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Ischemic stroke (IS) ranks among the top causes of mortality and disability globally. 
Exosomes exert a crucial effect on maintaining a complex regulatory balance 
with neuroinflammation in IS. Hence, this research aimed to elucidate the roles 
of exosome-related genes IS. We integrated data from five IS-related datasets 
from the Gene Expression Omnibus (GEO) database and exosome-related genes 
from ExoCarta. The least absolute shrinkage and selection operator regression and 
random forest models were performed to detect feature genes. Search Tool for 
the Retrieval of Interacting Genes and Cytoscape were employed to recognize the 
hub genes. Enrichment analyses were conducted to examine biological processes. 
CIBERSORT and MCPcounter were applied to assess immune infiltration, and 
Principal Component Analysis was utilized to explore the associations of feature 
genes and hub genes with immune cells. After identified different cell types, 
we analyzed differentiation, developmental trajectory, and interactions of the cell 
populations. Middle cerebral artery occlusion models were conducted on mice, 
followed by quantitative polymerase chain reaction to assess the expression levels 
of each hub gene. We identified 13 feature genes and 10 hub genes. Through 
qPCR, LGALS3, CD36, TLR2, ICAM1, and CD14 were significantly upregulated 
after Middle Cerebral Artery Occlusion surgery. Hub genes were significantly 
involved in inflammatory responses, as well as chemokine signaling and JAK–STAT 
signaling. Immuno-infiltration analysis revealed significant differences in immune 
cell populations between IS and controls. Additionally, neutrophils and monocytes/
macrophages were positively correlated with CD14 and LGALS3, respectively. 
Single-cell analysis revealed 19 cell subpopulations with detailed pseudo-time 
trajectory predictions, highlighting the developmental importance of MG2 microglial 
cells. In conclusion, our results illuminate exosomal genes, including LGALS3 and 
CD14, participate in the progression of IS through neuroinflammation, as well as 
highlight potential therapeutics to mitigate IS injury.
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1 Introduction

Globally, ischemic stroke (IS) is a primary cause of morbidity and 
mortality, comprising about 87% of all stroke occurrences (1). 
Annually, approximately 795,000 individuals in the United  States 
suffer a new or recurrent stroke (2). The high incidence and severe 
outcomes associated with IS underscore the urgent need for an 
improved understanding and management of this condition. Despite 
advancements in medical treatments and preventive strategies, 
mortality rates remain concerning, with 8–12% mortality within 
30 days and nearly 20% within 1 year (3). Current therapeutic 
interventions, including thrombolysis and mechanical thrombectomy, 
are time-sensitive and have limited efficacy, particularly in cases where 
treatment is delayed. Consequently, there is a pressing need to enhance 
early diagnosis and treatment outcomes.

Exosomes are small extracellular vesicles that mediate intercellular 
communication and are associated with various pathological processes, 
including inflammation, coagulation, and neural injury (4). In the 
context of IS, exosomal miRNAs have shown promise as biomarkers. 
For instance, specific exosomal miRNAs have been identified as 
differentially expressed in patients with IS, relating to disease severity 
and outcomes (5). Furthermore, exosomal proteins associated with the 
coagulation and inflammation have emerged as potential therapeutic 
targets (6). These investigations highlight the potential of exosomes as 
carriers for drug delivery, biomarkers for diagnosis, and modulators of 
immune responses. For example, a strategy has been proposed to design 
and prepare exosomes from anti-CHAC1 adipose-derived mesenchymal 
stem cells to inhibit ferroptosis and reduce ischemia/reperfusion (I/R) 
injury (7). Similarly, curcumin-containing exosomes are capable of 
reducing damage in lesions, lowering the expression of inflammatory 
and excitatory amino acid receptors, and promoting neurovascular 
recovery (8). However, considering the complex crosstalk between 
exosomes and inflammatory responses, the mechanisms underlying 
their interactions remain unclear. Currently, significant breakthroughs 
in the use of exosomes for targeted therapy in IS are lacking, indicating 
that extensive research in this area is still required.

Following IS, secondary neuroinflammation emerges (9), which 
can exacerbate damage and contribute to cell death. Conversely, it may 
also facilitate recovery processes. Current studies have revealed that 
neurons, glial cells, and vascular components collectively constitute a 
functional “neurovascular unit” (10). In the aftermath of an IS event, 
microglia and astrocytes are activated within hours, leading to the 
generation of cytokines and chemokines, which subsequently promote 
leukocyte infiltration (11). More specifically, activated microglia 
secrete inflammatory factors, including cytokines, and enhance their 
phagocytic functions. This activation contributes positively by 
enhancing the production of growth factors and facilitating the 
clearance of necrotic tissue and ischemic debris (12). Nevertheless, the 
emission of other inflammatory cytokines, including nitric oxide and 
ROS, can adversely affect brain tissue following ischemia (13). Given 
this paradoxical mechanism, further research is required to clarify the 
intricate balance of this dual role, which will enhance our 
understanding and facilitate the development of effective 
targeted therapies.

In this research, we sought to uncover the molecular mechanisms 
contributing to IS by integrating multiomics data with advanced 
analytical methods. We  concentrated on the involvement of 

exosome-related genes in IS and highlighted the importance 
of neuroinflammation.

2 Materials and methods

Overall analysis flow chart is shown in Figure 1.

2.1 IS dataset processing and difference 
analysis

Using the GEOquery 2.70 package (14), we  retrieved the IS 
datasets GSE30655, GSE35338 (15), GSE28731, and GSE32529 (16) 
from the GEO database (17).1 These datasets, sourced from Mus 
musculus, were all based on the GPL1261. The GSE30655 dataset 
comprises 14 ischemic samples and 6 control samples. The GSE35338 
comprises 11 stroke samples and 10 control samples. The GSE28731 
dataset comprises six ischemic samples and four control samples. 
The GSE32529 dataset comprises 58 ischemic samples and 54 control 
samples. In total, 74 control samples and 89 ischemic samples were 
included. The batch effect was addressed using the sva package (18). 
Subsequently, the limma package (19) was implemented to 
normalize the combined dataset, leading to the creation of the 
IS dataset.

We downloaded the ischemic stroke-related single-cell dataset 
GSE174574 (20) from the GEO database. The data source is Mus 
musculus, and its data platform is GPL21103. Three control samples 
(GSM5319987, GSM5319988, and GSM5319989) and three ischemic 
samples (GSM5319990, GSM5319991, and GSM53199892) were used 
for subsequent analyses.

In terms of single-cell data, we employed the R package Seurat 4.0 
(21) to construct single-cell data as Seurat objects, as well as the 
PercentageFeatureSet in the Seurat package to estimate the percentage 
of mitochondria in each cell. When the ratio of mitochondrial genes 
in a cell is excessively high, the cell may be undergoing apoptosis or 
lysis. Therefore, we filtered out cells with >5% mitochondrial gene 
content. Furthermore, since low-quality cells or empty droplets 
typically contain few genes, and doublets often exhibit an abnormally 
high number of genes, we excluded cells with fewer than 200 features. 
Furthermore, cells contained over than 20,000 intracellular UMI were 
excluded. The data obtained after the above quality control procedures 
were used for later investigations.

Finishing the quality control procedure for the Seurat subjects, 
we performed linear dimension reduction and calculated the Principal 
Component utilizing the most variable expression of the genes (22). 
Then, we used Seurat’s “FindNeighbors” and “FindClusters” functions 
to group the cells into the optimal number of clusters for cell type 
identification. Subsequently, t-SNE (23) was performed to project the 
information from the selected principal components into two 
dimensions, facilitating graph-based visual clustering of the cells. Mouse 
exosome-related genes were acquired from Exo-Carta2 (24) for 

1 https://www.ncbi.nlm.nih.gov/geo/

2 http://www.excarta.org/
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subsequent analyses, which includes 1715 mouse exosome-
related genes.

2.2 Differential analysis

We applied the limma package (version 3.58.1) for differential 
analysis between ischemic and controls in the IS dataset in order to 
obtain differentially expressed genes (DEGs). DEGs were selected for 
further analysis if they met the criteria of an absolute log fold change 
(|logFC|) greater than 0.25 and a p-value of less than 0.05, and 
visualizations of the results were displayed as a volcano plot and a 
heatmap presented with the R package ggplot2 generated and the R 
package pheatmap version 1.0.12, respectively.

2.3 Gene ontology and Kyoto encyclopedia 
of genes and genomes enrichment analysis

GO (25) analysis is frequently employed for large-scale 
functional enrichment studies. KEGG (26) is a widely utilized 
database. GO and KEGG enrichment analyses were conducted by 
the clusterProfiler package (version 4.2.0) in R (27). A false 
discovery rate cutoff value of <0.05 was regarded as statistically 
significant. The top eight results with the lowest p-values in GO, as 

well as the top eight results with the lowest p-values in KEGG are 
shown in the bar graph.

2.4 Acquisition of exosome-related genes

Identifying exosomal genes within the DEGs in mice, 
we obtained 1715 mouse exosome-related genes from ExoCarta. 
We displayed the overlap between exosomal genes and DEGs in a 
Venn diagram. Totally, 199 differentially expressed exosome-
related genes in the mouse IS dataset were extracted for 
subsequent analyses.

2.5 Feature genes based on the least 
absolute shrinkage and selection operator 
regression model

The LASSO regression model is distinguished by variable selection 
and complexity adjustment while fitting a generalized linear model. 
Regularization involves applying a shrinkage penalty to constrain the 
coefficients. This process utilizes the sum of the absolute values of all 
feature weights, enhancing the interpretability of the model. The 
LASSO regression model was performed by the glmnet 4.1.8 package 
(28) for genes with p < 0.05 in univariate COX analysis. The model 

FIGURE 1

Overall analysis flow chart. IS, ischemic stroke; PPI, protein–protein interaction network; DEGs, differentially expressed genes; ERGs, exosome-related 
genes; GO, gene ontology; MCPcounter, microenvironment cell population-counter; WGCNA, weighted gene co-expression network analysis; MEGs, 
module genes; KEGG, Kyoto encyclopedia of genes and genomes; LASSO, least absolute shrinkage and selection operator; RF, random forest; PCA, 
principal component analysis; t-SNE, t-distributed stochastic neighbor embedding; GSEA, gene set enrichment analysis; GSVA, gene set variation 
analysis.
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construction process included screening features for inclusion, 
selecting only those that contributed most significantly.

2.6 Feature genes were screened based on 
a random forest model

RF (29) serves as an ensemble learning algorithm according 
to decision trees. In random forest, multiple decision trees are 
constructed, and the final prediction result is obtained by voting 
or taking the average of each decision tree. In a random forest, 
each decision tree is trained on multiple “bootstrap” samples from 
the original dataset created by sampling with replacement. At the 
same time, at each node, the random forest randomly selects a 
subset of features for splitting, which helps reduce feature 
correlation and improves the model’s generalization ability. In 
constructing the random forest model, each gene was regarded as 
a feature. We calculated the frequency of each gene used as a split 
node in the construction of multiple decision trees to determine 
its contribution to classification results. Genes with high 
importance scores are likely to be  related to the disease. The 
selected feature genes were then intersected with those identified 
by the LASSO model, and univariate COX analysis was 
executed for these feature genes to generate a comprehensive 
gene profile.

2.7 Identification of key genes

Weighted Gene Co-expression Network Analysis (WGCNA) aims 
to test co-expressed gene modules (30), investigate the connections 
between gene networks and phenotypes, and analyze the core genes 
in the network. Therefore, we first calculated the soft threshold using 
the pickSoftTreshold function for exosome-related genes, with three 
being the best soft threshold. We subsequently constructed a scale-free 
network according to a soft threshold, constructed a topological 
matrix, as well as conducted hierarchical clustering. With a minimum 
requirement of 100 genes per module, we  dynamically cut and 
identified the gene modules to calculate Eigengenes. The modules 
with a correlation above 0.5 were combined, leading to the 
identification of four final modules. We performed Pearson correlation 
analysis to test the relation between modules and IS, leading to the 
identification of MEGs. These were subsequently screened as the key 
genes for this study.

2.8 Identifications of PPI network analysis 
and hub gene

The intersection of DEGs and MEGs was used for PPI analysis. 
We used the STRING3 (31) to establish PPI networks for selected 
genes. Key interacting genes were extracted from the STRING 
database to formulate a network model, which was visualized by 
Cytoscape (32). Additionally, the plugin CytoHubba (33) from 
Cytoscape was employed to analyze the hub genes within network.

3 https://string-db.org

2.9 Construct mRNA-miRNA and mRNA-TF 
interaction networks

The Encyclopedia of RNA Interactomes (ENCORI) database4 
(34), is a resource for exploring interactions involving microRNAs, 
non-coding RNAs (ncRNAs), and RNA-binding proteins (RBPs). This 
database provides data on interactions between microRNAs and 
ncRNAs, microRNAs and mRNAs, ncRNAs and RNAs, and RBPs 
with ncRNAs and mRNAs. These interactions are from CLIP-seq and 
degradome sequencing data, which include plant-specific analyses, 
and the database offers visual tools for investigating microRNA 
targets. Through miRDB database, target genes of miRNAs and 
functional annotation (35) were established. Additionally, 
we employed the ENCORI and miRDB databases to pinpoint miRNAs 
that engage with hub genes. We overlapped the mRNA-miRNA data 
to create the mRNA-miRNA interaction network.

The CHIPBase (36) database (version 2.0)5 utilizes DNA-binding 
protein ChIP-seq data to identify binding site matrices and their 
corresponding sequences. Additionally, it elucidates the relationships 
in transcriptional regulation between TFs and corresponding genes. 
We  searched both the CHIPBase (version 3.0) and hTF target 
databases for TFs binding to hub genes and presented them by the 
Cytoscape software.

2.10 Calculate the ischemic stroke and 
exosome-related gene score based on the 
IS dataset

The relative abundance of individual gene within the dataset 
sample was quantified using the single-sample gene set enrichment 
analysis (ssGSEA). The R package GSVA (37) was performed to 
estimate the hub gene scores for ischemic samples in the IS dataset 
derived from the hub gene expression matrix utilizing the ssGSEA 
algorithm. Subsequently, samples were categorized into high- and 
low-scoring groups according to the median score, which were then 
analyzed using GSEA and GSVA.

2.11 Gene set enrichment analysis and 
gene set variation analysis

We utilized GSEA (38) to identify variations in biological process 
(BP) among different groups. GSEA serves as a computational 
technique to analyze the statistical differences of a specific group of 
genes between two distinct biological conditions. It is widely for 
estimating the alterations in pathways and BP activity in samples from 
expression datasets. GSEA analysis was executed by the R package 
clusterProfiler, and a p-value<0.05 was defined as significantly enriched.

GSVA is used for gene set enrichment analysis of nonduplicate 
samples. Using GSVA, the score of the relevant gene set might 
be calculated, and the differential pathway scores of each sample could 
be analyzed to identify the differentially expressed pathways among 
the groups. We acquired the reference gene set “mh. All. V2023.1. 

4 https://starbase.sysu.edu.cn/

5 https://rna.sysu.edu.cn/chipbase/
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Mm. Symbols” from the MSigDB database and utilized the GSVA to 
analyze common pathways. We  employed the limma package to 
estimate score disparities between the two groups for various 
pathways, setting the parameter to p-value <0.05. Finally, a heatmap 
was generated to represent these differences.

2.12 Immune infiltration analysis based on 
CIBERSORT

CIBERSORT6 is an R tool (39) that utilizes linear support vector 
regression to disentangle the expression matrix of human or murine 
immune cell subtypes. This method relies on a recognized reference 
collection that offers a gene expression signature for 24 immune cell 
subtypes, enabling the calculation of immune cell infiltration. 
Interactions among immune cells can affect the immune pathways and 
functions within the BP of the immune system. Hence, we obtained 
immune infiltration based on the IS dataset and utilized the ggplot2 
to construct a bar chart illustrating the dispersion of immune cell 
infiltration. Additionally, we  generated a correlation heat map to 
reflect the correlation among immune cells and between prognostic 
genes and immune cells. Finally, we contrasted the scores of different 
immune cells between patients with IS and controls to pinpoint 
immune cells exhibiting varying levels of infiltration between the 
two cohorts.

2.13 Immune infiltration analysis based on 
MCPcounter

MCPcounter (40) was used to quantify the absolute abundances 
of eight immune cells and two stromal cells using the IS dataset 
expression matrix. For samples in each IS dataset, the abundance score 
was computed as the geometric mean of the gene expression values 
specific to each cell type, which were calculated independently for 
each sample.

2.14 Construct molecular subtypes based 
on disease-feature genes

Consensus clustering (41) was used to ascertain the quantity and 
membership of potential clusters. ConsensusClusterPlus (42) was 
employed for consensus clustering on the IS dataset, aiding the 
identification of distinct IS disease subtypes. Additionally, 
we performed Principal Component Analysis to analyze the different 
molecular subtypes of IS and to evaluate the associations among hub 
genes, feature genes, and immune cells across these subtypes.

2.15 Cell annotation

For Seurat objects with single-cell data, 19 clusters were visualized 
using t-sne. Artificial annotation of cell type marker genes identified 

6 https://cibersort.stanford.edu/

12 different cell types, containing vascular smooth muscle cells (SMC); 
perivascular fibroblast-like cells (FB); CNS border-associated 
macrophages (CAM); monocyte-derived cells (MdCs); endothelial 
cells (EC); ependymocytes (EPC); microglia (MG); neutrophils 
(NEUT); astrocytes (ASC); oligodendrocytes (OLG); lymphocytes 
(LYM); and pericytes (PC).

For the 12 annotated cell clusters, we calculated the DEGs between 
all cell clusters using the function “FindAllMarkers.” We  selected 
genes based on the benchmarks of |log2FoldChange| > 0.1 and p-value 
<0.05, which we designated as our single-cell DEGs for further analysis.

2.16 AddModuleScore scored the cell 
population

The AddModuleScore (43) was employed to compute the scores 
for cell types or BP according to gene expression data within a single 
sample. This approach allows us to quantitatively assess the relative 
abundance of different cell types or the activity levels of certain BP. The 
core concept of AddModuleScore involves defining a set of genes 
associated with each cell type or BP in advance and aggregating the 
expression values of these genes to obtain a single score that reflects the 
activity of that cell type or BP. We used hub genes as reference genes to 
calculate scores for different cell populations and ascertained the cell 
subset with the highest score as microglial cells for subsequent analysis.

2.17 Pseudo-time series analysis

A pseudo-time (44) analysis was employed to arrange cells along 
a trajectory according to the temporal sequence of their gene 
expression profiles. This method segments the sample into various 
differentiation states according to the gene expression patterns, 
generating an intuitive lineage development dendrograph that can 
predict cell differentiation and development trajectories. The results 
of pseudo-time analysis confirm the origin and endpoint of 
differentiation according to the trajectory allocation of cell types as 
well as expression changes of feature genes. For a subset of epithelial 
cells, we performed pseudo-time analysis to predict the developmental 
trajectories of the subpopulation of cells and analyze the changes in 
RNA modification-related genes over time.

2.18 Cellular communication analysis

Cytokines and membrane proteins facilitate communication 
among multicellular organisms, exerting a critical effect on modulating 
vital biological processes and ensuring the organism operates efficiently 
and in an orderly manner. Receptor-ligand-mediated intercellular 
communication is essential for the coordination of diverse BP, such as 
development, differentiation, and disease. Cell communication analysis 
determines interactions between different cells by counting the 
expression and pairing of receptors and ligands in different cell types. 
The R package CellPhoneDB (45) was used for cell communication 
analysis. CellPhoneDB mainly obtains interactions among different cell 
types by analyzing the expression profiles of receptors in one type of 
cell and ligands in another. CellPhoneDB not only contains the 
database-annotated receptors and ligands but also provides artificially 
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annotated protein families involved in cell communication, providing 
the subunit structure of receptors and ligands.

2.19 Animals

Wildtype male C57BL/6 mice (4–6 weeks old) were employed in 
in vivo studies. Mice were provided by the Guangdong Provincial 
Medical Experimental Animal Center. The animal research was 
conducted in compliance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals, and received approval 
from the Institutional Animal Care and Use Committee of Shenzhen 
University Medical School (Approval No.: IACUC-202300110). Mice 
were maintained under a 12 h light/dark cycle and were provided 
unrestricted access to both food and water. Isoflurane anesthesia 
(RWD, Shenzhen, China) was used for performing invasive procedures.

2.20 Middle cerebral artery occlusion 
in vivo

The procedure for MCAO was executed according to formerly 
described methods (46). Concisely, isoflurane (4% induction; 2% 
maintenance) was used to anesthetize the mice (4% induction, 2% 
maintenance) throughout the surgery, and the right carotid arteries 
were surgically exposed. A nylon monofilament, calibrated according 
to body weight, was inserted via the external carotid artery and 
progressed into the internal carotid artery, successfully blocking the 
origin of the middle cerebral artery for a duration of 90 min.

2.21 MRI in MCAO mice

An MRI scan was performed while mice were under anesthesia with 
1% isoflurane. All images were acquired by a 9.4 T/160 mm animal MRI 
system (United Imaging 9.4 T MRI), employing a 72 mm quadrature 
volume coil for excitation and two-channel coils for detection.

2.22 Cerebral blood flow measurement

Laser speckle flow imaging was employed to assess CBF after 
MCAO surgery. Concisely, after successfully anesthetized, mice were 
sanitized with iodophor before exposing the skull. The overlying fascia 
was carefully removed to the greatest extent possible, as well as 0.9% 
saline was applied to preserve the liquid level stable. This technique 
(RFLSI III, RWD, China) was employed to capture images and 
quantify CBF in the penumbra region.

2.23 Total RNA extraction and fluorescent 
quantitative PCR

Blood samples were obtained through cardiac puncture, without 
thoracotomy. Total RNA was obtained from the peripheral blood of 
the mice utilizing Trizol reagent. A commercial kit was employed for 
the synthesis of complementary DNA (cDNA), which was then 
diluted to a consistent concentration and deposited at −20°C. For the 

quantitative reverse transcription PCR (qRT-PCR), the reaction 
mixture contained 2 μL of cDNA, 10 μL of SYBR Premix Ex Taq II (Tli 
RNase H Plus), 1 μL each of forward and reverse primers, and 6 μL of 
double-distilled water (ddH₂O), resulting in a total volume of 
20 μL. The PCR protocol commenced with a preliminary activation 
phase of the polymerase at a temperature of 95°C for a duration of 
30 s. This was succeeded by 40 cycles consisting of a denaturation step 
at 95°C lasting for 5 s, followed by an annealing and extension phase 
at 60°C for 34 s. The threshold cycle (Ct) values for both the target 
gene and GADPH were evaluated utilizing Mx-Pro software 
(Mx3005p, Agilent, Santa Clara, CA, United  States). Relative 
expression levels were normalized by employing the double ΔCt 
method for calculation. Primer sequences are listed in the Table 1.

2.24 Statistical analysis

Data processing and statistical evaluations were performed 
utilizing R programming software (version 4.1.2, available at https://
www.r-project.org/). To compare continuous variables across the two 
groups, an independent Student’s t-test was employed for those 
variables exhibiting a normal distribution. Conversely, for variables 
that did not conform to a normal distribution, the Mann–Whitney U 
test, also known as the Wilcoxon rank-sum test, was utilized. All 
statistical p-values were calculated as two-sided. A p-value threshold 
of less than 0.05 was established to determine statistical significance.

TABLE 1 Primer sequences.

Primer names Primer sequences (5′-3′)

M-Icam1-S GTACTGTACCACTCTCAAAATAACTGG

M-Icam1-A TGGGGCTTGTCCCTTGAGT

M-Tlr2(1)-S CCAAAGTCTAAAGTCGATCCGC

M-Tlr2(1)-A AGCCCATTGAGGGTACAGTCGT

M-Tgfb1(2)-S CCCTGGATACCAACTATTGCTTC

M-Tgfb1(2)-A AGTAGACGATGGGCAGTGGCT

M-Cd14-S TCAAGTTCCCGACCCTCCAA

M-Cd14-A GCCCAGTGAAAGACAGATTGAG

M-Cd36(2)S GGAACTGTGGGCTCATTGCT

M-Cd36(2)A CAACTTCCCTTTTGATTGTCTTCTC

M-Cd86(3)-S AACGTATTGGAAGGAGATTACAGCT

M-Cd86(3)-A CCTGCTAGGCTGATTCGGCT

M-CD68-S GCCCAAGGAACAGAGGAAGACT

M-CD68-A GTGGTGGCAGGGTTATGAGTG

M-Lgals3-S CCAACGCAAACAGGATTGTTCTA

M-Lgals3-A TGATTTCCCGGAGGTTCTTCAT

M-Csf1(1)-S CAGGAGTATTGCCAAGGAGGTG

M-Csf1(1)-A AGCGCATGGTCTCATCTATTATGTC

M-FN1(RZ)-S AAGGCTGGATGATGGTGGACT

M-FN1(RZ)-A TCGGTTGTCCTTCTTGCTCC

M-GAPDH-S CCTCGTCCCGTAGACAAAATG

M-GAPDH-A TGAGGTCAATGAAGGGGTCGT
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3 Results

3.1 IS dataset processing and difference 
analysis

Initially, we integrated four datasets associated with IS, specifically 
GSE30655, GSE353383, GSE28731, and GSE32529. Subsequently, 
we employed the R package “sva” to eliminate any batch effects present 
within the data. Following this, we applied the “limma” package to 
normalize the merged dataset, ultimately generating the IS dataset 
necessary for further analysis. The IS dataset included 74 control 
samples and 89 IS samples. A boxplot is used to show the distribution 
of the samples before and after standardization. Figure 2A shows the 
samples before standardization, and Figure 2B shows the samples after 
standardization. Figure 2C shows the Principal Component Analysis 
(PCA) cluster map before the elimination of the batch effect, and 
Figure 2D shows the PCA cluster map subsequent to the removal of 
this effect. The PCA clustering plots indicate a successful mitigation 
of the batch effect across the data sets.

We conducted differential expression analysis with the limma 
package to compare IS and control samples. By applying thresholds of 
p < 0.05 and logFC>0.25, we identified 2,147 DEGs between the two 
groups, shown in Supplementary Table S1. Among them, 1,247 genes 
demonstrated upregulation, while 900 genes showed downregulation 
(Figure  2E). The patterns of DEGs between IS and controls were 
displayed using a heat map, which highlighted significant distinctions 
in the gene expression patterns between the two groups (Figure 2F).

Finally, GO and KEGG were conducted for 2,147 DEGs. The eight 
results exhibiting the lowest p-values were selected for display. GO 
analysis revealed that the DEGs were predominantly associated with BP 
including leukocyte migration, regulation of inflammatory responses, 
among others. The DEGs were primarily related to cellular component 
(CC) such as membrane rafts, and membrane microdomains. In terms of 
molecular function (MF), they were associated with cytokine activity, 
cytokine receptor binding, and extracellular matrix structural 
constituents, among others (Figure 2G). The data of complete GO analysis 
were displayed in Supplementary Table S2. KEGG analysis indicated that 
the DEGs were mainly associated with several pathways, including lipid 
and atherosclerosis (Mus musculus), and the TNF signaling pathway (Mus 
musculus), among others (Figure 2H). The KEGG enrichment analysis 
results are presented in Supplementary Table S3.

To investigate the exosome-related genes among the DEGs in 
mice, we  obtained exosome-related genes from Exocarta7, which 
includes a total of 1,715 mouse exosome-related genes. The Overlap 
of exosome-related genes and DEGs is shown in the Venn diagram 
(Figure 2I), and, as a result, 199 genes in the mouse IS dataset were 
obtained for subsequent analyses.

3.2 Feature genes were screened using the 
LASSO regression and RF model based on 
the IS dataset

To evaluate the association between exosome-related genes from 
cerebral ischemia samples and the disease, we  used the LASSO 

7 https://www.exocarta.org/

regression and RF models to screen the 199 genes identified from the 
previous analysis. First, the RF model was constructed for 
dimensionality reduction to predict the mean decrease in accuracy 
and mean decrease Gini (Figures 3A,B) of the genes, and the genes 
whose rank was greater than the median importance were selected. 
Next, we used the LASSO to the IS dataset to simulate and select the 
number of features, conducted a cross-test on gene coefficients 
(Figure 3C), determined the optimal Lambda value (Figure 3D), and 
detected 21 genes in the model as characteristic of IS. Finally, 
we identified 13 common feature genes as exhibited in a Venn diagram 
(Figure 3E): HSPA1B, HSPA1A, CD14, LGALS3, PTPN1, FAS, IPO5, 
CLEC7A, HSPA5, PIWIL2, APLN, NSDHL, and 4732460I02RIK. These 
genes were used for subsequent analysis.

3.3 Univariate COX analysis was conducted 
to determine whether the feature genes 
had a significant effect on ischemic stroke

We conducted univariate COX regression on these 13 feature 
genes in the IS dataset. The analysis revealed that the 13 genes 
significantly influenced IS outcomes (Figure  4A). Using the rms 
package, we then created a nomogram according to these 13 feature 
genes (Figure 4B). A panoramic analysis of the feature genes indicated 
that HSPA1B, HSPA1A, CD14, LGALS3, PTPN1, FAS, IPO5, 
CLEC7A, HSPA5, and PIWIL2 were upregulated, while APLN, 
NSDHL, and 4732460I02RIK were downregulated in the IS group 
(Figure 4C). The discrepancies in the expression of feature genes are 
presented in Figure 4D. And Figure 4E shows the localization of the 
feature genes on the mouse chromosome. HSPA1B and HSPA1A are 
located on chromosome 17; CD14 on chromosome 18; LGALS3, 
PIWIL2, and IPO5 on chromosome 14; PTPN1 and HSPA5 on 
chromosome 2; and FAS on chromosome 19. CLEC7A is located on 
chromosome 6, APLN and NSDHL are located on chromosome 
X. Finally, we tested the relationship between the featured genes and 
visualized them (Figure 4F). The results showed that HSPA1A and 
HSPA1B had the highest positive association (r = 0.95), while the 
strongest negative association was identified between APLN and 
4732460102RIK (r = −0.66).

3.4 WGCNA of exosome genes

We performed WGCNA on the IS dataset to identify co-expression 
modules. First, the samples were clustered (Figure 5A), and the outlier 
GSM805719 was excluded. A scatter plot analysis indicated that a soft 
threshold of 3 was optimal for further analysis (Figure 5B). The genes 
in the IS sample were clustered into four modules: MEbrown, 
MEyellow, MEblue, and MEturquoise (Figure  5C). Finally, 
we examined the relationship between the modules and the phenotype 
of each IS sample using Pearson analysis (Figure 5D) and selected the 
MEturquoise Module, which exhibited the strongest correlation, for 
subsequent analysis. The genes within this module, defined as module 
genes (MEGs), totaled 809. The list is presented in 
Supplementary Table S4. Subsequently, we formulated a Venn diagram 
to analyze the overlap between DEGs and MEGs (Figure 5E) and 
identified 164 key genes, which is detailed shown in 
Supplementary Table S5. STRING was used to depict the Protein–
protein Interaction (PPI) network, which was then imported into the 
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FIGURE 2

Data preprocessing and difference analysis for GSE30655, GSE353383, GSE28731, and GSE32529. (A) Boxplot prior to normalization; (B) boxplot 
subsequent to normalization; (C) PCA cluster prior to the elimination of the batch effect.; (D) PCA cluster subsequent to the elimination of the batch 
effect; (E) volcano plot of the differential analysis; (F) heatmap of DEGs between the ischemic and control groups (DEGs, differentially expressed 
genes); (G) GO enrichment analysis of DEGs; (H) KEGG enrichment analysis of DEGs; (I) overlap of exosome-related genes and DEGs (DEGs, 
differentially expressed genes).
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Cytoscape software. The maximal clique centrality algorithm, 
implemented through the CytoHubba plugin, was utilized to select the 
top ten genes. The identified hub genes included ICAM1, FN1, CD36, 

TLR2, CD86, LGALS3, CSF1, CD14, CD68, and TGFB1 (Figure 5F). 
Subsequently, we performed MCAO surgery on the mice to simulate 
IS. Following this procedure, CBF (Figure 5G) and MRI (Figure 5H) 

FIGURE 3

Screening of feature genes using LASSO regression and random forest models based on the IP dataset. (A) Average accuracy of feature gene prediction 
by the RF model; (B) the effect of gene heterogeneity predicted by the RF model; (C) LASSO regression 10-fold cross-validation plot; (D) LASSO 
regression lambda plot; (E) Intersection of the LASSO regression and RF models.
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assessments were performed to confirm the MCAO model. Peripheral 
blood samples were gathered for the quantitative PCR (qPCR) of hub 
gene expression. The results indicated significant upregulation of hub 
genes, including LGALS3, CD36, TLR2, ICAM1, and CD14, in the 
peripheral blood of MACO mice (Figure 5I).

3.5 Regulatory network of hub genes

The mRNA-miRNA data was utilized to estimate the miRNAs that 
related to the 10 hub genes and subsequently the result was visualized 
through the application of Cytoscape. The mRNA-miRNA interaction 

FIGURE 4

Nomogram for feature genes. (A) Univariate COX regression forest plot based on key genes; (B) nomogram based on key genes; (C) heatmap of 
feature genes between IS and Control groups; (D) difference of feature genes between IS and Control groups (*: p < 0.05; * *: p < 0.01; ***: p < 0.001); 
(E) chromosomal mapping of feature genes; (F) heatmap of correlation between feature genes (an absolute correlation coefficient r above 0.8 
indicates a strong correlation, while values between 0.3 and 0.8 suggest a weak correlation. Coefficients below 0.3 imply no correlation).
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FIGURE 5

WGCNA analysis according to the IS dataset. (A) Sample clustering and outlier removal; (B) determination of optimal soft power soft threshold; 
(C) analysis of the aggregation process of module genes; (D) heatmap between modules and clinical phenotypes; (E) Venn diagram of DEGs and 
MEGs; (F) PPI network of hub genes (where darker colors indicate the importance of nodes); (G) CBF assessment of NC and IS mice; (H) MRI of NC and 
IS mice; (I) qPCR of hub genes in mice (*: p < 0.05; **: p < 0.01; ***: p < 0.001). NC, negative control.
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FIGURE 6

Construction of hub gene regulatory network. (A) mRNA-miRNA network of hub genes, where red circular shapes indicate mRNAs and blue circular 
shapes indicate miRNAs. (B) mRNA-TF network of hub genes, where red circular shapes indicate mRNAs and blue circular shapes indicate TFs. TF, 
transcription factor.

network comprised four hub genes (CSF1, FN1, CD36, and LGALS3) 
and 52 miRNA molecules (Figure 6A). The specific interactions are 
listed in Supplementary Table S6.

We queried the CHIPBase database (version 3.0) for transcription 
factors (TFs) binding to the 10 hub genes. Finally, a TF-mRNA 
interaction network consisting of 10 hub genes (CD14, CD36, CD86, 
CD68, LGALS3, CSF1, FN1, ICAM1, TLR2, and TGFB1) and 349 TFs 
was obtained (Figure  6B). The specific relationships are listed in 
Supplementary Table S7.

3.6 Calculate the ischemic stroke & 
exosome-related gene score based on the 
IS dataset

Enrichment analyses GO and KEGG were performed on hub genes. 
GO analysis illustrated that these genes were primarily enriched in BP 
related to cellular responses to biotic stimuli, positive regulation of 
leukocyte migration and others. For CCs, they were primarily associated 
with extracellular exosomes, extracellular vesicles, and membrane rafts. 
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Regarding MFs, they were enriched in pattern Toll-like receptor binding, 
lipopolysaccharide binding, and other MFs (Figure 7A). The complete 
GO enrichment analysis results were shown in Supplementary Table S8. 
Additionally, KEGG analysis uncovered that the hub genes were related 
to rheumatoid arthritis, malaria, amoebiasis, and others in Mus musculus 
(house mouse) (Figure 7B). The KEGG enrichment analysis results are 
presented in Supplementary Table S9.

To explore the mh. All. V2023.1. Mm. Symbols reference gene set 
pathways in the IS high-score and low-score groups, we calculated the 
hub gene scores for each IS sample using the ssGSEA algorithm. This 
allowed us to represent the level of ischemic cerebral apoplexy in the 
samples. The IS samples were categorized into high- and low-score 
groups according to the median score. Subsequently, GSEA and GSVA 
were used to compare the two groups within the IS dataset. The GSVA 
results revealed that several pathways were more enriched in the high-
scoring group than in the low-scoring group, including IL2 STAT5 
signaling (p = 3.09E-20), complement activation (p = 1.37E-19), IL6 JAK 
STAT3 signaling (p = 1.29E-18), apoptosis (p = 6.36E-16), MTORC1 

signaling (p = 3.99E-15), inflammatory response (p = 2.03E-14), 
rejection (p = 3.17E-14), coagulation (p = 1.58E-12), early estrogen 
response (p = 4.35E-11), and interferon-gamma response (p = 4.38E-11). 
Figure 7C shows the enrichment of the relevant pathways. The results are 
presented in Supplementary Table S10.

The GSEA results highlight the top eight results with the smallest 
p-values, which include the following for Mus musculus (house 
mouse): lipid and atherosclerosis, JAK–STAT signaling pathway and 
others. Figure 7D illustrates the specific enrichment of the relevant 
pathways. The full GSEA enrichment analysis results are presented in 
Supplementary Table S11.

3.7 Immune infiltration analysis based on 
CIBERSORT

First, we employed CIBERSORT to analyze the infiltration of 25 
types of immune cell infiltrations in the IS dataset. After excluding 

FIGURE 7

GO, KEGG, GSEA, and GSVA analysis of hub genes grouped based on ssGSEA score. (A) GO enrichment analysis of hub genes; (B) KEGG enrichment 
analysis of hub genes; (C) heatmap of GSVA; (D) specific enrichment of GSEA. Statistical significance was set at p-value <0.05.
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columns with zero values, we identified the following immune cell 
types: mast cells, neutrophils, eosinophils, memory B cells, naive B 
cells, plasma cells, active CD8 T cells, naive CD8 T cells, M0 
Macrophage, M1 Macrophage, M2 Macrophage, regulatory T (Treg) 
cells, memory CD4 T cells, naive CD4 T cells, follicular CD4 T cells, 
Th1 cells, Th17 cells, Th2 cells, monocytes, gamma delta T cells, 
resting NK cells, active NK cells, activated dendritic cells, and 
immature dendritic cells. The infiltration levels of these 24 immune 
cell types were compared between the control and IS groups 
(Figures 8A,B). We found that the infiltration of naïve CD4 + T cells 
in the control group was higher than that in the IS group (p < 0.001). 
We analyzed and visualized the correlation between the 24 types of 
immune cells in the control and IS groups (Figures 8C,D). In the 
control group, the highest affirmative association was observed 
between immature dendritic cells and resting NK cells (r = 0.83, 
p = 9.66E-07). The inverse association between Treg cells and naive 
CD4+ T cells (r = −0.8, p = 7.10E-18), as well as the adverse 
relationship between CD4 + memory T cells and resting NK cells 
(r = −0.8, p = 9.78E-18), was stronger in the control group than in the 
IS group. The positive relation between naive CD4+ T cells and resting 
NK cells was strongest in the IS group (r = 0.78, p = 4.49E-19). 
Similarly, the inverse relationship between CD4+ memory T cells and 
resting NK cells was strongest in the IS group (r = −0.73, p = 7.10E-
18) (p = 7.66E-16).

3.8 Identification of molecular subtypes of 
IS based on feature genes

We conducted a consistent clustering analysis on the IS dataset 
samples utilizing the 13 feature genes described above. Figure 9A shows 
the process of cluster k-value selection for the IS dataset. Subsequently, 
a k-value of 3 was selected as the clustering result, dividing the IS 
dataset samples into three disease subtypes: A, B, and C. The clustering 
results are presented as a heat map (Figure 9B). Subsequently, through 
PCA, we showed the distribution of the different subtypes (Figure 9C). 
The PCA results indicated significant differences among the three IS 
molecular subtypes. Next, we compared the variations in the expression 
of feature genes among the various IS molecular subtypes. 
We subsequently found that HSPA1B expression was the highest in 
subtype C, HSPA1A was the highest in subtype C, CD14 was the 
highest in subtype A, LGALS3 was the highest in subtype A, and 
PTPN1 was the highest in subtype C. The highest expression was 
observed for FAS in subtype A, IPO5 in subtype A, CLEC7A in subtype 
A, HSPA5 in subtype C, PIWIL2 in subtype A, APLN in subtype C, and 
NSDHL in subtype C. The expression of 4732460102RIK was the 
highest in subtype B (Figure  9D). We  subsequently conducted an 
MCP-based immune infiltration analysis of the IS dataset to estimate 
the absolute abundance of each sample in the following cells: T cells, 
CD8+ T cells, NK cells, B-derived cells, monocytes/macrophages, 
monocytes/macrophages.1, mast cells, eosinophils, neutrophils, vessels, 
lymphatics, endothelial cells, and fibroblasts. The relationship between 
the expression of feature genes and immune abundance of MCP in 
disease subtypes A, B, and C was calculated. In subtype A (Figure 9E), 
LGALS3 exhibited the strongest positive correlation with monocytes/
macrophages and monocyte/macrophage 1 cells (r = 0.79, p = 4.84E-
10), as well as a strong positive connection to eosinophils (r = −0.62, 

p = 4.84E-10). Similarly, CLEC7A showed a strong positive relation to 
monocytes/macrophages (r = 0.74, p = 2.76E-08) and a negative 
relationship with eosinophils (r = −0.52, p = 4.66E-04). In subtype B 
(Figure  9F), CLEC7A was positively correlated with monocytes/
macrophages and monocyte/macrophage.1 cells (r = 0.62, p = 2.60E-
03), while CD14 exhibited a positive association with neutrophils 
(r = 0.61, p = 4.66E-04) and lymphatics (r = 0.58, p = 5.40E-03). 
Additionally, LGALS3 demonstrated the highest negative connection 
to eosinophil count (r = −0.65, p = 1.53E-03). In subtype C (Figure 9G), 
APLN exhibited the strongest affirmative relation to vessels (r = 0.75, 
p = 1.10E-05) and CLEC7A exhibited the strongest positive association 
with monocytes/macrophages. Additionally, 4732460102RIK was 
positively related to monocytes/macrophages and monocytes/
macrophages.1 (r = 0.64, p = 3.8E-04) cells. PTPN1 exhibited the 
highest adverse association with NK cells (r = −0.61, p = 9.8E-04), FAS 
exhibited the tightest negative linkage to mast cells (r = −0.55, p = 3.8E-
03), and IPO5 exhibited the strongest negative relation to fibroblasts 
(r = −0.55, p = 3.3E-03).

3.9 Correlation analysis between hub 
genes and immune cells in different 
molecular subtypes

Comparing the expression of hub genes among the 
aforementioned disease molecular subtypes (Figure 10A), we found 
that all hub genes—namely ICAM1, FN1, CD36, TLR2, CD86, 
LGALS3, CSF1, CD14, CD68, and TGFB1—exhibited the highest 
expression levels in subtype A. Using the immune cell infiltration 
obtained via MCP, we assessed the association between hub gene 
expression and immune cell abundance in disease subtypes A, B, and 
C. In subtype A (Figure  10B), LGALS3 exhibited the strongest 
positive correlation with monocytes/macrophages and monocytes/
macrophages.1 (r = 0.79, p = 4.84E-10) cells. CD36 was positively 
correlated with monocytes/macrophages and monocytes/
macrophages.1 (r = 0.73, p = 4.84E-10). CD36 and CSF1 had a strong 
affirmative relationship with monocytes/macrophages and 
monocytes/macrophages.1 (r = 0.66, p = 1.70E-06), while LGALS3 
exhibited a strong positive relation to eosinophils (r = −0.62, 
p = 0.73). The negative correlations between CSF1 and eosinophils 
(r = −0.6, p = 2.69E-05) and between CD36 and eosinophils 
(r = −0.58, p = 5.86E-05) were notably strong. In subtype B 
(Figure 10C), TLR2 showed the strongest correlation with monocytes/
macrophages and monocytes/macrophages.1 (r = 0.78, p = 3.31E-05) 
cells. The positive correlation between CD68 and monocytes/
macrophages and monocytes/macrophages.1 (r = 0.62), as well as 
between CD14 and neutrophils (r = 0.61, p = 2.9E-03) was significant. 
LGALS3 exhibited the highest negative relation to eosinophils 
(r = −0.65, p = 1.5E-03). In subtype C (Figure  10D), CD68 was 
associated with monocytes/macrophages and monocytes/
macrophages.1 (r = 0.73, p = 2.73E-05), CD36 was related to T cells 
(r = 0.68, p = 2.73E-05), CD36 was connected to eosinophils 
(r = 0.68, p = 1.5E-03) (p = 1.24E-04), and TLR2 positively correlated 
with monocytes/macrophages and monocytes/macrophages.1 
(r = 0.67, p = 1.6E-04) cells. The tightest inverse relation was 
identified between ICAM1 and eosinophils (r = −0.55, 
p = −3.75E-03).
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FIGURE 8

Analysis of 24 cellular immune infiltrates based on CIBERSORT. (A) Panorama of infiltration of 24 immune cells; (B) differences in each immune cell 
type and immune function (*: p < 0.05; * *: p < 0.01; ***: p < 0.001). Heatmap of correlations between immune cells based on CIBERSORT. 
(C) heatmap of relationship between immune cells in the control group; (D) heatmap of relationship between immune cells in the IS group. An 
absolute correlation coefficient r above 0.8 indicates a strong correlation, while values between 0.3 and 0.8 suggest a weak correlation. Coefficients 
below 0.3 imply no correlation. IS, ischemic stroke.
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3.10 Heterogeneity of single cell data

Quality control was performed on single-cell IS samples 
(GSM5319990, GSM5319991, and GSM5319992, referred to as IS1, 
IS2, and IS3) and control samples (GSM5319987, GSM5319988, and 
GSM5319989; labeled CL1, CL2, and CL3) using the Seurat package. 
Cells with mitochondrial gene content over 15%, fewer than 200 
features, or Unique Molecular Identifiers (UMI) greater than 20,000 
were excluded (Figure 11A). The remaining cells were then grouped 
into 19 single-cell subsets using t-SNE (t-Distributed Stochastic 
Neighbor Embedding) clustering (Figure 11B). Marker genes from the 
literature were used for annotation (Figure 11C). After removing two 

cell subsets, 16 and 18, which were not significantly expressed, cluster 
6 comprised vascular SMC, and cluster 17 comprised perivascular 
FB. Cluster 9 included CAM, Cluster 14 included MdCs, and Clusters 
0, 2, and 3 included EC. Cluster 15 comprised EPC, and clusters 1, 8, 
and 12 included MG. Cluster 13 comprised NEUT, cluster 4 comprised 
ASC, and clusters 10 and 11 comprised OLG. Cluster 7 comprised 
LYM, and cluster 5 comprised PC. This annotation resulted in a 
clustering map of 12 cell types for each sample (Figure 11D).

We then identified the expression of marker genes in 19 single-cell 
subsets of IS single-cell samples from different cell clusters. A bubble 
plot illustrated the expression of marker genes in various cell clusters 
(Figure 11C). At the same time, using a violin plot, we observed large 

FIGURE 9

Identification of molecular subtypes of IS disease according to the IS dataset. (A) Selection of k value in the clustering process; (B) clustering heatmap 
when k = 3; (C) PCA analysis results of various IS molecular subtypes; (D) expression distribution of core genes among different IS molecular subtypes; 
(E) relationship between immune cells and feature genes of IS subtype A; (F) relationship between immune cells and feature genes in IS subtype B; 
(G) Relationship between immune cells and feature genes of IS subtype C (*: p < 0.05; **: p < 0.01; ***: p < 0.001. An absolute correlation coefficient r 
above 0.8 indicates a strong correlation, while values between 0.3 and 0.8 suggest a weak correlation. Coefficients below 0.3 imply no correlation).
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differences in marker gene expression between different cell clusters. 
In Figure 11E, ACTA2 gene was markedly expressed in cluster 6, 
LY6C2 in cluster 7, and LY6D in cluster 14. ENPP2 was abundantly 
expressed in clusters 5 and 10, while HEXB was strongly expressed in 
clusters 1, 8, and 12. LUM was prominently expressed in cluster 15, 
LAT in cluster 14, and KCNJ8 in cluster 11. Additionally, SSPO was 
markedly expressed in cluster 17, PF4 in cluster 9, and S100A8 in 
cluster 13.

3.11 Analysis of the difference and 
proportion of single-cell groups

We analyzed the expression variations among cell populations 
within the IS samples and visualized the top 20 diagnostic markers 
using a heatmap (Figure 12A). ITM2A and ARG1 were abundantly 

expressed in EC cells. HEXB gene was markedly expressed in MG 
cells. ALDOC gene was strongly expressed in ASC cells. ENPP2 and 
TTR genes were markedly expressed in PC cells. ACTA2 gene was 
strongly expressed in SMC cells. LY6C2 and CCR2 genes were 
markedly expressed in LYM cells. PF4 was strongly expressed in CAM 
cells. KCNJ8, PLP1, and DCN genes were markedly expressed in OLG 
cells. S100A8 gene was markedly expressed in NEUT cells. LY6C2 was 
markedly expressed in MdC. LUM and DCN were prominently 
expressed in EPC cells. TMEM212 gene was highly expressed in 
FB cells.

We also estimated the disparity in the proportion of cell groups in 
cerebral ischemia and normal samples and found that the proportion 
of cells in the two groups was basically the same: EC cells had the 
highest proportion, followed by MG cells, while FB cells had the 
lowest proportion (Figure 12B). The proportions of EC and MG cells 
were greater in the control group than those in the IS group.

FIGURE 10

Correlation between hub genes and MCPcounter among different IS subtypes. (A) Expression of hub genes among different IS molecular subtypes; 
(B) relationship between immune cells and hub genes in IS subtype A; (C) correlation between immune cells and hub genes in IS subtype B; 
(D) relationship between immune cells and hub genes in IS subtype C (*: p < 0.05; **: p < 0.01; ***: p < 0.001. An absolute correlation coefficient r 
above 0.8 indicates a strong correlation, while values between 0.3 and 0.8 suggest a weak correlation. Coefficients below 0.3 imply no correlation).
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FIGURE 11

Quality control and clustering annotation of single-cell data. (A) Gene count, RNA count, and percentage of mitochondria in samples before quality 
control; (B) gene count, RNA count, and percentage of mitochondria in samples after quality control; (C) t-SNE cluster map of 19 cell populations in 
different samples; (D) t-SNE cluster map of 12 cell types; (E) Violin plot of all marker genes expressed between different cells.
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3.12 Score of feature genes in single cell 
data and subgrouping of cell subtypes

To test the expression score of transcriptomic feature genes within 
single-cell datasets, we utilized the AddModuleScore function from 
the Seurat package. This allowed us to evaluate the expression of 
HSPA1B, HSPA1A, CD14, LGALS3, PTPN1, FAS, IPO5, CLEC7A, 
HSPA5, PIWIL2, APLN, NSDHL, and 4732460I02RIK in each cell 
population. As a result, we obtained scores reflecting the expressions 
of these feature genes. The scores of each sample were presented in 
Figure 13A, demonstrating that the IS group has a greatly increased 

score than that of the CL group. We visualized the score of each cell in 
the t-SNE cluster map, as illustrated in Figure 13B, clearly indicating 
that MG cells have the highest score combined with the corresponding 
t-SNE cluster map Figure 11D.

Utilizing the uniform manifold approximation and projection 
technique, we  identified and annotated four distinct subtypes of 
microglia based on previously described marker genes. Ultimately, 
we classified the microglia into four subsets: MG0, MG1, MG2, and 
MG3 (Figure 13C). The expression of marker genes in the cell subsets 
was presented with a bubble plot (Figure 13D). We found that MG0 
cells mainly expressed GPR34 and P2RY12 genes. MG1 cells primarily 

FIGURE 12

The proportions of EC and MG cells. (A) Heat map of marker genes between cell clusters in cerebral ischemia samples; (B) proportion of cell groups in 
the cerebral ischemia group and the control group.
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FIGURE 13

Cell subtype grouping based on feature gene score. (A) Feature gene score of each sample; (B) visualization of feature gene scores in t-SNE cell 
groups; (C) t-SNE cluster map of MG cell subtypes; (D) bubble plot of MG cell marker genes.

expressed CCL12, CCL2, CCL7, and IER3 genes. MG2 cells mainly 
expressed LGALS3, LPL, SPP1, FTH1, and MMP12 genes. MG3 cells 
mainly expressed ISG15 and IRF7 genes.

3.13 MG cell population for pseudo-timing 
analysis and cell communication analysis

We explored the developmental trajectories of the four types 
of MG cells using quasi-temporal analysis and demonstrated the 
developmental trajectories of MG cells through differentiation 
and development trajectory plots (Figure 14A) and differentiation 
and development sequence plots (Figure  14B). Developmental 
trajectories of the subtypes were inferred as MG2, MG1, MG0, 
and MG3.

To explore the receptor-ligand interactions among MG cell 
subsets, we  presented the strength of the receptor-ligand 
interactions among different cell subsets in the form of bubble 
plots (Figure 14C). We  found that APP_CD74 receptor-ligand 
pairs exhibited strong interaction strength between MG1 and 
MG3 cells. Additionally, LGALS9_P4HB receptor-ligand pairs 
demonstrated high interaction strength between MG2 and MG1 
cells. The interaction between LGALS9_P4HB receptor-ligand 
pairs was stronger in MG2 cells than in MG2 cells. Furthermore, 
CCL3_CCR1 receptor-ligand pairs exhibited a strong interaction 
strength between MG2 and MG3 cells. The detailed results are 
presented in Supplementary Table S12.

3.14 Enrichment analysis of single cell data

Differential gene analysis was conducted among different subgroups 
of MG cells, resulting in the identification of 483 DEGs selected based 
on the criteria of |log2FoldChange| > 0.5 and p-value <0.05. 
We performed GO and KEGG enrichment analyses of the DEGs. GO 
analysis indicated that the 483 DEGs were primarily enriched in BP, 
such as myeloid leukocyte migration and others. Additionally, they were 
significantly enriched in CCs, including apical part of the cell, 
membrane rafts and others. For MF, they were primarily associated with 
extracellular matrix binding, integrin binding and others (Figure 15A). 
Complete GO enrichment analysis is listed in Supplementary Table S13. 
KEGG analysis revealed that hub genes correlated to several pathways, 
including fluid shear stress and atherosclerosis in Mus musculus (house 
mouse) and others (Figure 15B). The KEGG enrichment analysis results 
are presented in Supplementary Table S14.

4 Discussion

IS is the primary cause of morbidity and mortality worldwide (2). 
The complex and poorly understood pathophysiology of IS has limited 
advancements in prognosis and prevention. Exosomes facilitate 
intercellular communication by shuttling genetic information and 
proteins between cells, playing a crucial role in various cellular 
processes. Moreover, following brain injury, exosomes are generated 
by brain cells and activate various responses. Thus, specific exosomes 
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or their cargos can be utilized for the clinical assessment of IS (47, 48). 
Following IS, neuroinflammation triggers the release of 
pro-inflammatory factors after the activation of various cells, including 
glial cells, leukocytes, and monocytes (49). Following cerebral 

ischemia, microglia display changes in morphology and phenotype 
(50). M1 microglia secrete pro-inflammatory factors, worsening 
inflammation, whereas M2 microglia exert anti-inflammatory effects 
during hypoxic and glucose-deprived ischemic injury (51). Different 

FIGURE 14

Pseudo-timing analysis and cell communication analysis. (A) Developmental trajectories of MG cell subtypes (different colors represent different cell 
subtypes); (B) MG cell subtype differentiation and development time sequence diagram (colors range from dark to light to indicate the progression 
over time); (C) ligand interaction bubble diagram between MG cell subsets (the color of the bubbles transitions from blue to red, indicating the strength 
of interaction, with blue representing weak interactions and red representing strong interactions. Additionally, the size of the bubbles varies from large 
to small, reflecting the significance of the interactions, with larger bubbles indicating stronger significance).
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FIGURE 15

GO and KEGG analysis of differentially expressed genes between cells. (A) GO enrichment analysis of MG cells; (B) KEGG enrichment analysis of MG 
cells (statistical significance was set at p < 0.05). MG, microglia.

microglial subtypes have distinct functions that vary over time and 
under different conditions.

From a clinical relevance perspective, our analysis suggests that 
these exosome-related genes may be  associated with the disease 
progression, inflammatory response, or neuronal injury repair in 
ischemic stroke. Therefore, these genes could potentially serve as 
biomarkers for early diagnosis or risk assessment of the disease (47, 
48). As carriers of bioactive molecules, exosomes and their associated 
genes may have significant application value in developing new 
therapeutic strategies. For instance, by regulating the expression of 
these genes, it may be possible to influence the biological functions of 
exosomes, thereby improving the pathological processes of ischemic 
stroke. Additionally, using engineered exosomes to deliver specific 
RNA or proteins could become a future therapeutic strategy. 
Furthermore, intervention strategies targeting these genes, such as 
RNA interference or monoclonal antibody therapy, may offer new 
treatment options for patients with ischemic stroke.

Recent studies have highlighted the complex interactions between 
exosomes and neuroinflammation (52). On one hand, exosomal 
miRNAs negatively regulate target gene; for example, M2 microglia-
derived exosomes alleviate ischemic injury and increase neuronal 
viability by downregulating their targets (53). On the other hand, 
exosomal miRNAs act as ligands that bind to receptors; for instance, 
exosomal miR-21 and miR-29a bind to TLRs, inducing NF-κB 
activation and the release of pro-inflammatory cytokines (54).

Hence, we focused on integrating multi-omics data and advanced 
analytical methods to explore the mechanisms of IS and its association 
with exosome-related genes. In this study, we identified 13 feature 
genes and 10 hub genes and conducted enrichment analysis to identify 
their biological mechanisms. The infiltration status of the 24 immune 
cells was determined by immune infiltration analysis, and 

we  examined their correlations with feature genes and hub genes 
across different molecular subtypes of IS. Single-cell sequencing 
revealed heterogeneity among MG subpopulations with significant 
differences in marker expression. The developmental trajectories of 
these subtypes were inferred as MG2, MG1, MG0, and MG4 cells.

LGALS3, also known as GALECTIN-3, participates in various 
cellular processes (55). Differences in the effects of LGALS3 on IS are 
likely attributable to the time-dependent and context-specific nature 
of its actions (56). In this research, LGALS3 was identified as a hub 
gene, and qPCR revealed that its expression was significantly elevated. 
This corroborates earlier research results that investigated the 
expression of core genes related to neuroinflammation in the IS (57). 
Moreover, our study identified that LGALS3 interacts with various 
proteins, including CD36, to form networks. Similarly, a study on 
demyelination observed that LGALS3 can modulate microglial cells 
via the PPARγ-CD36 pathway (58). Additionally, recent research has 
investigated the therapeutic potential of LGALS3 by conjugating it 
with glucosamine to mitigate inflammatory responses following IS 
(59). Given the complexity and uncertainty of LGALS3 in IS, impactful 
findings have yet to be realized. However, as a biomarker for diagnosis 
and prognosis, LGALS3 demonstrates substantial advantages. CD14 
and TLR2 were also identified as hub genes in our study, and their 
expression levels were confirmed to be  significantly elevated by 
qPCR. As a coreceptor of TLR, CD14 has been shown to modulate 
immune responses via TLR2-derived peptides, which might be  a 
prosperous strategy (60). Moreover, specific antibodies could facilitate 
inflammation via activating the TLR2/CD14 receptor complex, which 
contributes to atherosclerosis-related complications (61). Therefore, 
we hypothesize that the elevated expression of CD14 and TLR2 might 
be  important biomarkers for the exacerbation of IS, warranting 
further extensive experimental validation.
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IS leads to neuronal necrosis and triggers inflammatory responses. 
Cytokines serve as the primary mediators of this inflammatory 
reaction, with both pro-inflammatory and anti-inflammatory 
cytokines being released in the ischemic brain tissue, exerting dual 
effects on cell survival (62). The JAK/STAT pathway is an essential 
participant in the cellular response to cytokines (63). However, the 
function of JAK/STAT signaling remains controversial. LGALS3 can 
enhance the phosphorylation of JAK2, STAT3 and STAT5, thereby 
promoting glial cells to generate increased levels of pro-inflammatory 
mediators and exhibit activated characteristics (64). Additionally, the 
application of inhibitors to block the phosphorylation of JAK2 and its 
downstream molecules, STAT1 and STAT3, significantly reduces the 
expression of renal ICAM-1, thereby alleviating the damage associated 
with renal ischemia–reperfusion (65). In our study, the JAK/STAT 
signaling pathway was enriched in GSEA and GSVA. Notably, 
LGALS3 and ICAM-1, identified as hub genes, showed elevated 
expression in the IS group using qPCR. These findings suggest that 
modulation of the JAK/STAT pathway might be a promising candidate 
target for early intervention in patients with IS. Despite the current 
research indicating the protective effects of JAK/STAT in IS, such as 
the upregulation of miR-216a targeting JAK2 to mitigate ischemic 
neuronal injury (66), there remains a pressing need for 
further investigation.

Following acute IS, immune mediators rapidly trigger 
pro-inflammatory signals that activate resident cells and facilitate 
the influx of diverse inflammatory cells into the ischemic region, 
thereby influencing brain injury. Therefore, immune analysis of 
exosomal genes in IS is of great significance. In our immune 
infiltration analysis, the infiltration of naïve CD4+ T cells was 
higher in the control group than in the IS group. This high 
infiltration indicates that naïve CD4+ T cells proliferate and 
differentiate into several effector subsets, such as conventional T 
helper  and Treg cells, after IS. However, specific regulatory 
mechanisms underlying this process remain unclear. Notably, Treg 
cells and naive CD4+ T cells were negatively correlated. Despite 
the controversy surrounding Treg dynamics in IS, their 
neuroprotective role remains unclear. A previous study has shown 
that Treg cells increased the infarction area following IS and 
worsened neurological function in mouse experiments (67). In 
contrast, other researchers have found that Treg cells act as 
neuroprotective modulators of brain inflammation following IS 
and can prevent the growth of secondary infarctions (68). 
Considering the immunosuppressive role of Treg cells, it may 
represent a potential strategy for targeted IS therapy in the future. 
Furthermore, through our identification of molecular subtypes in 
IS, we found that LGALS3 and CD14 are positively correlated with 
monocytes/macrophages and neutrophils, respectively, as 
previously reported. Previous studies on myocardial infarction 
have demonstrated that Lgals3 can promote the recruitment of 
macrophages to the infarcted myocardium and exerts a vital role 
in the repair phase (69). Moreover, LGALS3 combines with 
glycoconjugates on the cell surface, promoting macrophage 
adhesion and chemotaxis toward damaged tissues (70). Likewise, 
CD14-regulated responses can recruit neutrophils and 
macrophages to activate TNF signaling (71). However, in the 
context of IS, these effects have been scarcely reported. These 
findings indicate that CD14 and LGALS3 may serve as 

immunotherapeutic targets for neuroinflammatory responses 
associated with IS, which continue to be  a significant focus 
of research.

Based on the results of immune infiltration and single-cell 
analysis, the exosome-related feature genes identified in this study 
(LGALS3, CD14, TLR2) regulate the neuroinflammatory process 
following ischemic stroke through multidimensional mechanisms. 
LGALS3 may play a role in promoting the release of inflammatory 
factors and modulating microglial cell polarization. LGALS3 activates 
microglia via the JAK/STAT pathway (64), promoting the release of 
inflammatory factors, while also regulating peripheral neurons and 
immune cells through exosomal miRNA transmission. CD14 and 
TLR2 may activate the NF-κB pathway by recognizing damage-
associated molecular patterns (DAMPs), thereby promoting the 
production of pro-inflammatory cytokines. Furthermore, exosomal 
miRNAs may regulate immune responses by targeting these genes. 
The high expression of LGALS3 in the MG2 microglial cell subset, 
which predominates early after stroke, suggests its potential role in 
promoting a pro-inflammatory environment, whereas MG0, in its 
resting state, may exert a protective effect.

MG, the resident immune cells in the brain, constitutes 
approximately 20% of glial cells. In their resting state, microglia are 
characterized by small cell bodies with broad, branching processes. 
Microglial cells are constantly active, continuously surveying the brain 
to preserve tissue integrity (72). Following ischemic events, these cells 
become rapidly activated within a few minutes, undergoing changes 
in both shape and function. As a result, various microglial 
subpopulations play distinct roles; however, the precise mechanisms 
driving these changes remain unclear. Our single-cell sequencing 
analysis revealed that MG cells constituted a significant proportion of 
the cell population in the samples. Additionally, the HEXB gene was 
highly expressed in these cells. Previous studies identified the specific 
promoter activity of HEXB in the MG and have aimed to develop new 
genetic tools to further investigate microglia functions in the CNS, 
recognizing HEXB as a consistently expressed core microglial gene 
(73, 74). Subsequently, by combining 13 feature genes related to 
exosomes, we  identified four distinct MG subtypes, annotated as 
MG0, MG1, MG2, and MG3. Each subtype highly expressed different 
genes, indicating possible divergent roles in IS. Notably, MG2 cells 
were distinguished by the expression of genes related to inflammation 
and phagocytosis, including LGALS3, FTH1, LPL, and SPP1, which 
are markers of activated MG. In contrast, MG0 cells predominantly 
expressed the P2ry12 gene, a marker associated with relatively resting 
microglia. Our findings indicate that MG2 (highly active microglia) 
precedes MG1 (intermediate activity state) in developmental 
trajectories, with resting MG0 positioned last. This finding confirms 
that microglial activation in the IS not a straightforward transition 
from a resting to an active state but rather exists in a dynamic 
equilibrium, allowing for rapid and variable responses and multiple 
instances of reversal. Notably, a previous study reported that microglial 
development progressed from a resting state to a highly active state, 
using LASSO, SVM-RFE, and Boruta analyses combined with single-
cell sequencing analysis (75), which contrasts with our findings. 
However, owing to the differences in research methods and processing 
conditions, these paradoxical results further suggest that microglial 
behavior may be  relatively complex and diverse across different 
contexts and time points. Considering the complex biological 
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activities and interaction mechanisms of MG, our study may also 
reveal a novel mechanism that requires further investigation.

5 Limitation

Although a detailed bioinformatics analysis was performed in our 
research, several potential constraints need to be recognized. First, our 
study relied primarily on publicly available datasets, which might 
introduce batch effects despite our efforts to mitigate them through 
normalization and batch-effect removal techniques. Moreover, our 
study lacks in-depth experimental validation, and the identified key 
genes and pathways still need to be confirmed through laboratory 
experiments to establish their biological relevance and potential as 
therapeutic targets. Finally, the absence of clinical validation indicates 
that the translational potential of our findings remains speculative. 
Future studies should address these limitations by incorporating 
larger, independent cohorts and conducting rigorous experimental 
and clinical validation. Future studies will require more comprehensive 
experiments to further validate the role of the identified genes in 
ischemic stroke (IS). This includes constructing overexpression and 
knockout models to assess their impact on neuronal/astrocyte 
survival, inflammation, and apoptosis in IS progression. Using the 
MCAO mouse model, key gene expression can be manipulated via 
AAV infection or shRNA interference, followed by evaluation of 
neuronal survival, inflammation, and behavioral changes. RNA-seq or 
single-cell sequencing can be employed to investigate the signaling 
pathways, while co-immunoprecipitation and ChIP-qPCR will explore 
interactions with miRNAs, transcription factors, and downstream 
signaling proteins.

In future studies, we recommend employing a multidimensional 
research strategy to further enhance the robustness of the conclusions 
and their clinical translational value. First, it is necessary to validate 
the expression stability and prognostic predictive efficacy of key genes 
(e.g., LGALS3, CD14) in independent external cohorts, while 
systematically analyzing their molecular functions in cell/animal 
models using lab techniques such as RT-qPCR and Western blot. 
Second, techniques such as immunohistochemistry and single-cell 
spatial transcriptomics should be employed to validate gene expression 
profiles at the protein level and across cell subpopulations, revealing 
their spatial dynamics in pathological processes such as blood–brain 
barrier disruption and neuronal pyroptosis. At the clinical 
translational level, integrating proteomics, metabolomics, and imaging 
data to establish multimodal predictive models is essential, along with 
prospectively tracking gene expression and neurological function 
scores (e.g., NIHSS). Finally, incorporating artificial intelligence 
algorithms to construct a dynamic predictive framework of “gene 
expression-immune microenvironment-clinical outcomes” will 
provide a cross-scale evidence chain for precise subtype classification 
and targeted therapy in ischemic stroke.

6 Conclusion

Conclusively, we offer a detailed analysis of the role of exosome-
related genes in IS. Our findings identified exosome-related genes, 
elucidated their potential regulatory networks, and highlighted the 
roles of LGALS3 and CD14 in the development of IS.
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