileptogenic
zone (LTM)

Irritative
zone (LTM)

MRI (MTS) Laterality Outcome

Sub001 1/m 28 R Behavioral arrest with

oral automatisms;

verbalization (R)

Rhythmic alpha & theta

activity R (T>F)

R (T) R > L (F<T) R R Engel I

Sub002 – 13 R Bilateral limb

automatisms

Rhythmic theta activity

L=R (T)

L= R (F<T) (R > L) (T) R R Engel I

Sub003 7–12/w 13 R Experiential aura;

behavioral arrest; right

limb dystonia (L)

Rhythmic theta activity L

(T)

L (T) R > L (T) L L Engel I

Sub004 4/m 0.6 R Behavioral arrest with

staring; right limb

dystonia; verbalization

Rhythmic delta activity R

(T > F), L (T) Rhythmic

theta activity R (T)

Rhythmic delta activity L

> R (T)

R (T) R (T) R R Engel I

Sub005 0.3–1/m 22 R Left versive motion; left

limb dystonia (R)

Rhythmic alpha activity

R > L (T)

R (T) R (T) R R Engel I

Sub006 4/w 3 R Staring with oral

automatisms; right

versive motion, right

facial clonic activity (L)

Rhythmic theta activity L

> R (T)

L (T) – L L Engel I

Sub007 1–4/w 19 R Behavioral arrest; left

limb automatism, right

versive motion (L)

Rhythmic theta activity L

> R (T)

L (T) L (T) L L Engel I

Sub008 – – – Behavioral arrest with

staring

– R (T) – – R Engel I

Sub009 7–12/m 4 L Experiential aura;

behavioral arrest; Right

Arm Dystonia

Rhythmic theta activities

L > R (T)

L (T) L (T) L L Engel I

Sub010 2–3/w 2 R Behavioral arrest with

staring and oral

automatism, spitting; left

limb dystonia

Rhythmic theta R > L

(T) Rhythmic delta R >

L (T > F)

R (T) (R > L) (T) R > L R Engel I

Sub011 2–3/m 14 R Behavioral arrest with

staring

– L (T) – L L Engel I

Sub012 1–4/m 11 R Behavioral arrest with

blinking and oral

automatisms

Rhythmic theta activities

L > R (T)

– L L L Engel I

Sub013 1–15/m - R Behavioral arrest with

blinking; left limb

dystonia; ictal laughter

(R)

Rhythmic alpha activity

R > L (T)

R (T) R (T) R R Engel I

LTM, Long-TermMonitoring; MTS, Mesial Temporal Sclerosis.
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were used to identify and reject those noisy signals within the brain

that have a statistical correlation with them. The index Ro/i was

calculated as follows to discriminate the cortical components from

noisy ones.

R o
i
=

number of voxels outside the brain

number of voxels inside the brain
. (1)

2.3.2 Maximum power frequency
Based on the expected temporal structure in each component to

be neurophysiologically meaningful and normal (46), the dominant

frequency of each sIC’s central local average was considered

in our feature set. The averaged fMRI data were calculated in

a 3-voxel neighborhood around the maximum Z-score voxel

as the sIC center. A periodogram was then used to find the

dominant frequency. Epileptic regions might exhibit distinctive

spectral power profiles, such as enhanced power at specific slow

frequencies, possibly reflecting neurovascular coupling to epileptic

activity. By identifying the dominant frequency component of

each IC, we assess whether an IC’s temporal activity has an

unusual concentration of power that might signal epileptic

activity. This feature helps discriminate physiological networks

from potentially pathological ones. For unprocessed fMRI data, a

dominant frequency above 0.1Hz reflects aliasing from respiration

and cardiac artifacts, while lower than 0.01Hz is due to scanner

susceptibility artifacts. Therefore, the components with dominant

power outside of the frequency range of 0.01–0.1Hz should be

excluded from further analyses.

2.3.3 Functional lateralization index
This measure quantifies how asymmetrically the IC’s spatial

map is distributed between hemispheres. Resting-state brain

activities are assumed to be relatively symmetric, whereas

epileptic activity tends to lateralize to one hemisphere (47).

Under this assumption, epileptic components should show

less relative symmetry about the anterior commissure–posterior

commissure (ACPC) plane. Conversely, ICs corresponding to

normal resting-state networks are usually symmetric or present

in both hemispheres. This is under the assumption that the

right number for extracted components in order to prevent a

split in resting-state symmetric ones. We flattened the mirroring

voxels of each component about the ACPC plane into two one-

dimensional arrays. Pearson’s correlation coefficient was then

computed between these arrays to quantify symmetry. The

functional lateralization index was defined for each component

as follows:

LI = 1−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑n
i=1

(

xLi − xL
)(

xRi − xR
)

√

∑n
i=1

(

xLi − xL
)2

∑n
i=1

(

xRi − xR
)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2)

2.3.4 Lateralization strength
Following the functional lateralization index, lateralization

strength is defined as a measure of significant binary clusters of

each component. After thresholding the component by retaining

clusters with Z-score >3.1 and more than 10 contiguous voxels,

lateralization strength was defined on non-mirrored binary voxels

about the ACPC plane as follows:

LS =

∣

∣

∑

XL −
∑

XR

∣

∣

XL + XR
. (3)

2.3.5 Local clustering coe�cient
Local connectivity is a measure of how strongly the voxels

within the IC’s region connect with each other relative to the

rest of the brain. We derive this from the correlation among the

time-series of voxels within the spatial IC main cluster. To this

end, we applied morphological opening and closing operations

with a 2-voxel disk. The main connected component was chosen

among the connected clusters, namely the cluster containing of the

maximum Z-score voxel as the sIC center. The local connectivity

matrix was calculated from the fMRI data inside the main cluster of

each sIC for later topological measurements. The local clustering

coefficient provides a measure of the level of cliquishness or

local interconnectedness of a network (13, 48). This feature

complements the spatial and spectral features by adding a network

perspective. This measure is defined for the local connectivity of

each sIC as the ratio of the sum of existing to the sum of possible

connections in the subnetwork:

CC =

∑

i6=j (rij)

N (N − 1)
. (4)

2.3.6 Local connectivity diversity
Local connectivity diversity provides a measure of the

heterogeneity of the local network connectivity in each IC. This

measure is defined as the unbiased sample variance of all pairwise

correlations within the sIC subnetwork:

CD =
1

N − 1

∑

j6=i

(

rij − r
)2

. (5)

2.3.7 Central network strength
Central network strength provides a measure of the average

level of connectivity between the sIC center and the rest of the

sIC voxels.

NS =
1

N − 1

∑

i6=c

ric where c : sIC center . (6)

2.3.8 Central energy
Epileptic activity (even interictal) can cause sporadic surges in

the BOLD signal, leading to higher variance over time. Components

capturing these fluctuations would have a higher temporal energy.

We use this feature to detect ICs that are particularly “active”

or erratic throughout the scan. The epileptic IC might stand

out by having a higher signal variance (beyond normal resting

fluctuations) due to interictal epileptiform events or ongoing

baseline dysfunction in that region. However, we interpret this

feature with caution, as high variance can also come from
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motion; hence, it is used in conjunction with the biophysical

constraint feature to ensure we are measuring neural-derived

energy. Therefore, the central energy is calculated from the energy

of the fMRI data at the sIC center as a feature for candidate sorting.

CE =
∑

t

xc(t)
2 where c : sIC center . (7)

2.3.9 Maximum tIC non-Gaussianity
Another measure for candidate sorting is the maximum non-

Gaussianity among the temporal sources of activity in each sIC

subregion. This is a measure of how non-Gaussian the distribution

of the IC’s voxel intensities or time series is, which can be related

to the presence of structured, non-random activity. ICA itself

finds components by maximizing non-Gaussianity (via kurtosis or

negentropy); here, we specifically evaluate whether the extracted

IC’s spatial or temporal patterns deviate significantly from a normal

(Gaussian) distribution. An epileptic network might produce

highly kurtotic temporal activity (e.g., brief spikes in activity)

as opposed to smoother, diffuse components (like physiological

networks), which are expected to be Gaussian in their activation

spread (42). To this end, the time series of independent sources in

the activation region of each candidate component were separated

by tICA, and the temporal signal with the largest absolute value

of Gaussian deviation (kurtosis) was considered the representative

of the epileptic temporal activity. The kurtosis of y is defined as

follows (49):

Kurtosis
(

y
)

= E
(

y4
)

− 3
(

E
(

y2
)2

)

, (8)

where E(y) is the expected value of y. After identifying the

epileptic temporal signal from each candidate component, the final

epileptic foci can also be localized using seed-based functional

connectivity analysis. The aforementioned feature sets for the 30

sICs of the 10 subjects are provided in the Appendix. These

features are to be classified as focal and non-focal for localization

of epileptic foci.

2.4 Component classification

Each of these features captures a different aspect of the data,

and our classification approach considered all features together

to identify the most likely epileptic IC. In our procedure, the

feature set was classified using a meaningful analytic thresholding

approach. We applied a cut-off of one standard deviation (SD)

below the mean of all sICs and subjects toward the expected

direction of the feature. Specifically, features were evaluated based

on their maximum power frequency (between 0.01 and 0.1Hz),

voxel-based outside-to-inside ratio (less than the threshold),

functional lateralization index (greater than the threshold),

lateralization strength (greater than the threshold), local clustering

coefficient (less than the threshold), local connectivity diversity

(greater than the threshold), central network strength (less than

the threshold), central energy (maximum among candidates), and

maximum tIC non-Gaussianity (maximum among candidates).

The last two features were prioritized among the candidates that

passed the initial thresholding procedure in each patient. Therefore,

one sIC was chosen through this procedure for each patient as

the epileptic candidate. We found that this multi-criterion sorting

was effective. in most of the patients, one IC emerged that fit the

epileptic profile, and whose spatial map corresponded closely with

the known epileptic focus, as later confirmed by resection location

and outcome.

2.5 Feature importance

To ensure that our feature-based classification was robust,

we performed analyses to gauge the contribution of each feature

and the risk of overfitting given our sample size. We observed

that certain features were especially influential. For instance, the

outside-to-inside ratio was crucial for filtering out non-neural

components; without this filter, many false ICs (e.g., representing

motion or CSF pulsation) could have been misidentified as

“epileptic” due to high variance. The dominant frequency and

spatial lateralization features were highly consistent indicators—

in all patients, the SOZ-IC had a uniquely high lateralization

(matching the side of surgery) and a dominant frequency near

∼0.01–0.04Hz, distinguishing it from other components. The local

connectivity feature further boosted confidence in the chosen IC: in

most cases, the epileptic IC showed a diverse local connectivity with

higher energy and non-Gaussianity.We did not find a single feature

that alone perfectly separated the SOZ-IC in every case; instead, it

was the combination that proved reliable. This underscores why a

fuzzy or multi-feature classifier (as we discuss later) is appropriate

for such complex problem in case of having adequate data. We

also performed a retrospective feature importance check: if we

removed one feature at a time from the decision process, the

accuracy of localization would drop. This suggests that all feature

categories we included carry useful, non-redundant information for

SOZ identification.

Given our relatively small sample (N = 13), there is a

possibility that the feature thresholds or weights we implicitly used

could be overfit to our dataset. We mitigated this risk by using

consistent criteria derived from domain knowledge rather than

tuning to each patient or optimizing on outcomes. Additionally,

we validated our approach by checking concordance with surgical

resection and outcomes, rather than only an internal cross-

validation. The fact that the fMRI-predicted focus matched the

surgically removed tissue leading to seizure freedom provides an

independent validation of the feature selection logic. Nonetheless,

we acknowledge that with such a limited cohort there remains a

risk that some features or their cutoff values might not generalize

to all epilepsy cases. We address this in the Limitations and Future

Directions section. Overall, our feature analysis confirms that each

category of feature contributes to identifying the SOZ, and using

them in concert was key to the method’s success. Careful cross-

validation on larger cohorts in the future will be important to

ensure the features are generalizable and model isn’t overfitting.

3 Results

A total of thirteen patients were recruited in this study. All

patients had been diagnosed as surgical candidates with temporal

lobe epilepsy. They underwent resection surgery with seizure-free
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outcomes after at least a 12-month follow-up. Ten subjects who

had post-surgical MRI scans were included for the concordance

assessment with the localization results. After preprocessing, sICA

was applied to each fMRI data and thirty spatially independent

components with variance-normalized time courses were extracted.

The feature set was obtained for all 300 components from all

patients to calculate the sample means and standard deviations.

We then defined the classification threshold for each feature based

on those statistics. The epileptic sIC was extracted for each subject

based on the previously described protocol. Table 3 shows the

feature set for the epileptic sIC across all the subjects.

The histograms of each feature and the integral boxplot of the

feature set with a normalized range among all 300 components

are shown in Figure 2 with those of epileptic ICs being highlighted

on each.

The selected components identified as epileptic tend to be

inside the brain, highly lateralized, low in their central network

strength and local clustering coefficient, and high in their

local connectivity diversity, central energy, and functional non-

Gaussianity. After classification, the epileptic sIC was clustered

into its connected components with Z-score >3.1 and more than

10 contiguous voxels, smoothed by morphological opening and

closing with a 2-voxel disk, and reduced to its main connected

component containing the maximum Z-score voxel as the resulting

SOZ. The SOZs were overlaid on the corresponding post-

surgical MRI scan and divided into three levels of concordance.

Fully concordant results were spatially aligned with the surgical

resection. Partially concordant results were in the same lobe

without overlapping the resection area, while discordant results

had clusters outside the resection lobe. The presented method

yielded six fully concordant results with precise localization, three

partially concordant results with correct lateralization and lobe

yet no overlap with the resection area, and one discordant result

outside the resection lobe. Figure 3 shows the post-surgical images

of six patients with fully concordant results overlaid.

4 Discussion

Localization of epileptic foci has become an important step

in presurgical evaluation providing a primary perspective of

the region of interest in surgery (50). Although ictal studies

and invasive approaches such as iEEG are known as the gold

standard for this purpose, they demand substantial resources

(14). Meanwhile, interictal studies and non-invasive methods

could address these challenges if they allow rapid, comprehensive

detection of interictal discharges along with a dependable

protocol for localizing seizure sources (13). Multi-modal non-

invasive data recordings, especially simultaneous EEG-fMRI have

attracted a great deal of attention over the past few years.

The idea of combining the temporal resolution of EEG with

the spatial resolution of fMRI sounds promising for precisely

localize a source of abnormal activity in the brain (19, 28,

29).

However, not all studies in the literature support this

idea (31, 32). EEG and fMRI measure different phenomena

related to epilepsy possibly occurring at different time scales.

Consequently, the relationship between BOLD signal and LFP T
A
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FIGURE 2

Histogram of features among all sICs and subjects with the epileptic sICs being highlighted (Top) and the boxplot of the feature set with a normalized

range among all sICs and subjects with the epileptic sICs being highlighted (Bottom).

is not strictly linear and can vary with multiple factors.

Functional connectivity measured by BOLD and EEG signals

often show relatively weak correlation, and EEG spikes can

lead to increased, decreased, or unchanged BOLD signals (30).

Moreover, EEG-fMRI methods typically require frequent, well-

expressed spikes on the scalp EEG. This becomes a limitation

when the epileptic source lies in deep brain structures (12,

36).
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FIGURE 3

The post-surgical MRI with overlaid localized SOZ cluster on resection area using the presented method: (A) subject 1 with behavioral arrest with oral

automatisms and verbalization showing rhythmic alpha and theta activity at right temporal lobe (T4>F8) in ictal EEG; (B) subject 2 with bilateral limb

automatisms showing rhythmic theta activity at both temporal lobes (T>F) but right irritative zone in ictal EEG; (C) subject 5 with left versive motion

and left limb dystonia showing rhythmic alpha activity at right temporal lobe (T4>T3) in ictal EEG; (D) subject 6 with staring with oral automatisms,

right versive motion, and right facial clonic activity showing rhythmic theta activity at left temporal lobe (T3>T4) in ictal EEG; (E) subject 7 with

behavioral arrest, left limb automatism, and right versive motion showing rhythmic theta activity at left temporal lobe (T3>T4) in ictal EEG; (F) subject

8 with behavioral arrest with staring.

The analysis of interictal scalp EEG alone based on ICA and

ESI will lead to poor localization results (8). Direct analysis of

interictal rs-fMRI data, on the other hand, has been shown to

provide valid information about epileptic sources. Various tools

exist to study abnormal activity sources in brain volume from

rs-fMRI data. They apply selection criteria to the components

extracted by sICA. Temporal analysis is another useful tool to find

and confirm a subregion responsible for seizure generation within

the epileptogenic zone. Connectivity analysis reveals functionally

integrated relationships within clusters and between distant

brain regions. This approach helps identify areas significantly

connected to the SOZ and the propagation pathways of epileptic

activity. Testing and comparing these methods on patient cohorts

has always provided valuable insights. Such work guides the

development of optimal presurgical localization procedures and the

proposal of novel techniques.

Earlier studies have demonstrated that rs-fMRI can detect

abnormalities related to the SOZ. For example, Lee et al. (13)

used voxel-wise intrinsic connectivity contrast (ICC) maps to

localize epileptogenic zones and reported ∼72% concordance

with intracranial EEG-defined SOZ in 29 patients. Notably, their

fMRI localization was more successful in patients who went

on to have good surgical outcomes, especially in TLE cases,

underscoring that fMRI markers of the SOZ tend to align with

clinically relevant targets. A recent meta-analysis further confirmed

that rs-fMRI can contribute to SOZ identification with high

sensitivity (∼91% on average) (50). However, that meta-analysis

also reported low specificity (many false positives) for fMRI alone

(50), reflecting a tendency of fMRI to highlight broad epileptic

networks beyond the true focus. These prior works establish

that while rs-fMRI is a promising non-invasive tool, purely

connectivity-based or univariate approaches may flag widespread

network changes, making it challenging to pinpoint the exact focus

without additional information.

In contrast to most previous fMRI studies that relied on

either seed-based functional connectivity or EEG-fMRI spike

correlations, our approach introduces a spatio-temporal ICA

component classification tailored to isolate the putative epileptic

network component in each patient. This method does not require

simultaneous EEG or the occurrence of interictal spikes during

the scan, which is a key advancement. For instance, methods

integrating EEG with fMRI have shown efficacy in identifying SOZ

(51). While effective, those require EEG recordings and, in most

studies, detectable epileptic discharges during fMRI. Our technique

operates solely on rs-fMRI data, using features of the independent

components to automatically select the component corresponding

to the SOZ.

Compared to related studies, such as Lee et al. (13)

who found decreased intra-hemispheric connectivity in the

SOZ region, our approach not only considers connectivity
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(through a local connectivity feature) but also incorporates

multiple other biomarkers (frequency content, spatial distribution,

etc.) in a unified classification framework. This multi-feature

approach likely contributes to improved specificity—instead of

labeling all areas of altered connectivity as SOZ, we pinpoint

the component that simultaneously meets several epileptic

criteria. Moreover, unlike group analyses of connectivity that

demonstrate statistical differences between patients and controls

(52), our method provides single-subject SOZ localization, which

is directly usable in presurgical planning. Recent works by

Kamboj et al. (53, 54) took a different approach, employing

deep learning on rs-fMRI combined with expert input to

identify SOZ in pediatric epilepsy. Their hybrid model of

expert knowledge and AI achieved high sensitivity (∼90%)

and reduced the expert’s workload significantly (53, 54). Our

work is complementary to such efforts: rather than using a

black-box deep network, we use an explainable feature-based

classification. This means our results can be interpreted in terms

of neurophysiological features (e.g., dominant frequency or spatial

extent), which could provide insights into the nature of the detected

epileptic network.

In summary, our study advances the field by demonstrating

that a purely fMRI-based, feature-driven method can localize the

SOZ with accuracy comparable to EEG-informed or deep learning

methods while being fully non-invasive and transparent. The high

concordance of our localized foci with surgical resection zones

(and the resulting seizure freedom) underscores the practical

clinical value of this advancement. Our successful localization of

the SOZ using interictal fMRI further supports the notion that

the epileptic network’s imprint on brain activity (even outside

seizures) can be detected and used clinically. In comparison

to prior research, therefore, this study provides a novel and

effective framework for single-subject SOZ localization and

bridges the gap between network-level observations and actionable

focal targets.

5 Conclusion

In this study, a novel method has been presented to localize

epileptic foci based on the analysis of rs-fMRI data alone with

no requirement for simultaneously recorded EEG signals. The

required functional data for this method are more accessible, cost-

efficient, and easier to record compared to other methods based

on EEG-fMRI, ictal Video-EEG, MEG, and iEEG. There are fewer

assumptions when using rs-fMRI data about the biological features

of epilepsy. Moreover, localizing based on rs-fMRI data alone

makes the method independent of the depth of epileptic foci and

alleviates concerns about the occurrence and detection of epileptic

spikes. This method aimed to achieve high spatial accuracy in

localizing epileptic foci from interictal data while retaining the

reliability of results for clinical usage. After evaluation on a group of

patients, the presentedmethod showed promising results compared

with the literature highlighting valuable features that serve as SOZ

functional biomarkers.

The presented method is based on spatio-temporal ICA

component classification for localizing the seizure onset zone

using only rs-fMRI data. Applied on 13 TLE patients, this

approach achieved high concordance with surgical resection sites,

indicating that our non-invasive method successfully identified

the epileptic focus in each case. All patients in our study had

Engel I outcomes at 12 months, meaning they were completely

seizure-free 1 year after surgery. This uniform positive outcome

strongly supports the validity of the SOZ localizations provided

by our fMRI analysis. In practical terms, the zones identified by

our method corresponded to the tissue that, when resected, led

to sustained seizure freedom. Although the data are reassuring

after the 12-month follow-up, we will continue to track long-

term outcomes for any additional patients studied with this

approach. Any recurrence or breakthrough seizures in the long

term will be analyzed to see if they correlate with aspects of

the fMRI data (for example, involvement of network nodes

not resected).

This method advances the state-of-the-art by removing

the dependency on concurrent EEG or actual seizures

during scanning, instead relying on multi-faceted features of

interictal brain activity. We have shown that features such

as low-frequency BOLD power, spatial focus, and network

connectivity can serve as reliable biomarkers of epileptic

foci (55). By comparing our results with prior studies, we

conclude that our technique offers comparable accuracy to more

resource-intensive approaches, and importantly, it provides

interpretable results that align with clinical ground truth

(surgical outcome).

In conclusion, this study provides a proof-of-concept

that rs-fMRI, analyzed with sophisticated ICA and feature-

classification techniques, can localize epileptic foci in a manner

that corresponds with surgical success. The work pushes beyond

previous research by eliminating the need for concurrent EEG

or ictal data, instead leveraging inherent patterns in interictal

brain activity. Our findings contribute to the growing paradigm

of network-based epilepsy diagnostics, and we believe they lay a

foundation for non-invasive, data-driven tools that complement

clinical expertise.

6 Limitations and future directions

While our results are promising, we are cognizant of several

limitations in the current study and outline future directions to

enhance the approach.

6.1 fMRI—only localization and
mislocalization risk

As noted in prior studies, rs-fMRI may show high sensitivity

but low specificity in detecting epileptic regions (50)—meaning

it might highlight a broad epileptic network rather than the

precise epileptogenic zone. In our study, we addressed this by

using stringent feature-based criteria to hone in on the likely

focus, but there remains a risk that the identified component,

while concordant with the resection area in our cases, could in

other patients represent a prominent part of the epileptic network

rather than the actual minimal EZ. We did observe that in a few

patients, the selected IC’s cluster extended into regions adjacent
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to the resected zone (though still within the same lobe). In

clinical terms, such an outcome is still useful (since it localizes

to the correct lobe), but finer precision is needed to delineate

the exact EZ. To mitigate mislocalization, a clear future direction

is to adopt a multimodal imaging approach. Combining fMRI

with EEG can provide timing information to distinguish the true

onset zone from propagation. Indeed, simultaneous EEG-fMRI

has been shown to improve specificity by relating BOLD changes

to actual epileptic discharges (51). Even if simultaneous EEG is

not available, other modalities like MEG, SPECT, or PET could

be integrated into a multimodal classifier to verify the fMRI-

driven predictions.

6.2 Advanced classification methods

Another avenue to enhance localization accuracy is to employ

advanced machine learning models that can handle complex

multivariate patterns. Our current method uses a rule-based

classification of ICs, which benefits from explainability. A machine

learning model trained on a larger dataset could potentially learn

subtle feature combinations or higher-dimensional representations

that distinguish epileptic networks more reliably. Recent studies

illustrate this potential: deep learning models applied to rs-fMRI

of epileptic patients have shown success in detecting SOZ-related

patterns, especially when combined with expert knowledge (53).

In our context, a supervised learning approach could be used

if sufficient training cases are available—the features we defined

could serve as inputs to a classifier, such as a support vector

machine or random forest, which could then output the probability

of each IC being the SOZ. However, such models require larger

datasets to avoid overfitting and to capture the variability across

different epilepsy subtypes. We believe our feature set provides

a strong starting point and could reduce the dimensionality

burden for a learning model, although further validation and

model training on multi-center data would be necessary. The

accuracy of this classification could also be improved by adopting

an approach based on fuzzy similarity, which would allow for

handling uncertainty and variability in the extracted features,

providing a more nuanced categorization and reducing the risk of

misclassification. This approach would enable assigning a degree of

membership to different categories rather than a strict distinction,

making the method more flexible and robust against individual

patient variations. Fuzzy similarity has been used before to localize

and classify defects in materials, treating the problem as one of

comparing signals to reference templates (56).

6.3 Small sample size and generalizability

A clear limitation of this study is the small sample size: we

analyzed 13 patients, all with unilateral temporal lobe epilepsy

and favorable post-surgical outcomes. While this homogeneity

helped demonstrate proof-of-concept under ideal conditions (all

had well-localized foci and Engel I outcomes), it may have biased

the results. The method’s performance in more heterogeneous or

larger populations remains untested. We plan to initiate multi-

center collaborations to apply our pipeline to a larger cohort of

patients. A multi-center study would not only increase the sample

size but also incorporate diversity in scanner hardware, epilepsy

types, and clinical practices, which would test the robustness

and generalizability of our approach. Such collaboration could

involve prospectively collecting rs-fMRI from new patients and

retrospectively applying our method to existing fMRI datasets

from other epilepsy surgery centers. If successful, a multi-center

validation demonstrating consistent localization accuracy would

strongly support the clinical utility of the method.
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