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The aim of this non-interventional, case–control pilot study was to identify factors 
associated with cognitive impairment, dementia, and Alzheimer’s disease (AD) 
using a real-world dataset from Quirónsaludmadrid’s database. Based on Global 
Deterioration Scale score, 4 models of regression aimed to predict cognitive 
impairment and dementia (model 1), mild cognitive impairment (MCI, model 2), AD 
(model 3) and progression (model 4) were created. Age [odds ratio (OR) = 1.721], 
apathy (OR = 34.952), anxiety (OR = 0.223) and higher education (OR = 0.026) 
were associated with model 1 with an area under the curve (AUC) of 0.796 and a 
sensitivity of 0.60 and specificity of 0.86. For model 2, the selected variables were: 
age (OR = 1.222), apathy (OR = 2.650), depression (OR = 0.318) and higher education 
(OR = 0.232) with an AUC of 0.657 and a sensitivity of 0.82 and specificity of 0.45. 
For model 3, variables included were age (OR = 1.490), first-degree family history 
(OR = 4.147), apathy (OR = 8.247), anxiety (OR = 0.302), and higher education 
(OR = 0.119) with an AUC of 0.852 and a sensitivity of 0.84 and specificity of 0.73. 
Model 4 had an AUC of 0.532 and a sensitivity of 0.59 and specificity of 0.65. In 
conclusion, age and apathy were risk factors for the development of cognitive 
impairment, MCI and AD, while high education level was a protective factor in the 
three main models. Family history of dementia was a risk factor for developing AD. 
Models 3 and 1 had the best selection capacity and could be recommended to 
predict the diagnosis of AD and cognitive impairment and dementia in individuals 
with suspicious symptoms or presymptomatic.
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Introduction

The global elderly population is growing significantly. Over the next 15 years, the number 
of people aged 60 and above will increase by 56% (1). This rapid demographic shift toward an 
older population will lead to higher rates of disease and disability, notably affecting cognitive 
functions. Conditions such as mild cognitive impairment (MCI), Alzheimer’s disease (AD), 
and other types of dementia are expected to become more prevalent as a result (2–6).

Cognitive impairment is defined as a clinical entity characterized by a complete or partial 
intellectual dysfunction. Given that cognitive impairment is related to age, and that today’s life 
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expectancy is increasing, as has been commented previously, the 
management of these entities has become a major public health 
concern that entails a challenge for health and social services and is 
the main cause of disability and dependence among elderly 
worldwide (7).

In fact, the total number of people with dementia is expected to 
reach 82 million in 2030 and 152 million in 2050 according to the 
World Health Organization (7). Moreover, AD and cognitive 
impairment have a high burden of disease with a clear impact on 
morbidity, disability, and mortality (8, 9).

However, despite the high number of cases and high burden of 
disease, there is a significant percentage of cases that are still 
underdiagnosed, preventing the early establishment of 
pharmacological and non-pharmacological treatments that slow 
cognitive decline and control behavioral disorders (10). Detecting and 
predicting cognitive decline at its earliest stages is crucial for 
implementing timely interventions that may help slow disease 
progression and enhance patient outcomes (11–13).

As cognitive impairment, and specially AD, can be attributed to 
potentially modifiable risk factors (such as diabetes mellitus, arterial 
hypertension, obesity, smoking, physical inactivity, depression, 
cognitive inactivity, and social isolation, among others), the early 
identification and prevention of these risk factors as well as disease 
forecasting must be key points to avoid the emergence of new cases. 
In fact, disease forecasting has been an area of intense interest for the 
scientific community for over seven decades (14–16) and some groups 
have developed tools to identify the disease based on patient’s 
characteristics and medical history (17).

The creation of precise regression models utilizing real-world data 
presents a promising path toward enhancing our capacity to pinpoint 
individuals at risk of cognitive impairment and dementia. These 
models leverage complex datasets encompassing various biological, 
clinical, and lifestyle factors, enabling the identification of subtle 
patterns and risk factors that may otherwise go unnoticed (18).

The development of accurate regression models relies on 
sophisticated machine learning techniques that can analyze large-scale 
datasets efficiently. These models not only predict future cognitive 
decline but also provide insights into the underlying mechanisms of 
disease progression, paving the way for novel therapeutic approaches 
and precision medicine initiatives (19–21).

So, the primary objective of this pilot study was to develop a 
regression model for cognitive impairment and dementia to be applied 
in healthy subjects, using real world data from a cognitive impairment 
database owned by the Quirónsalud Dementia Team.

Also, 3 additional regression models using the same methodology 
were developed for the prediction of MCI, AD, and worsening 
cognitive impairment (exploratory model in patients with several 
neuropsychological determinations performed over time).

Materials and methods

Design

A pilot case–control study for the development of different 
cognitive impairment regression models to be applied in the future in 
healthy subjects as a risk calculator was designed. The results for the 
study were obtained analyzing the database owned by the Quirónsalud 

Dementia Team. This database contains data from individuals who 
were assisted by the Neurology Department at Hospital Quirónsalud 
Madrid between 2007 and 2022 due to cognitive complaints, including 
determinations such as Global Deterioration Scale (GDS) or 
Neuropsychiatric Inventory (NPI-Q) scale. Each patient could have 
more than one assessment, so each assessment was considered as a 
singular case in the majority of analyses.

The Quironsalud Madrid University Hospital is a private 
healthcare center in Spain specializing in neurological care and 
research. The neurology department includes 20 neurologists and two 
neuropsychologists. Annually, the department handles approximately 
50,000 neurological consultations, with about 15% (7,500 
consultations) related to cognitive disorders.

The NPI consists of 12 items assessing the presence and severity 
of 12 neuropsychiatric symptoms (22). All patients with more than 1 
point in this questionnaire were considered as a case for this variable 
in the present study. Regarding GDS score, this score is made up of the 
following categories: 1. Absence of cognitive impairment; 2. Memory 
complaints; 3. MCI; 4. Moderate cognitive impairment; 5. Moderate–
severe cognitive defect; 6. Severe cognitive impairment; 7. Very severe 
cognitive defect (23). Based on this score, patients and assessments 
were classified as controls and cases for the regression models created 
for this study in the next step: those with a low GDS score, GDS = 1 
or 2, were “controls,” while those with higher scores, GDS ≥ 3, were 
considered “cases.” Within this last category, MCI cases were those 
with GDS = 3 and AD cases were those with GDS ≥ 3 and neurological 
clinical diagnosis compatible with AD. This neurological diagnosis 
was also considered in the database and was based on the International 
Classification of Diseases.

Individuals with multiple neuropsychological tests determinations 
during data collection were analyzed in an additional model that 
aimed to identify worsening cognitive impairment/dementia. In this 
case there were two groups; patients who worsened their GDS score 
over time (increase in GDS score of at least one point) and patients 
who kept or improved it (no increase in GDS score or decrease of at 
least 1 point). The difference between scores was calculated taking last 
determination as reference.

These neuropsychological tests, as well as age, educational level, 
profession, and familiar history of cognitive impairment were 
obtained during the routine visits of patients to neurologists during 
the data collection period (between 2007 and 2022), following the 
standard clinical practice.

Clinical variables and medical history including diabetes mellitus 
(DM), hypertension, smoking, and alcohol consumption were 
extracted from electronic medical records for those patients.

The four models proposed to achieve the study’s objectives were 
as follows:

	-	 One model for cognitive impairment/dementia (model 1): 
comparison of cases with any cognitive impairment and dementia 
(GDS ≥ 3) vs. controls (GDS = 1 or 2).

	-	 A second model for MCI (model 2): comparison of cases with 
MCI (GDS = 3) vs. controls (GDS = 1 or 2).

	-	 A third model for AD (model 3): comparison of cases with AD 
diagnosis (GDS score ≥ 3 and neurological clinical diagnosis of 
AD) vs. controls (GDS = 1 or 2).

	-	 A fourth model for cognitive impairment and dementia in 
patients with multiple neuropsychological test determinations 
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(model 4): comparison of cases who worsen their GDS score over 
time vs. those who keep or improve it.

All models were constructed from the same database of patient 
assessments. The analysis of the four models were independenly 
performed and no comparisons between models were made.

Population

Assessments of individuals with cognitive complaints between 
2007 and 2022 were included in the database. Individuals who were 
unable to perform the required neurological tests for any reason were 
excluded. No other criteria were considered as inclusion or 
exclusion criteria.

This pilot study included a final sample of 2,497 individuals. Of 
these, there were 24 individuals without a GDS score. The data from 
these patients were included in the descriptive analysis of demographic 
characteristics but not in the regression models. Regarding number of 
assessments, there were 2,996 assessments, 2,965 of them with a GDS 
score, the remaining 31 that did not present a cognitive assessment 
were not included in the models.

Statistical methods

First, a descriptive analysis to understand the characteristics of the 
sample studied was performed. Continuous variables were reported 
as mean (and standard deviation) or median and interquartile range 
where appropriate. Categorical variables were summarized as relative 
and absolute frequencies. Such descriptive statistics were reported for 
the total study population, and for each subsample used in each 
model. No imputation of missing values was performed for any 
variable. The number of missing values was quantified and provided.

Next, four logistic regression models were developed to identify 
the predictor variables of the corresponding outcomes. All the models 
were performed at the level of number of assessments and not at the 
level of number of individuals. Since the same participant could have 
different determinations and different score in each, each 
determination was considered as a singular case.

Logistic regression models were built as Generalized Linear 
Mixed Models (GLMM). GLMM contain terms to account for both 
fixed and random effects. When introducing random effects, variance 
within subjects was considered, therefore several entries from the 
same subject could enter the model. The use of GLMM allowed the 
utilization of the entire data set, since it contained patients with 
multiple entries, providing more complete and precise models. Models 
were built following the steps below:

	-	 Step 1: Corresponding subset of assessments was extracted from 
raw data for each model to estimate binary response of presence 
or absence of dementia (model 1); MCI (model 2) or AD (model 
3). For model 4 (exploratory), only patients with more than one 
measurement were selected: to estimate worsening cognitive 
impairment based on GDS score (patients with more than one 
point increase in GDS score).

	-	 Step 2: In all models, a categorical variable was created to discern 
corresponding controls and cases. For the last model (4), a 

variable indicating worsening (case) or not (control) was created, 
based on the difference between the last and the first GDS score.

	-	 Step 3: Data was randomly divided into a training dataset and a 
test dataset at an approximate ratio of 3:1. The model was 
developed in the training data set and was later validated in the 
test dataset.

	-	 Step 4: A multiple logistic regression model was built by selecting 
the best features for the model through stepwise regression. This 
is a procedure which enters and removes predictors in a stepwise 
manner into the model until there is no statistically valid reason 
to enter or remove any more.

	-	 Step 5: Collinearity of selected variables was tested by using the 
variance inflation factor.

	-	 Step  6: A multiple logistic regression model was fitted with 
previously selected variables. If only one covariate was to 
be included, a simple logistic regression model was used.

	-	 Step 7: Receiver Operating Characteristics (ROC) curve and Area 
Under the ROC Curve (AUC) were calculated on a 
training dataset.

	-	 Step 8: To validate the model, it was applied to the test dataset to 
see if the model predicted well when faced with different data. 
Discrimination was evaluated by means of ROC and AUC.

An AUC ≥ 0.9 was considered excellent, between 0.8 and 0.9 is 
good, between 0.7 and 0.8 fair, between 0.6 and 0.7 poor, and between 
0.6 and 0.5 was considered a fail (24).

Sensitivity and specificity were reported corresponding to 
probability thresholds selected by the highest Youden Index.

For all tests, a p-value lower than 0.05 was considered significant 
and p-values between 0.05 and 0.1 were considered as trend towards 
to significance.

Results

Studied population

A final sample of 2,497 individuals was included. The total 
number of assessments was 2,996; of these, 2,965 had a GDS score 
and 31 did not present cognitive assessment and were not included 
in the models but were included in the descriptive analysis. Based on 
GDS score, 623 assessments were cataloged as “cognitive healthy” 
(controls evaluations), 2,342 as cognitive impairment and dementia 
(patients included in model 1), 644 as MCI (patients included in 
model 2), and 966 as AD (these assessments were based on GDS 
score and clinical diagnosis, patients included in model 3). So, of the 
2,342 assessments included in model 1, 644 correspond to MCI and 
966 correspond to AD; these were also included in model 2 and 3, 
respectively. In addition, there were 379 patients that had more than 
one neuropsychological evaluation (758 assessments, corresponding 
to the first and the last assessments of these patients).

Sociodemographic characteristics

The sociodemographic characteristics of the different evaluation 
groups included in the study are shown in Table 1. The mean age of 
the whole sample analyzed was 73 years; almost half of evaluated 
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patients (43.6%) had more than 20 years of education and 
approximately two-thirds (63.3%) were professionals and 17.1% had 
first-degree family history of dementia (Table 1).

By groups, the control group had the lowest mean age (64.4 years) 
and the highest level of education (99.0% of entries were from subjects 
who had studied for 11 years or more). By contrast,the AD group had 
the highest mean age (76.8 years) and fewer years of education (93.9% 
of group entries represented patients that had studied for 11 years or 
more, being the smallest percentage compared to the same categories 
in other groups). Variables corresponding to profession, smoking 
status and alcohol consumption presented similar distribution across 
all groups. Regarding family history, controls (21.2%) and AD (20.0%) 
patients were those with the highest percentage of first-degree history 
of dementia (Table 1).

Regression models

The results obtained for the different regression models were 
as follows:

	-	 For model 1 (cognitive impairment and dementia) the selected 
predictive variables were: age (OR = 1.721), apathy (OR = 34.952), 
anxiety (OR = 0.223) and education [OR = 0.024 (16–20 years) 
and 0.026 (>20 years) vs. ≤15 years] with an AUC of the ROC 
curve of 0.796 and a sensitivity of 0.60 and specificity of 0.86.

	-	 For model 2 (MCI), the selected variables were: age (OR = 1.222), 
apathy (OR = 2.650), depression (OR = 0.318) and education 

[OR = 0.232 (16–20 years) and 0.217 (>20 years) vs. ≤15 years] 
with an AUC of the ROC curve of 0.657 and a sensitivity of 0.82 
and specificity of 0.45.

	-	 For model 3 (AD), the variables included were age (OR = 1.490), 
family history (OR = 4.147 first degree vs. none), apathy 
(OR = 8.247), anxiety (OR = 0.302), and education [OR = 0.103 
(16–20 years) and 0.119 (>20 years vs. ≤15 years)] with an AUC 
of the ROC curve of 0.852 and a sensitivity of 0.84 and specificity 
of 0.73.

	-	 For model 4 (worsening cognitive impairment and dementia) 
only age was selected (OR = 1.003) with an AUC of the ROC 
curve of 0.532 and a sensitivity of 0.59 and specificity of 0.65.

The estimated parameters of probability’s distribution for each of 
the 4 models are described in Table 2.

Model 3 showed the best selection capacity (AUC 0.85) followed 
by model 1 (AUC 0.80). On the contrary, model 4 demonstrated the 
poorest selection ability (AUC 0.53), followed by model 2 (AUC 0.67). 
Figure 1. shows the AUC for ROC curves for model 1 (Figure 1a) and 
model 3 (Figure 1b).

Discussion

Cognitive impairment, particularly AD, can often be linked to 
potentially modifiable risk factors, such as diabetes mellitus, arterial 
hypertension, obesity, smoking, physical inactivity, depression, 
cognitive inactivity, and social isolation (11). Other recent publications 

TABLE 1  Sociodemographic data for the four different evaluation groups used to build the regression models.

Variable Control 
(N = 623)

Dementia 
(N = 2,342)

MCI (N = 644) AD (N = 966) Total evaluations 
(N = 2,996)

Age [Mean (SD), years] 64.4 (10.7) 75.4 (7.8) 72.1 (7.9) 76.8 (7.3) 73.0 (9.6)

Education [n (%)]

  <5 years 4 (0.6%) 47 (2.0%) 8 (1.2%) 26 (2.7%) 52 (1.7%)

  5–10 years 2 (0.3%) 73 (3.1%) 14 (2.2%) 33 (3.4%) 75 (2.5%)

  11–15 years 103 (16.5%) 715 (30.5%) 149 (23.1%) 330 (34.2%) 822 (27.4%)

  16–20 years 154 (24.7%) 574 (24.5%) 167 (25.9%) 229 (23.7%) 740 (24.7%)

  >20 years 360 (57.8%) 932 (39.8%) 306 (47.5%) 348 (36.0%) 1,306 (43.6%)

Profession [n (%)]

  Manual 10 (1.6%) 109 (4.7%) 21 (3.3%) 60 (6.2%) 119 (4.0%)

  Technical 17 (2.7%) 71 (3.0%) 23 (3.6%) 26 (2.7%) 88 (2.9%)

  Professional 475 (76.2%) 1,399 (59.7%) 423 (65.7%) 502 (52.0%) 1,897 (63.3%)

  Manager 34 (5.5%) 105 (4.5%) 40 (6.2%) 49 (5.1%) 139 (4.6%)

  Military 15 (2.4%) 51 (2.2%) 15 (2.3%) 12 (1.2%) 67 (2.2%)

  N/A 72 (11.6%) 607 (25.9%) 122 (18.9%) 317 (32.8%) 686 (22.9%)

Smoking status [n (%)]

  Yes 47 (7.5%) 116 (5.0%) 44 (6.8%) 43 (4.5%) 164 (5.5%)

Alcohol consumption [n (%)]

  Yes 8 (1.3%) 63 (2.7%) 16 (2.5%) 23 (2.4%) 72 (2.4%)

First degree history of dementia [n (%)]

  Yes 132 (21.2%) 374 (16.0%) 114 (17.7%) 193 (20.0%) 513 (17.1%)

AD, Alzheimer’s disease; MCI, mild cognitive impairment; SD, standard deviation; N/A, not available.
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also have highlihted other factors such as untreated vision loss, 
osteoporosis or high LDL cholesterol, as risk factors for dementia (25, 
26). Early identification and prevention of these risk factors, along 
with accurate disease forecasting, are essential strategies to prevent 
new cases. Disease forecasting has been a significant focus of the 
scientific community for over 70 years, and various groups have 
developed tools to identify the disease based on patients’ characteristics 
and medical history.

Age, low educational level, and apathy were the most important 
risk factors in the main models analyzed in our study. It is known that 
aging is the most powerful risk factor for the development of many 
chronic diseases including dementia, due to the alteration of numerous 
cellular and molecular pathways (27). It has been described that 
adaptation to stress, epigenetic, inflammation, macromolecular 
damage, metabolism, proteostasis, stem cells, regeneration and 
defective autophagy may be  considered the main cellular and 
molecular mechanisms that underpin the aging process (28). 
Individuals with a higher level of education had a lower risk of 
development of cognitive impairment and dementia (OR = 0.024), 
MCI (OR = 0.232) or AD (OR = 0.103), in line with previous studies. 
Educational attainment has long been linked for to an increased 
cognitive function over the lifespan and to a lowered risk of dementia 
(29–31). Education level is related to cognitive abilities such as 

psychomotor speed, memory, and abstract reasoning. Some authors 
have found that the development improvement of these cognitive 
abilities during the first decades of life carries great potential for 
improving cognitive ability in early adulthood and persist into older 
age (32). Moreover, cognitive training intervention can decrease the 
deterioration of cognitive function once the diagnosis of MCI has 
been performed and can help to delay the progression to other 
dementias (33). This is because cognitive training could stimulate 
pre-existing neural reserves or recruit neural circuitry as 
“compensatory scaffolding” prompting neuroplastic reorganization as 
an adaptive response (34, 35). In our sample, almost half of patients 
had more than 20 years of education, denoting a highly educated 
patient population.

Apathy and anxiety were also predictive variables in our study. 
Nevertheless, while apathy was a risk factor for all three models (OR 
model 1 = 34.952; OR model s.650; OR model 3 = 8.247), anxiety was 
revealed as a protective factor for models 1 (cognitive impairment and 
dementia; OR = 0.223) and 3 (AD; OR = 0.302). In addition, 
depression was a protective factor in regression model 2 (OR = 0.318).

Depression, anxiety, and apathy are neuropsychiatric features 
commonly observed in MCI (36–39). Some publications have 
described that in subjects with MCI, symptoms of anxiety, agitation 
and irritability may reflect underlying AD pathology. Ramakers et al. 

TABLE 2  Parameters of probability’s distribution for the regression models.

Model Analysis of maximum likelihood estimation

Parameter Coefficient Standard 
error

p-value OR 95%CI OR VIF

Model 1 cognitive 

impairment/

dementia

Intercept −29.5419 3.0089 <0.0001 – – –

Anxiety −1.5014 0.6524 0.0223 0.223 0.062–0.806 1.04821

Apathy 3.5540 0.6536 <0.0001 34.952 9.642–126.704 1.04920

Age 0.5431 0.04385 <0.0001 1.721 1.579–1.877 1.03833

Education (16–20 vs. 0–15 years) −3.7477 0.9402 <0.0001 0.024 0.004–0.150 1.03275

Education (> 20 vs. 0–15 years) −3.6324 0.8177 <0.0001 0.026 0.005–0.132

Model 2 mild 

cognitive 

impairment

Intercept −12.1441 1.9266 <0.0001 – – –

Depression −1.1447 0.4315 0.0106 0.318 1.134–0.757 1.37536

Apathy 0.9747 0.4364 0.0299 2.650 1.104–6.364 1.35099

Age 0.2004 0.02664 <0.0001 1.222 1.158–1.289 1.04757

Education (16–20 vs. 0–15 years) −1.4606 0.6012 0.0187 0.232 0.069–0.776 1.07999

Education (> 20 vs. 0–15 years) −1.5277 0.5472 0.0074 0.217 0.072–0.651

Model 3 Alzheimer 

disease

Intercept −26.1965 2.4343 <0.0001 – – –

Apathy 2.1099 0.4428 <0.0001 8.247 3.416–19.913 1.05904

Age 0.3989 0.03362 <0.0001 1.490 1.394–1.593 1.06661

Anxiety −1.1974 0.4361 0.0075 0.302 0.127–0.720 1.6876

Family history (1st degree vs. None) 1.4224 0.5375 0.0098 4.147 1.423–12.091 1.00643

Family history (1st degree vs. none) −0.05578 0.9572 0.9537 0.946 0.141–6.359

Family history (1st degree vs. none) 4.1139 2.3047 0.0782 61.184 >999.999

Education (16–20 vs. 0–15 years) −2.2751 0.5909 0.0002 0.103 0.032–0.333 1.06236

Education (>20 vs. 0–15 years) −2.1270 0.5179 <0.0001 0.119 0.043–0.344

Model 4 worsening 

in cognition

Intercept −15.4738 1.1641 <0.0001 – – –

Age 0.03248 0.01561 0.0386 1.033 1.002–1.065 –

CI, Confidence interval; OR, Odd ratio; VIF, Variance Inflation Factor.
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found that patients with symptoms of anxiety had abnormal 
cerebrospinal fluid amyloid-β 42 (OR = 2.3) and t-tau (OR = 2.6) 
concentrations with respect to patients with normal cognitive status 
(40). Although anxiety may be a psychological reaction to the insight 
into their cognitive decline, or induce a hypothalamic–pituitary–
adrenal axis dysregulation in AD pathology (35, 41), other studies in 
line with our findings did not find this association, considering the 
anxiety as a non-predictor for conversion to AD (42). The justification 
for these results is not easy, but probably one explanation could 
be that once the cognitive impairment progresses, patients could lose 
their objective perception of memory deficits and symptoms and 
their anxiety levels would go down. Also, because the use of anxiolytic 
and antidepressant treatments is common in this population group, 
its use could influence the NPI scores obtained, so that the symptoms 
could be under control with the treatment received at the time of 
neurological assessment.

Regarding the influence of depression in MCI and dementia, the 
results published are also discrepant, as other authors in line with our 
results did not find an association between depressive symptoms and 
AD (40, 43, 44). In contrast, other studies have reported that depressive 
symptoms predicted cognitive decline and AD in subjects with MCI (45, 
46). Because depressive symptoms in subjects with MCI may be related 
to other neurodegenerative processes, such as synaptic or neuronal loss, 
vascular changes, neurotransmitter deregulation or primary affective 
disorder (47, 48), further studies would be necessary to elucidate its role 
in the MCI and dementia. As mentioned above, it would also 
be important to know the influence that antidepressant treatments may 
have had on the NPI scores obtained, since the study population is a 
population with a high demand for treatment.

On the other hand, apathy may be the result of the degeneration of 
frontal circuits and white-matter lesions, and more severe cholinergic 
dysfunction (49, 50). Recent studies associated apathy with incident 
dementia and worse clinical outcomes (cognition, function, 

neuropsychiatric symptoms, and caregiver burden) considering this 
symptom a marker of clinical decline in older people and poorer 
outcomes across neurocognitive disorders (51). In addition, apathy has 
been associated with an increased risk of conversion to AD in patients 
with MCI (52). Considering all these findings, the evaluation of this 
variable must be key to predicting the diagnosis of MCI and conversion 
to AD and other dementias and its therapeutic approach must 
be considered once the diagnosis is confirmed.

In model 3 (AD), in addition to age, education, apathy and 
anxiety, family history was also considered a risk factor for developing 
the disease. It has been previously published that the heritability in 
this pathology is high, it has been estimated that up to 60–80% of 
patients with AD have previous family history (53). Although 
numerous studies are still being carried out, this strong genetic 
component is widely accepted, and recent studies have detected up to 
73 independent loci that could be implied in developing the of disease 
(54). Therefore, this factor must be  taken into account when a 
dementia diagnosis is performed, and must be  a key factor to 
be included in a model for the early detection of presymptomatic AD.

Cognitive impairment, and specially AD, can be attributed to 
other potentially modifiable risk factors. In fact, hypertension, high 
cholesterol, diabetes, and smoking at midlife are each associated with 
a 20 to 40% increased risk of dementia (55–58). Although the control 
of these factors is recommended, and lifestyle modification is always 
a strategy for preventing of different complications, in our study no 
association with vascular risk factors was found. It may have been 
because these variables were directly extracted from medical records, 
and they were not collected at the time of neuropsychological tests 
performing. These results should be taken with caution since they 
could be underestimated, because existing medical chart data might 
not contain all the information required or might not be up to date.

As previously mentioned, cognitive decline is usually progressive 
going from different phases ranging from subjective cognitive 

FIGURE 1

Area under the curve (AUC) for Receiver Operating Characteristics (ROC) curves for model 1 (a) and model 3 (b).
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impairment (cognitive complaint with normal cognitive screening 
test) to MCI to dementia (mostly in the form of AD) (59). In the 
present study, an exploratory model was created in order to predict 
worsening cognitive impairment/dementia (model 4). In this model, 
a comparison between patients who worsen their GDS score over time 
vs. those who keep or improve it was made, however a poor sensitivity 
(0.59) and specificity (0.65) and, therefore, a poor selection capability, 
was obtained. Thus, additional studies with systematic and protocoled 
evaluations in this population should be performed to obtain data that 
are more conclusive.

According to the results of AUCs obtained in our study, model 
3 (AD) was the model with the best selection capacity with an AUC 
of 0.85 followed by model 1 (cognitive impairment and dementia 
that obtained a good selection performance model with an AUC of 
0.80). Its use, therefore, could be  recommended to predict the 
diagnosis of cognitive impairment and dementia (including AD) in 
healthy individuals who go to the clinic after or before the 
appearance of suspected symptoms. Based in our results, the age, 
education level, apathy and anxiety could be key factors to include 
in both models. In addition, family history could be also considered 
in the AD model.

By contrast model 4 (worsening cognitive impairment and 
dementia) demonstrated the poorest selection ability with an AUC of 
0.53, followed by model 2 (MCI) that was also considered poor with 
an AUC of 0.66 its clinical application could not be recommended for 
the time being.

This study has several limitations. Key variables such as smoking, 
alcohol consumption, diabetes mellitus, and hypertension were 
directly extracted from electronic medical records rather than being 
collected contemporaneously with the neuropsychological 
assessments. These factors might be  underestimated due to 
incomplete or inconsistent documentation in medical charts, which 
can vary according to the practice patterns of different specialists. In 
our sample, almost half of the patients had more than 20 years of 
education, denoting a highly educated patient population, in 
concordance with the type of patient followed in a private healthcare 
setting, with more socioeconomic resources and possibility of 
academic formation. Also, probably the age at which the patient 
consults as first time may be different in a private compared to public 
setting, patients would go to private healthcare earlier to evaluate 
neurological symptoms since access to the specialist could be faster. 
So, the results obtained to this regard may not be  directly 
generalizable to other populations. Therefore, caution should 
be exercised when interpreting the results, and the possibility of 
conducting additional studies with more diverse samples should 
be considered.

Because the database used is the same for all the models, patients 
included in the more general model 1 could overlap with those 
patients included in the more specific models 2 and 3. Since the 
comparison between models was not the objective of study and the 
clinical significance and utility of these models as well as interpretation 
were different, no interferences due to this fact were estimated. Also, 
although all-cause dementia cases were included in model 1 and it was 
our population of interest in the study, a separate model excluding 
MCI and AD could have helped to elucidate if the key predictors 
detected in all-cause model 1 remained significant and consistent once 
the subtypes were removed. However, because majority of cases 
included in model 1 corresponded to MCI and AD and this model was 

not the scope of study, the analysis of this additional model was not 
finally performed.

Additionally, in patients with longitudinal data, follow-up visits 
were scheduled based on individual patient needs rather than a 
standardized protocol. This variability could affect the consistency and 
reliability of the data. Moreover, both the physicians and patients 
involved in the study may not be fully representative of all specialists 
and individuals with cognitive impairment or dementia in Spain, as 
the sample was drawn from a private healthcare setting. Finally, 
despite these limitations, this study provides valuable insights into 
these conditions in a real-life context, given the lack of previous 
similar data in our region. Also, the models use variables that are easy 
to extract from computerized medical records, making possible to 
apply them in any healthcare setting for the early detection of cases at 
risk of cognitive impairment that could be  subject to more 
intensive monitoring.

Conclusion

Our study highlights the significance of age, education level, and 
apathy as key risk factors for cognitive impairment and AD. While 
anxiety and depression presented mixed associations, our findings 
emphasize the protective role of higher educational attainment against 
cognitive decline. Notably, apathy emerged as a consistent risk factor 
across various models, underscoring its importance in predicting the 
progression of cognitive impairment. Family history also contributed 
to the risk of AD, aligning with the recognized genetic predisposition 
in this pathology. The robust performance of our AD prediction 
model (AUC of 0.85) and the cognitive impairment and dementia 
model (AUC of 0.80) supports their potential utility in clinical 
settings. Conversely, models predicting the progression of cognitive 
impairment and MCI demonstrated limited predictive capability, 
indicating the need for further research.

The integration of age, education level, apathy, and anxiety into 
predictive models offers a promising approach for early identification 
and intervention in cognitive impairment and AD. Future studies 
should focus on systematic and standardized data collection to 
enhance the reliability and applicability of these predictive tools.
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