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Purpose: Because of their ongoing pain, patients with ankylosing spondylitis 
(AS) are more likely to experience depression. Effective treatment remains a 
challenge. Additionally, the mechanisms of and relationships between AS-
related pain and depression are inadequately understood. This study explored 
the regional homogeneity (ReHo) alterations linked to pain and depression in 
patients with AS.

Methods: In total, 43 patients with AS (40 men, 3 women) and 46 controls 
who were matched by age and sex were recruited. The patients were clinically 
assessed based on Bath Ankylosing Spondylitis Disease Activity Index, the Total 
Back Pain (TBP) and Hamilton Rating Scale for Depression (HAMD) scores, 
erythrocyte sedimentation rate, and high-sensitivity C-reactive protein level. The 
ReHo differences based on 3-T magnetic resonance imaging were compared 
between patients with and without AS. Associations between significant variables 
and pain and depression were further explored.

Results: Patients with AS had decreased ReHo values within the left superior 
temporal gyrus and right paracentral lobule and increased values within the 
left precuneus and right middle frontal gyrus compared to healthy controls 
(p < 0.05, FDR correction). The left precuneus ReHo value negatively correlated 
with the TBP and HAMD scores. The right paracentral lobule ReHo value 
positively correlated with the AS duration and TBP score. The left precuneus 
had increased neural activity in patients with AS, which may lead to abnormal 
sensory responses, issues in emotion regulation, and deviations in information 
processing.

Conclusion: This work provides fresh understanding of the brain processes 
behind depression and pain associated with AS. Stratifying patients based on 
features with significant correlations with pain and depression could help 
identify those at risk and thus apply individualized treatment.
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1 Introduction

Low back discomfort is a hallmark of ankylosing spondylitis (AS), 
an immune-mediated systemic inflammatory illness that primarily 
affects the spine and sacroiliac joints (1). AS predominantly affects 
young adults, with symptoms typically appearing in late adolescence 
or early adulthood and has a male predominance. However, the 
proportion of AS patients over the age of 45 is estimated to occur in 
around 3.5–13.8% of all cases of AS (2). Peripheral origins of AS pain 
have been linked to local inflammation (3). However, recent research 
has shown that central pain mechanisms play a crucial role in AS 
(4–6). Pain is also an acknowledged primary outcome for evaluating 
treatment responsiveness in AS trials. Because of their persistent pain, 
patients with AS are also more likely to experience mental health 
issues (7). People who have chronic pain often have depressive 
symptoms, which have been observed in 51% of patients with AS (8). 
Additionally, compared to individuals who merely experience chronic 
pain, those who also have psychological comorbidities like depression 
are likely to have a worse outcome (9–11).

In people with chronic pain, research conducted in the last few 
decades has shown a reciprocal association between pain and 
depression. A longitudinal study by Kroenke et al. (12) demonstrated 
that pain was a strong predictor of future depression severity, and that 
depression was substantially linked to future pain intensity prediction. 
The brain mechanisms that underlie the mutual relationship between 
pain and depression have since been examined using neuroimaging 
techniques (13–15). The importance is found in the same brain 
plasticity that leads to the development and progression of depression 
and chronic pain at the same time. However, no research has examined 
how AS affects the central nervous system in relation to both pain 
and depression.

To investigate the functional alterations in the brains of patients 
with AS, this study combined psychophysical and functional magnetic 
resonance imaging (fMRI) methods. Using the Hamilton Rating Scale 
for Depression (HAMD), we further investigated the relationships 
between these brain changes and the length of pain and emotional 
comorbidities associated with pain. Overall, we aimed to improve our 
knowledge of the pathophysiological mechanisms of AS and establish 
a robust foundation for patient diagnosis based on mechanisms, 
which could propel a shift toward personalized therapy.

2 Materials and methods

2.1 Participants

The Ethics Committee of The Affiliated Guangdong Second 
Provincial General Hospital of Jinan University approved this study. 
Each participant signed an informed consent form after being fully 
informed about the study. The following criteria were met in order to 
recruit patients with AS: active AS diagnosis aligning with the 
modified New  York criteria (16), the use of non-steroidal anti-
inflammatory drugs only at a stable dose in the event of pain, the 
avoidance of biological agents during the study or at any other time, 
and an average Total Back Pain (TBP) score of ≥3 (on a 10-point scale, 
where 0 represents no pain and 10 represents the worst pain 
imaginable) during the previous week. Suitability for inclusion was 
not assessed using the depression severity score. Age- and sex-matched 

healthy controls (HCs) were also included. The basic inclusion criteria 
for all study participants were as follows: age 16–50 years, no previous 
neurological disease diagnosis, no major surgery within the last 
2 years, and no additional MRI contraindications.

2.2 Clinical assessments

The TBP and BASDAI scores were part of the clinical evaluation 
of every AS patient. BASDAI is a commonly used disease activity 
index in AS (17). A trained rheumatologist performed the BASDAI 
assessments. Spinal pain, joint pain/swelling, exhaustion, localized 
discomfort, and morning stiffness are all included in the BASDAI 
score, which offers a thorough overview of symptom severity on a 
scale of 0 to 10 (10 = the highest disease severity). A week prior to 
their fMRI scans, patients with AS and HCs were assessed using the 
HAMD scale.

2.3 MRI scans

A 3.0-T MRI scanner (Ingenia; Philips, Best, Netherlands) was 
used in the Department of Medical Imaging at The Affiliated 
Guangdong Second Provincial General Hospital of Jinan University 
to acquire MRI data for every subject. High-resolution anatomical 
scanning and resting-state fMRI (rs-fMRI) were performed on each 
participant. With the following sequence settings, an echo-planar 
imaging sequence was used to obtain the rs-fMRI data: repetition time 
(TR) = 2000 ms; echo time (TE) = 30 ms; flip angle = 90°; field of 
view = 224 × 224 mm2; resolution = 64 × 64 matrix; number of 
slices = 33; slice thickness = 3.5 mm with a 0.7 mm gap; total 
volumes = 240; and acquisition time ≈ 8 min. To assess each 
participant’s degree of cooperation throughout the scan, questions 
about whether they dozed off and opened their eyes were asked both 
during and after the MRI. Participants who could not follow the 
instructions were rescanned to acquire new rs-fMRI information.

The following settings were used to obtain high-resolution 
anatomical images: TR = 7.9 ms; TE = 3.7 ms; flip angle = 8°; 
acquisition matrix = 256 × 256; field of view = 256 × 256 mm2; slice 
thickness = 1.0 mm; and 185 sagittal slices without gaps, covering the 
whole brain.

2.4 Data processing

The data were preprocessed using the Statistical Parametric 
Mapping (SPM12) and Data Processing and Analysis for Brain 
Imaging (DPABI) toolboxes running on MATLAB 2014b 
(MathWorks, Natick, MA) (18). The process included the following 
steps. First, the original images were converted into NIFTI format. 
Second, the first ten volumes were discarded to exclude the 
influence of machine signal instability and the participant’s 
adaptation process on the results. Third, the difference in the time 
between the acquired images of each slice was corrected. Fourth, 
images from participants with head movement >1.5 mm and 
rotation >1.5° were realigned to reduce the influence of head 
movement noise on the signal. Fifth, images were normalized to the 
standard echoplanar imaging template, and each voxel was 
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resampled to 3 × 3 × 3 mm3. Sixth, functional and anatomical 
images (T1-weighted images) were registered to accurately locate 
the functional activation area. Finally, the data were detrended and 
filtered (0.01–0.08 Hz); both high-frequency physiological noise 
(such as breathing, heartbeat, etc.) and low-frequency linear drift 
had less of an impact.

2.5 Regional homogeneity

Regional homogeneity (ReHo) calculations were executed as 
previously reported (19). Briefly, Kendall’s coefficient of concordance 
(KCC) of a given voxel time series with the nearest 26 adjacent voxels 
was used to estimate ReHo on a voxel-by-voxel basis. Each participant 
received a unique KCC map after the KCC value was computed as a 
voxel. An 8-mm full-width at half-maximum Gaussian kernel was 
used to spatially smooth the data to minimize noise and residuals in 
the gyrus anatomy.

2.6 Statistical analyses

A two-sample t-test was used to evaluate significant differences 
in age and education between the AS and HC groups, and 
chi-squared tests were used to analyze differences depending on sex. 
SPSS version 20.0 (IBM, Armonk, NY) was used for statistical 
analyses. The ReHo values of patients with AS and HCs were 
compared using two-sample t-tests. p-values of less than 0.05 were 
regarded as statistically significant when adjusted for false discovery 
rate. Clinical outcomes (BASDAI, TBP, and HAMD scores, serum 
C-reactive protein [CRP] level, erythrocyte sedimentation rate 
[ESR], and disease duration) were analyzed for AS patients, as were 
partial correlations between the ReHo values of various brain regions 
that revealed group differences. Significant p-values were defined as 
less than 0.05.

3 Results

3.1 Participant demographics

We enrolled 46 HCs and 43 patients with AS. However, because 
of significant head movement during imaging, one patient and one 
HC were eliminated. Therefore, 45 HCs and 42 patients were 
ultimately kept. Table  1 provided specifics on the sample’s 
characteristics. There was no difference between the two groups in 
terms of years of schooling, sex, or age (p < 0.05). Furthermore, the 
patient group’s HAMD scores were greater.

3.2 Differences in ReHo between two 
groups

The AS group displayed decreased ReHo values in the left superior 
temporal gyrus and right paracentral lobule and increased ReHo 
values in the left precuneus and right middle frontal gyrus (MFG) 
when compared to the HC group (p < 0.05, FDR correction) (Table 2 
and Figure 1).

3.3 Correlation analysis

The right paracentral lobule’s ReHo values showed a negative 
correlation with the duration of AS and TBP scores (Figures 2A,B), 
while the left precuneus’ ReHo values showed a positive correlation 
with both TBP and HAMD scores (Figures 2C,D). The TBP, HAMD 
score, ESR, and CRP did not significantly correlate with changes in 
ReHo values in the left superior temporal gyrus or right MFG.

4 Discussion

This study explored pain- and depression-related ReHo changes 
in patients with AS and the association between altered ReHo and 
clinical features, such as TBP, the HAMD score, ESR, and CRP level. 
Compared to HCs, patients with AS showed considerably decreased 
ReHo values in the right paracentral lobule and left superior temporal 
gyrus and significantly increased ReHo values in the left precuneus 
and right MFG while at rest. Furthermore, the TBP and HAMD scores 
positively correlated with the left precuneus ReHo values, while the 
AS duration and TBP score negatively correlated with the right 
paracentral lobule ReHo values. Correlations between ReHo value 
changes in the right MFG and left superior temporal gyrus and TBP, 
the HAMD score, ESR, and CRP were not identified.

TABLE 1 Demographic characteristics of the patients with AS and the 
healthy controls (HC).

Characteristics AS (n = 43) HC 
(n = 46)

p-value

Age (years) 25.07 ± 6.81 25.54 ± 6.29 0.734b

Gender (male/female) 40/3 42/4 0.763a

Education (years) 11.93 ± 2.68 11.89 ± 3.08 0.950b

Total back pain 5.98 ± 1.29 N/A –

AS duration (years) 7.12 ± 5.15 N/A –

BASDAI 4.85 ± 1.36 N/A –

HAMD 24.44 ± 5.62 N/A –

ESR 17.24 ± 9.17 N/A –

CRP 11.64 ± 9.32 N/A –

Data were expressed as mean ± SD. BASDAI, Bath Ankylosing Spondylitis Disease Activity 
Index; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein.
ap-value was obtained using the two-tailed Chi-squared test.
bp-value was obtained using the two-sample, two-tailed t-test.

TABLE 2 Brain region of Reho differences between AS group and HC 
group.

Brain area MNI

Voxel 
size

x y z T value

Frontal_Mid_R 28 24 36 27 6.180

Temporal_Sup_L 22 −63 −24 6 −4.849

Precuneus_L 20 −15 −51 39 6.002

Paracentral_

Lobule_R

16 3 −36 69 −6.056
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Neural activity in the default mode network (DMN) is inhibited 
when the brain performs external activities but is highly active during 
the resting state. The DMN is essential for self-reflection, memory, and 
attention (20). However, in the present study, patients with AS showed 
increased ReHo values in the left precuneus and decreased ReHo 
values in the left superior temporal gyrus, which are two are important 
DMN structures (21).

The precuneus plays a crucial role in cognitive function networks 
and is a key part of the medial pain system, which is primarily in 
charge of processing unpleasant emotions brought on by pain or other 
discomforts (22). According to studies, individuals who suffer from 
migraines without aura exhibit a substantial rise in bilateral precuneus 
ReHo values and increased functional connectivity in the left 
precuneus within the DMN (23). Goffaux et al. (24) found that pain-
induced responses in the contralateral precuneus of healthy adults are 
closely related to pain sensitivity, and Emerson et al. (25) reported that 
there is a substantial negative correlation between pain sensitivity and 
grey matter density in the bilateral posterior cingulate cortex, 
precuneus, intraparietal sulcus, and inferior parietal lobule areas. 
However, precuneus abnormalities have been reported in recent 
functional and structural MRI studies on major depressive disorder 
(26, 27). Furthermore, a poorer connection between the precuneus 
and the subcallosal anterior cingulate was substantially and exclusively 
linked to higher depression severity scores in patients with chronic 

depression (26). Another study suggested that the precuneus’ 
structural-functional connection offers key components that can 
be used to model several mental illnesses, including depression (28). 
Additionally, the precuneus is a medial parietal region that is directly 
related to memory, navigation, and spatial function and is essential for 
DMN activity and cognitive processing. In addition, the TBP and 
HAMD scores positively correlated with the left precuneus ReHo 
values. Thus, it has been proposed that sensory impairment, abnormal 
information processing, and deficiencies in emotion regulation may 
result from increased neuronal activity in the left precuneus in patients 
with AS. This could cause significant changes in the DMN before 
sensory impairment and depressive episodes appear. While the 
current findings provide preliminary support for the observed 
associations, their robustness and generalizability must be rigorously 
evaluated through large-scale, multicenter prospective studies 
employing standardized protocols.

Patients with AS exhibited enhanced spontaneous neuronal 
activity in the right MFG in the frontal lobe. Changes in the MFG’s 
functional activity may result in incorrect reactions to emotional 
events, as the MFG aids in regulating the intensity of reactions to 
emotional stimuli. In terms of cognitive control and emotional 
regulation processes, particularly those pertaining to enjoyment, the 
dorsolateral prefrontal cortex (DLPFC) is typically regarded as a 
fundamental brain region (29, 30). These elements affect the symptoms 

FIGURE 1

The AS group shows increased ReHo values in the left precuneus and right middle frontal gyrus and decreased ReHo values in the left superior 
temporal gyrus and right paracentral lobule relative to the HC (p < 0.05, FDR correction).
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of depression. Notably, depression has been closely associated with the 
DLPFC, of which the MFG is an essential component. fMRI 
investigations of major depressive disorder have often shown 
hyperactivity in the DLPFC and higher functional activity in this area 
of the brain (31), and hyperactivity in this brain region has been 
correlated with depression severity (32). Additionally, the DLPFC is 
the primary region that repetitive transcranial magnetic stimulation 
targets to treat depression (33). The ReHo results in this study further 
demonstrate that AS pain combined with depression may induce 
MFG dysfunction. The DLPFC is often activated during pain 
neuroimaging. It should be noted that while it is not the only active 
region, it might be  a crucial node in networks linked to pain 
modulation and nociceptive processing (34). However, their function 
in pain is still unknown. There were no correlations found between 
the clinical features and the MFG ReHo values. We postulated that 
these modifications might be  adaptive/self-regulating processes 
involving the attention and somatosensory networks. To 
comprehensively validate the hypothesized adaptive interplay between 
attentional and somatosensory networks, future investigations must 
integrate closed-loop neurofeedback systems, multimodal imaging 
protocols, and longitudinal intervention designs.

The superior temporal gyrus is the primary system for processing 
auditory information (35). Changes in the function of the somatosensory 
brain areas are the main cause of pain, which is a complex 
psychophysiological phenomenon (36). However, according to some 
research, pain may also have an impact on the visual and auditory 
networks (37, 38). In a study of individuals with persistent 
musculoskeletal pain, Coppieters et al. (39) discovered a correlation 

between reduced regional gray matter volume in the superior frontal and 
temporal gyri and increased pain intensity and pressure pain sensitivity. 
Clarifying the pathophysiology and etiology of AS can be achieved by 
comprehending the function of the auditory network. In this study, the 
local consistency in the left superior temporal gyrus was reduced, 
possibly due to the excessive attention paid by patients with chronic pain 
to their pain, which in turn affected other body sensory perception 
systems. Another possible aberrant neurological mechanism of chronic 
pain that needs more investigation is excessive attention to pain.

The paracentral lobule is crucial for somatosensation and regulates 
motor and sensory innervation (40). The somatosensory cortex, a 
sensory/motivational association region implicated in the affective/
discriminative components of pain, is part of the human brain’s widely 
dispersed pain pathways, according to numerous studies (41–43). 
Furthermore, neuroscientific studies show that alterations in 
somatosensory regions—afferent nociceptive brain regions—occur in 
tandem with the effects of expectation on the experience of subjective 
pain. Descending pain modulatory circuits also have a role in 
mediating this impact (44). The primary and secondary somatosensory, 
anterior cingulate, insular, and thalamic regions that are active when 
experiencing severe pain were assessed by a meta-analysis of positron 
emission tomography, fMRI, electroencephalogram, and 
magnetoencephalography studies. These regions were examined as the 
basic human nociceptive processing’s central network (36). AS is a type 
of inflammatory arthritis that carries a considerable mental health 
burden; the risk of depression is 51% higher in patients with AS than 
in those without AS (7). In this study, decreased ReHo was observed 
in the right paracentral lobule, and the right paracentral lobule ReHo 

FIGURE 2

Negative correlation between ReHo values of right paracentral lobule with the duration of AS and TBP scores (A,B); Positive correlation between the 
ReHo values of the left precuneus with TBP and HAMD scores (C,D).
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values negatively correlated with the AS duration and TBP score. Our 
findings indicate that pain-associated neural networks exhibit extensive 
crosstalk and dynamically dysregulate the formation and maintenance 
of synchronized oscillatory activity within sensory-cognitive 
integration hubs. This dysregulation potentially underpins the 
maladaptive plasticity observed in chronic pain states. Future studies 
employing closed-loop neuromodulation could test whether restoring 
inter-network coherence reverses these pathophysiological signatures.

There are various limitations to our investigation. First, we used a 
cross-sectional study design. Consequently, we  are unable to 
determine the cause of the identified anomalies in the brain. 
Alternatively, the changes we  detected might be  the downstream 
signals. Nevertheless, these findings are still significant because, 
currently, an accepted objective measure of pain and depression for 
AS does not exist. Nonetheless, it is crucial to confirm our findings 
with the same cohort using a longitudinal strategy. Second, it remains 
unclear whether the correlations we found for pain and depression 
were generic or specific to AS, because there are few similarly 
constructed studies in this area. Therefore, additional validation of 
distinct pain and depression disorders is required. Third, the single-
center design of this study, coupled with its moderate sample size, may 
have reduced statistical power and compromised the generalizability 
of findings to broader populations. To enhance methodological rigor, 
future investigations should prioritize multicenter collaboration with 
standardized protocols, which would not only increase sample size but 
also enable validation of current results across diverse clinical settings 
and heterogeneous patient cohorts. Fourth, this study lacked 
stratification by AS clinical severity or phenotypic subgroups, 
potentially obscuring critical heterogeneity in outcome associations 
across disease spectra. Future investigations should incorporate 
standardized disease activity metrics and machine learning-driven 
cluster analysis to delineate phenotype-specific outcome trajectories.

5 Conclusion

This preliminary study explored ReHo value changes in patients 
with AS compared to HCs, identifying increased and decreased ReHo 
values in different brain regions, some of which were consistent with 
the results of previous fMRI studies. Additionally, pain and depression 
levels were significantly correlated with functional abnormalities in 
the brain. These findings contribute to our knowledge of the brain 
underpinnings of AS and offer proof of neurological dysfunction 
associated with AS. Hence, further investigations into the 
pathophysiology of regions altered ReHo values should be performed.
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