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Introduction: Electroencephalography (EEG) is a popular technique that provides 
neurologists with electrographic insights and clinical interpretations. However, 
these insights are predominantly presented in unstructured textual formats, 
which complicates data extraction and analysis. In this study, we  introduce a 
hierarchical algorithm aimed at transforming unstructured EEG reports from 
pediatric patients diagnosed with epilepsy into structured data using natural 
language processing (NLP) techniques.

Methods: The proposed algorithm consists of two distinct phases: a deep 
learning-based text classification followed by a series of rule-based keyword 
extraction procedures. First, we categorized the EEG reports into two primary 
groups: normal and abnormal. Thereafter, we systematically identified the key 
indicators of cerebral dysfunction or seizures, distinguishing between focal 
and generalized seizures, as well as identifying the epileptiform discharges and 
their specific anatomical locations. For this study, we retrospectively analyzed 
a dataset comprising 17,172 EEG reports from 3,423 pediatric patients. Among 
them, we  selected 6,173 normal and 6,173 abnormal reports confirmed by 
neurologists for algorithm development.

Results: The developed algorithm successfully classified EEG reports into 1,000 
normal and 1,000 abnormal reports, and effectively identified the presence of 
cerebral dysfunction or seizures within these reports. Furthermore, our findings 
revealed that the algorithm translated abnormal reports into structured tabular 
data with an accuracy surpassing 98.5% when determining the type of seizures 
(focal or generalized). Additionally, the accuracy for detecting epileptiform 
discharges and their respective locations exceeded 88.5%. These outcomes 
were validated through both internal and external assessments involving 800 
reports from two different medical institutions.
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Discussion: Our primary focus was to convert EEG reports into structured 
datasets, diverging from the traditional methods of formulating clinical notes or 
discharge summaries. We developed a hierarchical and streamlined approach 
leveraging keyword selections guided by neurologists, which contributed to the 
exceptional performance of our algorithm. Overall, this methodology enhances 
data accessibility as well as improves the potential for further research and 
clinical applications in the field of pediatric epilepsy management.
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1 Introduction

Electroencephalography (EEG) is a noninvasive diagnostic 
modality that is specifically designed to record neuronal activity 
within the brain. This technique has demonstrated considerable 
efficacy in identifying clinically significant cortical electrophysiological 
markers in individuals suffering from neurological disorders. As such, 
EEG assessments serve as preliminary diagnostic measures for 
neurological conditions, especially epilepsy (1–3).

Typically, EEG reports are composed of unstructured data 
formatted as free-text, which varies in stylistic presentation depending 
on the individual neurologist. This variability necessitates that 
neurologists must manually scrutinize each report to aggregate the 
data into a cohesive database—a process that is both time-consuming 
and labor-intensive. Consequently, the potential for large-scale data 
analysis and related clinical applications utilizing EEG reports has 
been significantly curtailed. Despite these reports containing valuable 
clinical insights vital for the interpretation of patient EEG recordings, 
no systematic efforts have been achieved to convert this information 
into structured, tabulated datasets. In response to these challenges, 
recent advancements in natural language processing (NLP) 
techniques have emerged as promising solutions for managing 
unstructured data in electronic medical records (EMR) and 
identifying information from text-heavy EEG reports of epilepsy 
patients (4). Various methodologies involving rule-based systems, 
machine learning algorithms, and deep learning approaches have 
been implemented for a spectrum of tasks such as information 
extraction, text classification, and summarization (4–6). These 
innovations offer the potential to revolutionize the handling of EEG 
reports, thereby enhancing their utility in clinical and 
research settings.

Despite the significant advancements in information extraction 
and text classification, the majority of existing studies have primarily 
focused on clinical notes and discharge summaries instead of EEG 
reports. Researchers have utilized both rule-based and deep learning 
methodologies to extract epilepsy- and seizure-related variables from 
these free-text documents. The key variables include epilepsy 
phenotypes (7, 8), seizure onsets (9), seizure frequency (8, 10, 11), 
seizure types (8, 10, 12), and EEG patterns (13). Additionally, certain 
studies have focused on classifying patients based on their seizure-free 
status (11, 12). However, the extensive array of target variables for 
keyword extraction from clinical notes and summaries presents 
challenges in data selection strategies when applying NLP techniques. 
In contrast, EEG reports typically offer more concise and focused 
information, particularly regarding the electrographic findings of 

patients. This structured format allows for effective analysis in a time-
sequenced manner when processed sequentially.

Therefore, in the present study, we  propose a hierarchical 
algorithm designed to transform unstructured EEG reports from 
pediatric patients diagnosed with epilepsy into structured data that is 
clinically relevant, leveraging advanced NLP techniques. This 
algorithm was designed to achieve the following objectives: (1) 
convert large volumes of free-text EEG reports into tabular data using 
deep learning and simplified rule-based methods with high accuracy 
and (2) ensure easy adaptability to various EEG report formats 
through external validation.

2 Methods

2.1 Dataset

We retrospectively compiled 17,172 reports from 3,423 pediatric 
patients (mean age: 10.8 ± 6.0 years) diagnosed with epilepsy. These 
reports were sourced from the clinical data warehouse of Seoul 
National University Bundang Hospital (SNUBH), situated in 
Seongnam, Republic of Korea. Two neurologists, identified as 
H.K. and J.C., meticulously reviewed all the EEG reports to categorize 
them as either normal or abnormal. A report was deemed normal if it 
revealed no abnormal findings, whereas an abnormal report was 
characterized by the presence of at least one abnormal finding. Based 
on the annotations of the neurologists, we identified 6,173 reports as 
normal and 10,822 as abnormal. To facilitate a balanced dataset, 
we randomly selected 6,173 abnormal reports to match a 1:1 ratio of 
normal to abnormal cases. For the purposes of developing our 
classification algorithm, we further narrowed our selection to 5,173 
reports from both the normal and abnormal categories. The remaining 
1,000 reports from each category were reserved for the evaluation of 
our classification models and internal validation.

Additionally, we conducted a retrospective collection of 400 EEG 
reports from 229 pediatric patients (age: 9.3 ± 7.8 years) with epilepsy, 
sourced from the clinical data warehouse of Seoul National University 
Children’s Hospital (SNUCH), which is an independent tertiary 
facility located in Seoul, Republic of Korea. The same neurologists, 
H.K. and J.C., reviewed these 400 reports and confirmed that they 
were 200 normal and 200 abnormal reports. All EEG reports from 
SNUCH were employed for the external validation. The overall study 
process is illustrated in Figure 1.

This research was granted approval by the Institutional Review 
Board at Seoul National University Bundang Hospital (Approval No. 
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B-2312-873-107). Due to the retrospective nature of the study, the 
requirement for informed consent was waived. The research adhered 
to the ethical principles outlined in the Declaration of Helsinki.

2.2 Algorithm development

We executed a two-step process to transform the free-text EEG 
reports into structured tabular data. The first step involved classifying 
the EEG reports into two categories: normal and abnormal, using a 
deep learning-based model. The primary aim of this classification was 
to identify the abnormal EEG reports, which encapsulate critical 
findings from neurologists concerning various abnormalities. The 
second step focused on extracting specific keywords from the 
identified abnormal EEG reports using rule-based methodologies. The 
main goal of this keyword extraction was to pinpoint significant 
abnormal findings that could provide insights into the condition of 
patients diagnosed with epilepsy. This second step comprised three 
sequential procedures for keyword extraction. Below, we provide a 
comprehensive overview of our hierarchical algorithm:

(1) Step 1: Classification of normal and abnormal reports.

EEG reports were categorized as either normal or abnormal 
through the application of a deep learning-based classification 
model. Reports classified as normal did not proceed to further 
analysis. Conversely, those identified as abnormal prompted the 

execution of the second phase, as detailed below. Note that abnormal 
reports may include keywords that suggest both normal and 
abnormal conditions (e.g., “This is a normal waking and moderately 
abnormal stage I-II…”). In cases where a report contained solely 
abnormal keywords, it was categorized as abnormal irrespective of 
the model’s output.

(2) Step 2: Keyword extraction.

The extraction of specific keywords from the abnormal EEG 
reports was performed using rule-based methods that relied on 
regular expressions and the spaCy library in Python. This method 
facilitated the identification of relevant keywords that denote 
significant abnormal findings. All abnormal reports were structured 
into two distinct sections: impression and clinical correlation. Initially, 
each abnormal report was divided into these two sections, and one 
section was selected based on the targeted keywords. The extraction 
of keywords was conducted through a series of three hierarchical 
procedures, detailed as follows:

 A Extraction of keywords related to dysfunction or seizure from 
the clinical correlation section: In instances where an abnormal 
report indicated dysfunction, it was inferred that the 
corresponding background EEG activity was abnormal (e.g., 
cerebral dysfunction or occipital lobe dysfunction). Conversely, 
if the report identified seizure activity, it was determined that 
the corresponding EEG exhibited characteristics indicative of 

FIGURE 1

Overall process of this study. Normal and abnormal electroencephalography (EEG) reports (5,173 each) from the Seoul National University Bundang 
Hospital (SNUBH), located in Seongnam, Republic of Korea, were used for algorithm development. Normal and abnormal reports (1,000 each) of 
SNUBH were used for classification model evaluation. Among the 1,000 normal and 1,000 abnormal reports, randomly selected 200 normal and 200 
abnormal reports were used for internal validation. Normal and abnormal reports (200 each) from an independent tertiary hospital in Korea (Seoul 
National University Children’s Hospital (SNUCH), Seoul, Republic of Korea) were used for external validation. IED denotes interictal epileptiform 
discharge.
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a seizure. Both keywords, dysfunction and seizure, were 
systematically extracted.

 B Extraction of focal (or partial) or generalized seizure 
information from the clinical correlation section: This 
procedure was specifically applied to abnormal reports 
identified in the previous procedure (A) that indicated seizure 
activity. If the report contained references to focal (or partial) 
seizures, the corresponding seizure type was classified as focal; 
if it referenced generalized seizures, the classification was 
adjusted accordingly to generalized. Both keywords were 
extracted to ensure comprehensive categorization.

 C Extraction of keywords associated with interictal epileptiform 
discharges (IEDs) and their respective locations from the 
impression section: This procedure was applied to the 
abnormal reports identified in the earlier step (A) that 
contained seizure activity. We  defined keywords relating to 
IEDs as any phrases incorporating the terms spike, discharge, 
wave, sharp, or all possible combinations of these four terms 
(such as spike discharge or sharp wave discharge). The keywords 
related to the locations of IEDs were defined as phrases with 
one or all possible combinations of the names of the 19 
channels according to the international 10–20 system (e.g., Fp1 
or F3F7).

2.3 Deep learning model

In the first phase of our algorithm development, we established 
deep learning-based binary classification models aimed at categorizing 
EEG reports as either normal or abnormal. For this purpose, 
we  employed two publicly available language models from the 
Hugging Face repository: Bidirectional Encoder Representations from 
Transformers (BERT) and Clinical BERT. BERT is a transformer-
based deep learning model pretrained on extensive datasets such as 
BooksCorpus and Wikipedia. In contrast, Clinical BERT is a 
specialized variant of BERT, pretrained on clinical text corpora, which 
includes clinical notes extracted from the MIMIC-III database 
(14–17).

We selected the BERT-base model from Hugging Face, 
characterized by 12 transformer layers, hidden size of 768, 12 self-
attention heads, and a total parameter count of 110 million, which 
aligns with the specifications of Clinical BERT. Both the BERT and 
Clinical BERT models were fine-tuned using an equal dataset 
composed of 5,173 normal reports and 5,173 abnormal reports to 
optimize their performance in classification tasks. Each report was 
tokenized with a maximum length limit of 128 tokens before feeding 
to the input layer of the model. No additional preprocessing was 
applied to the reports. AutoTokenizer from Hugging Face tokenized 
all the reports yielding input IDs, token type IDs, and attention mask 
value sets for each report. We used zero padding to the maximum 
length of tokens and truncation to provide data sets for the input layer. 
Supplementary Table 1 shows an example of a tokenized EEG report.

To augment the capability of the model in sentence recognition, 
we concatenated each model with long short-term memory (LSTM) 
networks with both BERT and Clinical BERT, resulting in two 
enhanced architectures: BERT with LSTM and Clinical BERT with 
LSTM. In these configurations, the output generated from the final 
hidden layer of each model was subsequently directed into the input 

layer of the LSTM, thereby creating a cohesive model that leverages 
the strengths of both deep learning frameworks for improved 
classification outcomes. Supplementary Figure  1 shows our 
model architectures.

We used 64 LSTM units, a dropout rate of 0.1, and a sigmoid 
activation function, which yielded a probability score between 0 and 
1. Specifically, an input report was classified as normal if the output 
was less than 0.5 and as abnormal if it was equal to or greater than 0.5. 
We used adaptive moment estimation as an optimizer with a learning 
rate of 1 × 10−5, a binary cross entropy loss function, a batch size of 32, 
and 5 epochs for model training. All algorithmic processes were 
executed using Python 3.8 and Tensorflow 2.10, facilitated by an 
NVIDIA 3080Ti graphics processing unit with 12GB of memory, in 
conjunction with the Compute Unified Device Architecture (CUDA) 
version 11.4 programming interface.

2.4 Performance evaluation

The performance of our algorithm was rigorously assessed 
through three key methodologies: (1) model evaluation, (2) internal 
validation, and (3) external validation. During the model evaluation 
phase, we examined the performance of our two deep learning models 
in classifying reports as normal or abnormal, using a dataset 
comprising 1,000 normal and 1,000 abnormal EEG reports sourced 
from SNUBH. The evaluation metrics included sensitivity, specificity, 
accuracy, and the area under the receiver operating characteristic 
curve (AUC). Internal and external validations were subsequently 
conducted to ascertain the applicability of the algorithm within a 
clinical setting, where EEG reports were systematically converted into 
structured tabular data from a clinical perspective. For the internal 
validation, we  randomly selected 200 normal and 200 abnormal 
reports from the previously mentioned model evaluation dataset. In 
contrast, the external validation utilized a separate set of 200 normal 
and 200 abnormal reports from SNUCH. Two neurologists (H.K. and 
J.K.) compared 400 reports from SNUBH and 400 reports of SNUCH 
with their corresponding algorithm outputs in terms of all hierarchical 
procedures for internal and external validations, respectively. 
We adopted the Clinical BERT with LSTM model for normal and 
abnormal classifications in the internal and external validations. For 
the performance of the Clinical BERT with LSTM model, 
we  additionally performed 6-fold cross-validation using the EEG 
reports from SNUBH. 1,000 normal and 1,000 abnormal reports were 
used for evaluation and the remaining ones were used for model 
training in each round.

3 Results

3.1 Model evaluation

In our evaluation of the classification models for distinguishing 
between normal and abnormal EEG reports from SNUBH, both the 
BERT with LSTM and Clinical BERT with LSTM models 
demonstrated impressive performance metrics: sensitivity of 100%, 
specificity of 99.90%, accuracy of 99.95%, and an AUC of 100%. 
Notably, each model produced one false-positive result. The outputs 
of the models, when averaged over 1,000 normal reports, were 
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recorded as 0.173 ± 2.410% for the BERT with LSTM and 
0.175 ± 3.137% for the Clinical BERT with LSTM. In contrast, the 
model outputs averaged over 1,000 abnormal reports were significantly 
higher, with the BERT with LSTM yielding 99.854 ± 0.175% and the 
Clinical BERT with LSTM achieving 99.870 ± 0.656%. Additionally, 
our Supplementary Table 2 includes detailed outputs from the Clinical 
BERT with LSTM model alongside the corresponding keyword 
extraction results for both 1,000 normal and 1,000 abnormal EEG 
reports. Supplementary Table 3 shows confusion matrices over 6-fold 
cross-validation of the Clinical BERT with LSTM model with the 
average sensitivity, specificity, accuracy, and AUC of 99.88, 99.98, 
99.93, and 100%, respectively.

3.2 Internal validation

During the internal validation using the EEG reports from 
SNUBH, we attained a perfect accuracy of 100% in Step 1 for the 
classification of normal and abnormal EEG reports. Furthermore, in 
Step 2, the accuracy rates for the keyword extraction processes were 
also commendable, with 100% accuracy for classification A 
(dysfunction or seizure), 98.50% for classification B (focal or 
generalized), and 97.50% for classification C (IEDs and locations). 
Among the 200 abnormal EEG reports, we  failed to extract the 
generalized information because the relevant keyword did not exist in 
the clinical correlation part in two reports, and in one report, the 
keyword was misspelled. Furthermore, we encountered challenges in 
extracting the locations of IEDs, because these characteristics were not 
specified as channel names in four different reports. Conversely, the 
model mistakenly identified a channel name that referred to locations 
of abnormal background activities in one of the reports.

3.3 External validation

During the external validation process utilizing EEG reports from 
the SNUCH, we achieved a perfect accuracy rate of 100% in Step 1 for 
classifying EEG reports as normal or abnormal. In Step 2, we recorded 
accuracy rates of 100, 100, and 88.50% for our keyword extraction 
procedures labeled A, B, and C, respectively. Among the 200 abnormal 
EEG reports analyzed from SNUCH, we were unable to extract the 
locations of IEDs in six reports due to the absence of channel name 
representation. Additionally, we erroneously extracted channel names 
indicative of abnormal background activities in 16 reports. In one 
instance, we mistakenly classified delta waves, described in a phrase 
concerning background activity, as an IED.

The detailed results from both internal and external validations 
are presented in Table 1. Furthermore, Tables 2, 3 show representative 
abnormal EEG reports from the SNUBH and SNUCH, respectively, 
highlighting both the successful and erroneous conversions into 
structured data during our validation process.

4 Discussion

The present findings confirm that the NLP-based hierarchical 
algorithm we developed effectively classified free-text EEG reports 
from pediatric patients diagnosed with epilepsy as either normal or 

abnormal. The algorithm demonstrated its capability to identify the 
presence of cerebral dysfunction or seizures within the abnormal 
reports. We demonstrated that our algorithm converted abnormal 
reports to tabular data with an accuracy higher than 98.5% for the 
determination of focal or generalized seizures and higher than 88.5% 
for the identification of IEDs and their locations. Neurologists 
identified a set of clinical keywords essential for the diagnosis of 
epilepsy prior to the analysis. Following this, we  systematically 
extracted keywords from abnormal reports through a series of 
methodical procedures. Accordingly, we  successfully developed 
structured datasets that accurately correspond to the EEG reports 
obtained from two distinct medical institutions.

4.1 Normal and abnormal classification

In Step 1 of our algorithm, we implemented a deep learning-based 
classification model designed specifically to identify abnormal EEG 
reports for subsequent keyword extraction tasks. Previous studies 
have demonstrated that BERT-based classification models perform 
exceptionally well in text classification across various medical domains 
(11, 18–20). Therefore, we were optimistic that we could apply our 
detailed rules for keyword extraction exclusively to the abnormal 
reports once we  amassed a sufficient quantity of these datasets. 
Additionally, in the deep learning-based classification, we expected to 
avoid two situations: skipping required rules due to misspelled 
abnormal, or executing unnecessary rules due to misspelled normal in 
the reports. If we  had utilized only the rule-based classification 
approach in Step  1, we  would have faced a considerable risk of 
misclassifying reports, as misspellings in both abnormal and normal 
reports could easily lead to false recognition, and thus, erroneous 
classification of normal and abnormal reports.

As most normal EEG reports contain general words describing 
waking and sleep states, our BERT and Clinical BERT models had no 
additional domain-specific fine-tuning, unlike previous studies (11, 
20, 21). We fine-tuned our models for the binary classification of 
normal and abnormal reports. Both BERT and Clinical BERT models 
exhibited high performance for binary classification, probably because 
the properties of normal and abnormal reports were highly different 
from each other in that the abnormal reports contained a significantly 

TABLE 1 Detailed results of the internal and external validations using the 
electroencephalography (EEG) reports from Seoul National University 
Bundang Hospital (SNUBH) and an independent tertiary hospital 
(SNUCH), respectively.

Step 1 Step 2

A B C

SNUBH I. Normal 200 - - -

II. Abnormal 200 200 197 195

Accuracy (%) 100 100 98.50 97.50

SNUCH I. Normal 200 - - -

II. Abnormal 200 200 200 177

Accuracy (%) 100 100 100 88.50

A, B, and C in Step 2 denote the keyword extraction procedures for dysfunction or seizure, 
focal (partial) or generalized seizure, and the existence of interictal epileptiform discharges 
and their locations, respectively. I and II in the second column represent the number of EEG 
reports that are correctly converted to structured data for the Step 1 and Step 2.
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higher frequency of epilepsy-related terminology when compared to 
their normal counterparts. Another reason of the similar performance 
of the two models to each other may have been arisen from the data 
sources of the Clinical BERT. The MIMIC-III database contained a 
large number of clinical text data across various diseases. However, its 
knowledge in the field of epilepsy could be possibly weak because it 
handled less amount of data for neurological diseases and EEG 
examinations (22). During our evaluation, we encountered a single 
false positive for both models, an occurrence linked to the unique 
sentence structure of the report in question. This structure deviated 
substantially from that of typical normal reports, as it included 
enumerated numerical values regarding background activity rather 

than descriptive sentences detailing the state of normal 
EEG recordings.

Notably, we observed that the output scores from the Clinical 
BERT model were marginally higher than those from the BERT 
model for abnormal reports. Although this difference did not reach 
statistical significance, we  hypothesized that the Clinical BERT 
model might inherently be predisposed to assign higher probabilities 
to abnormal reports than the BERT model. This observation 
prompts the necessity for further research to validate our hypothesis. 
Based on these findings, we  opted to utilize the Clinical BERT 
model for Step  1  in both our internal and external 
validation processes.

TABLE 2 Representative electroencephalography (EEG) reports from Seoul National University Bundang Hospital (top three rows) and an independent 
tertiary hospital (bottom three rows) that are correctly converted to structured data evaluated by two neurologists in the internal and external 
validations, respectively.

EEG report Step 1 Step 2 Model 
output

A B C

(Impression) This is a normal waking and mildly abnormal stage 

N1-2 sleep record due to a few low-voltage spike discharges from 

O2O1, during sleep.

Clinical correlation: this recording is suggestive of focal seizure 

(subtle axial myoclonus without EEG changes was noted).

Abnormal Seizure Focal Spike discharges O2O1 0.9991

(Impression) This is a moderately abnormal waking and stage I-II 

sleep record due to:

(1) Poorly regulated posterior rhythm for age.

(2) High amplitude irregular 1.5–2 Hz delta slowing on both 

posterior head region.

(3) Frequent spike discharge from C3P3T3 or F8T4 activated by 

sleep.

Clinical correlation: This record is indicative of diffuse cerebral 

dysfunction and consistent with partial seizure.

Abnormal
Dysfunction, 

seizure
Partial Spike discharge

C3P3T3 or 

F8T4
0.9991

(Impression) This is a mildly abnormal sedated sleep record due to 

intermittent medium to high amplitude 2.5–3 Hz delta activities 

on the anterior head region.

Clinical correlation: This recording is indicative of anterior 

cerebral dysfunction.

Abnormal Dysfunction 0.9990

This is a mildly abnormal Stage II sleep record due to a few low 

voltage spike discharges from F3C3P3 or P4T4.

Clinical correlation: this recording is consistent with focal seizure.

Abnormal Seizure Focal Spike discharges
F3C3P3 or 

P4T4
0.9992

This is a moderately abnormal Stage II sleep record due to:

(1) Frequent generalized polyspike wave discharges or paroxysmal 

fast activities.

(2) Frequent spike discharges form C3T3 or C4T4.

Clinical correlation: this recording is consistent with focal and 

generalized seizure.

Abnormal Seizure
Focal and 

generalized

Polyspike wave 

discharges, spike 

discharges

C3T3 or C4T4 0.9991

This is a moderately abnormal drowsy and sleep record due to:

(1) Intermittent delta activities on the anterior head region.

(2) Frequent low to medium voltage spike or spike wave discharges 

from Fp1F3F7 and Fp2F4F8.

Clinical correlation: this recording is suggestive of diffuse cerebral 

dysfunction and consistent with focal seizure.

Abnormal
Dysfunction, 

seizure
Focal

Spike or spike 

wave discharges

Fp1F3F7 and 

Fp2F4F8
0.9991

A, B, and C in Step 2 denote the keyword extraction procedures for dysfunction or seizure, focal (partial) or generalized seizure, and the existence of interictal epileptiform discharges and their 
locations, respectively. The model output represents the probability from 0 to 1 that its corresponding report is determined as a normal one if the model output <0.5 and as an abnormal one if 
the model output ≥0.5.
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4.2 Keyword extraction

In Step 2 of our algorithm, we systematically implemented a series 
of rules to extract specific keywords from abnormal EEG reports. 

We argue that a rule-based approach to keyword extraction is justified, 
as a finite set of key terms can effectively capture the defining features 
of abnormal EEG reports. This assertion is supported by prior research 
that examined the limitations of BERT in this context (23). Moreover, 

TABLE 3 Representative electroencephalography (EEG) reports from Seoul National University Bundang Hospital (top four rows) and Seoul National 
University Children’s Hospital (bottom three rows) that are incorrectly converted to structured data evaluated by two neurologists in the internal and 
external validations, respectively.

EEG report Step 1 Step 2 Model 
output

A B C

(Impression) This is a moderately abnormal waking and stage I-II 

sleep record due to:

(1) Frequent episodes of generalized rhythmic 3 Hz spike wave 

discharges with videographic evidence of dialeptic seizure.

(2) Occasional generalized spike wave discharges

Clinical correlation: this recording is diagnostic of electroclinical 

absence seizure.

Abnormal Seizure
Spike wave 

discharges (2)
0.9990

(Impression) This is a mildly abnormal waking and normal stage I-II 

sleep record due to two episodes of brief, rhythmic, bifrontal, 3 Hz, 

rhythmic delta activities (which cannot be discriminated from 

typical 3 Hz spike wave discharges - video is not available.)

Clinical correlation: this recording is suggestive of generalized 

seizure.

Abnormal Seizure
Spike wave 

discharges
0.9990

(Impression) This is a moderately abnormal sedated sleep record due 

to:

(1) Diffuse high amplitude irregular pleomorphic 1.5–2.0 Hz delta 

activities.

(2) Frequent spike discharges from the left or right centro-temporal 

area.

Clinical correlation; this record is indicative of diffuse cerebral 

dysfunction and consistent with partial seizure (modified 

hypoarrythmia).

Abnormal
Dysfunction, 

seizure
Partial

Spike 

discharges
0.9991

(Impression) This is a mildly abnormal waking and normal stage 

N1-2 sleep record due to brief, intermittent, high amplitude, 2–3 Hz 

rhythmic delta activities from both posterior head region or P4O2, 

during and after hyperventilation.

Clinical correlation: this recording is suggestive of both posterior 

cerebral dysfunction worse on the right hemisphere.

Abnormal Dysfunction P4O2 0.9990

This is a moderately abnormal drowsy and Stage I-II sleep record 

due to:

(1) Intermittent delta activities on T6O2 during drowsiness.

(2) A few or occasional spike discharges from T4T6

Clinical correlation: this recording is suggestive of left temporo-

occipital cerebral dysfunction and consistent with focal seizure

Abnormal
Dysfunction, 

seizure
Focal

Spike 

discharges

T6O2, 

T4T6
0.9991

This is a mildly abnormal sleep record due to a few atypical spike 

discharges from the right or left frontocentral areas.

Clinical correlation: this recording is suggestive of focal seizure

Abnormal Seizure Focal
Spike 

discharges
0.9991

This is a moderately abnormal record due to:

(1) Medium to high delta waves in right hemisphere.

(2) Slowing in both hemisphere.

Clinical correlation: this recording is indicative of diffuse cerebral 

dysfunction.

Abnormal Dysfunction Waves 0.9986

A, B, and C in the Step 2 denote the keyword extraction procedures for dysfunction or seizure, focal (partial) or generalized seizure, and the existence of interictal epileptiform discharges and 
their locations, respectively. The model output represents the probability from 0 to 1 that its corresponding report is determined as a normal one if the model output <0.5 and as an abnormal 
one if the model output ≥0.5.
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we aimed to enhance the transparency of the keyword extraction 
process in Step 2 by utilizing explicit rules, which aligns with the 
previous studies that underscored concerns regarding reproducibility 
in machine learning models (4, 24).

Rule-based techniques enable an accurate extraction of keywords 
from sentences without manipulating statistical scores, barring any 
typographical errors. Drawing on neurologists’ prior identification of 
significant clinical keywords, we established a sequential keyword 
extraction process tailored to abnormal reports. This hierarchical 
framework serves to streamline our algorithm by minimizing the 
scope of target variables within the reports. We  contend that the 
reduced complexity of our algorithm is conducive to achieving high 
performance, particularly in the detection of cerebral dysfunction, 
focal or generalized seizures, and the identification of IEDs.

However, during internal validation, we encountered a limitation: 
the keyword of generalized was not extracted from the two abnormal 
EEG reports of patients diagnosed with absence seizures. The 
generalized 3 Hz spike-and-wave complexes represent the typical 
electrographic signatures of absence seizures (25, 26). Consequently, 
although the clinical correlations observed in the abnormal reports of 
patients with absence seizures are not universally applicable, these 
reports strongly suggest the presence of generalized seizures based on 
their signatures. To address this challenge, it may be beneficial to 

implement deep learning techniques aimed at analyzing the reports at 
the sentence level, or to introduce supplementary rules to accurately 
identify the type of seizure. To overcome this issue, we may need to 
utilize specific deep learning-based models to automatically match a 
variety of regional terminologies for their corresponding 
channel names.

A significant number of failures were recorded during the final 
step of Step 2, particularly regarding the localization of IEDs in the 
abnormal reports from both medical institutions. The present 
algorithm struggled to detect channel names as the locations of IEDs 
were frequently described using regional terminologies, such as 
“centro-temporal” or “fronto-central,” in 10 abnormal reports (4 from 
SNUBH and 6 from SNUCH). Thus, these regional terms need to 
be included as target keywords; however, we are concerned about the 
vast array of potential combinations of these regional names.

Additionally, our algorithm erroneously identified the channel 
names that referred to background activities, such as “delta activities 
from P4O2,” in 17 abnormal reports (1 from SNUBH and 16 from 
SNUCH). Abnormal reports can contain both background activities 
and IEDs simultaneously. Therefore, it is crucial to develop precise 
rules for determining channel names after categorizing the data into 
distinct domains, such as background activity or IEDs. This approach 
is reminiscent of a previous study by (27), which demonstrated an 

TABLE 4 Comparison of performance metrics of our work and recent natural language processing studies in the field of epilepsy.

Study Method Objective Result

This study Rule-based and BERT
To convert EEG reports into tabular data by 

classification and keyword extraction

•  Internal: accuracy = 0.985 (focal or generalized 

seizure), accuracy = 0.975 (identification of IEDs and 

locations)

•  External: accuracy = 1.0 (focal or generalized seizure), 

accuracy = 0.885 (identification of IEDs and locations)

Beaulieu-Jones et al. (28) Clinical-longformer
To predict seizure recurrence after an initial 

seizure-like event

•  Additional domain-specific and location-specific 

pretraining: F1-score = 0.826, AUC = 0.897

•  No pretraining: F1-score = 0.739, AUC = 0.846

Tao et al. (9) Rule-based
To extract temporal information of seizure 

onset from discharge summaries
Precision = 0.750, recall = 0.651, and F1-score = 0.697

Xie et al. (11) BERT
To extract clinical information (seizure 

frequency, seizure freedom) from clinical notes

•  Median accuracy for classification: 0.837 (BioClinical 

BERT), 0.747 (RoBERTa)

•  Median F1 score for text extraction: 0.845 and 0.834 

(RoBERTa)

Decker et al. (10) Rule-based
To extract seizure data (seizures and frequency) 

from clinical notes

•  Internal test: recall = 0.70, precision = 0.95, and F1-

score = 0.82

•  External test: recall = 0.22, precision = 0.73, and F1-

score = 0.40

Rawal and Varatharajah (12) Rule-based and BERT
To extract attributes for organized reporting 

from EEG reports

• Seizure classification: F1-scores = 0.92

• Epilepsy classification: F1-scores = 0.82

•  Normal and abnormal classification: F1-scores = 0.97

Fonferko-Shadrach et al. (8) Rule-based
To extract detailed clinical information from 

epilepsy clinic letters
Precision = 0.914, recall = 0.814, and F1-score = 0.861

Cui et al. (7) Rule-based
To extract epilepsy phenotypes and anatomical 

locations from clinical discharge summaries

•  Epilepsy phenotypes: micro-averaged 

precision = 0.924, recall = 0.931, and F1-score = 0.927

•  Correlated phenotypes and anatomical locations: 

precision = 0.852, recall = 0.859, and F1-score = 0.856

Cui et al. (13) Rule-based
To extract seizure-related clinical free text from 

discharge summaries
Precision = 0.936, recall = 0.840, and F1-score = 0.885
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effective two-level keyword extraction approach from clinical notes. 
Typographical errors and inappropriate words constituted critical 
issues that require resolution in our keyword extraction procedures, 
such as misspelled generalized and delta waves instead of delta 
activities in the abnormal reports from SNUBH and SNUCH. In the 
rule-based keyword extraction, it may be  highly challenging to 
overcome those troubles due to the necessity of additional complicated 
rules for searching replaceable words based on the detection of every 
possible types of typos or approximate string matching.

During the internal and external validation procedures, 
typographical errors and improper word usage could have led to both 
false negatives and false positives. For example, EEG reports that 
misspelled the term generalized have been mistakenly classified as 
lacking generalized seizure characteristics. Similarly, reports noting 
delta waves as background activity could have been erroneously 
interpreted as containing IEDs simply due to the appearance of the 
word waves. However, because these observations were drawn from 
only a few instances, it remains difficult to make broad generalizations 
based solely on these examples. Moving forward, we plan to build 
large-scale databases comprising numerous EEG reports to more 
thoroughly investigate and address such errors, ultimately improving 
the reliability and accuracy of automated EEG report analysis.

4.3 Applications and limitations

A multitude of studies leveraging NLP techniques have focused 
on the analysis of unstructured data related to epilepsy. Rule-based 
methodologies have been effectively employed to extract various 
seizure-related parameters (8–11, 13), as well as patient clinical 
information (8) and distinct epilepsy phenotypes (7) from clinical 
notes and discharge summaries. Additionally, BERT-based models 
have been implemented to categorize clinical notes based on seizure 
occurrence, achieving a notable median accuracy of 83.7% (11). These 
models have also been applied to classify publicly available clinical 
reports with respect to epilepsy and related abnormalities, resulting in 
impressive F1 scores of 82 and 97%, respectively (12).

In a recent advancement, a transformer-based large language 
model known as clinical-longformer, pre-trained on publicly 
accessible clinical notes, was utilized to predict seizure recurrence in 
EMR data, achieving an F1 score of 82.6% (28). Note that, to date, no 
NLP-focused studies have successfully developed a method for 
transforming unstructured EEG reports into structured clinical 
components. We posit that our hierarchical algorithm could serve a 
critical function in the establishment of specialized databases, 
facilitating the organization and analysis of a significant number of 
EEG reports from patients diagnosed with epilepsy. Unlike the visual 
interface based on discharge summaries reported in a previous study 
(13), our structured outcomes in a tabular format required specific 
keywords solely from EEG reports. Table 4 presents a comparative 
overview of the performance metrics for our method alongside those 
reported in the aforementioned NLP studies. While these comparisons 
can provide useful insights, making direct parallels is challenging due 
to the distinct objectives and methodologies employed in each 
investigation. Importantly, the novelty of our work lies in the 
development of structured datasets derived from EEG reports—an 
underutilized resource in clinical research—that extend beyond 
conventional NLP techniques. By focusing on this unique data source, 

our approach has the potential to enhance clinical databases in ways 
that previous studies have not fully explored, thereby paving the way 
for more comprehensive and clinically relevant analyses. By 
integrating NLP techniques with large-scale medical records—such as 
discharge summaries and clinical notes—researchers and clinicians 
can enhance diagnostic processes for complex conditions, including 
rare and previously undiagnosed diseases. These approaches enable 
the automated extraction and analysis of relevant clinical information, 
potentially improving both the speed and accuracy of identifying 
elusive disorders that often pose significant challenges to traditional 
diagnostic methods (29). It could also potentially aid with tailored 
treatment and diagnosis of clinical diseases with text-heavy clinical 
notes such as headache patients (30).

Thus, our methodology presents an innovative NLP-driven 
framework aimed at extracting pertinent information from 
unstructured text within medical reports, specifically targeting EEG 
reports. We  customized our algorithm to align with the unique 
formatting of these reports, facilitating the extraction of key 
variables of interest. Nevertheless, this study acknowledges several 
notable limitations. First, the internal and external validation phases 
were conducted using a relatively small sample of EEG reports, 
which may impact the robustness of our findings. Additionally, the 
EEG reports utilized in the external validation phase bore a close 
resemblance to those in the internal validation, thereby limiting the 
diversity of our dataset. To enhance the validity and generalizability 
of our findings, we  strongly advocate for extensive multi-
institutional studies that can address these concerns regarding 
sample size and diversity. Our study was constrained by the use of 
internal and external datasets that were relatively similar, which may 
have limited the generalizability of our findings. To address this 
issue and improve the robustness of our text classification models, 
we  could incorporate EEG reports from multiple institutions 
representing various reporting formats and clinical settings. By 
doing so, we anticipate not only enhancing the performance of our 
classifiers but also developing more targeted keyword extraction 
strategies tailored to each institution’s unique report structure, 
ultimately leading to more accurate and widely applicable analysis 
of EEG data in the future studies. In terms of ethical concerns and 
data security, it is highly required to ensure that all the reports have 
no patients’ personal and sensitive medical records keeping them 
safe in their corresponding institutions. In terms of data access, 
federated learning can be suggested for deep learning and NLP tasks 
through multi-institutional collaborations (31). Also, future 
research should consider exploring state-of-the-art large language 
models beyond the present rule-based methods for tackling complex 
tasks such as handling typographical errors, inappropriate words, 
and regional terminologies by automated correction techniques 
(32, 33).

5 Conclusion

This study introduces a hierarchical algorithm designed to 
transform unstructured EEG reports from pediatric epilepsy patients 
into structured data presented in a tabular format through the 
application of NLP techniques. Utilizing BERT-based deep learning 
models for text classification, we subsequently applied a series of rule-
based procedures for the extraction of relevant keywords. Given that 
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neurologists pre-select specific clinical keywords, we  crafted a 
hierarchical structure that streamlines the process, enhancing the 
ability of the algorithm to manage the nuances of free-text EEG 
reports and produce standardized tables. We believe that our approach 
holds significant promise for the creation of specialized databases 
focused on EEG reports, thereby advancing healthcare research and 
clinical applications.
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