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Predictive regression models for
cognitive impairment, dementia,
and Alzheimer’s disease using
real-world electronic health
records
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Alicia Algaba?, Pablo Rebollo?®, Jorge Maurino? and
Rafael Arroyo!

!Department of Neurology, Hospital Universitario Quirénsalud, Madrid, Spain, 2Medical Department,
Roche Farma, Madrid, Spain, *IQVIA, Madrid, Spain

The aim of this non-interventional, case—control pilot study was to identify factors
associated with cognitive impairment, dementia, and Alzheimer’s disease (AD)
using a real-world dataset from Quirdnsaludmadrid’s database. Based on Global
Deterioration Scale score, 4 models of regression aimed to predict cognitive
impairment and dementia (model 1), mild cognitive impairment (MCI, model 2), AD
(model 3) and progression (model 4) were created. Age [odds ratio (OR) = 1.721],
apathy (OR = 34.952), anxiety (OR = 0.223) and higher education (OR = 0.026)
were associated with model 1 with an area under the curve (AUC) of 0.796 and a
sensitivity of 0.60 and specificity of 0.86. For model 2, the selected variables were:
age (OR =1.222), apathy (OR = 2.650), depression (OR = 0.318) and higher education
(OR = 0.232) with an AUC of 0.657 and a sensitivity of 0.82 and specificity of 0.45.
For model 3, variables included were age (OR = 1490), first-degree family history
(OR = 4.147), apathy (OR = 8.247), anxiety (OR = 0.302), and higher education
(OR = 0.119) with an AUC of 0.852 and a sensitivity of 0.84 and specificity of 0.73.
Model 4 had an AUC of 0.532 and a sensitivity of 0.59 and specificity of 0.65. In
conclusion, age and apathy were risk factors for the development of cognitive
impairment, MCl and AD, while high education level was a protective factor in the
three main models. Family history of dementia was a risk factor for developing AD.
Models 3 and 1 had the best selection capacity and could be recommended to
predict the diagnosis of AD and cognitive impairment and dementia in individuals
with suspicious symptoms or presymptomatic.
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Introduction

The global elderly population is growing significantly. Over the next 15 years, the number
of people aged 60 and above will increase by 56% (1). This rapid demographic shift toward an
older population will lead to higher rates of disease and disability, notably affecting cognitive
functions. Conditions such as mild cognitive impairment (MCI), Alzheimer’s disease (AD),
and other types of dementia are expected to become more prevalent as a result (2-6).

Cognitive impairment is defined as a clinical entity characterized by a complete or partial
intellectual dysfunction. Given that cognitive impairment is related to age, and that today’s life
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expectancy is increasing, as has been commented previously, the
management of these entities has become a major public health
concern that entails a challenge for health and social services and is
the main cause of disability and dependence among elderly
worldwide (7).

In fact, the total number of people with dementia is expected to
reach 82 million in 2030 and 152 million in 2050 according to the
World Health Organization (7). Moreover, AD and cognitive
impairment have a high burden of disease with a clear impact on
morbidity, disability, and mortality (8, 9).

However, despite the high number of cases and high burden of
disease, there is a significant percentage of cases that are still
underdiagnosed, preventing the early establishment of
pharmacological and non-pharmacological treatments that slow
cognitive decline and control behavioral disorders (10). Detecting and
predicting cognitive decline at its earliest stages is crucial for
implementing timely interventions that may help slow disease
progression and enhance patient outcomes (11-13).

As cognitive impairment, and specially AD, can be attributed to
potentially modifiable risk factors (such as diabetes mellitus, arterial
hypertension, obesity, smoking, physical inactivity, depression,
cognitive inactivity, and social isolation, among others), the early
identification and prevention of these risk factors as well as disease
forecasting must be key points to avoid the emergence of new cases.
In fact, disease forecasting has been an area of intense interest for the
scientific community for over seven decades (14-16) and some groups
have developed tools to identify the disease based on patients
characteristics and medical history (17).

The creation of precise regression models utilizing real-world data
presents a promising path toward enhancing our capacity to pinpoint
individuals at risk of cognitive impairment and dementia. These
models leverage complex datasets encompassing various biological,
clinical, and lifestyle factors, enabling the identification of subtle
patterns and risk factors that may otherwise go unnoticed (18).

The development of accurate regression models relies on
sophisticated machine learning techniques that can analyze large-scale
datasets efficiently. These models not only predict future cognitive
decline but also provide insights into the underlying mechanisms of
disease progression, paving the way for novel therapeutic approaches
and precision medicine initiatives (19-21).

So, the primary objective of this pilot study was to develop a
regression model for cognitive impairment and dementia to be applied
in healthy subjects, using real world data from a cognitive impairment
database owned by the Quirénsalud Dementia Team.

Also, 3 additional regression models using the same methodology
were developed for the prediction of MCI, AD, and worsening
cognitive impairment (exploratory model in patients with several
neuropsychological determinations performed over time).

Materials and methods
Design

A pilot case-control study for the development of different
cognitive impairment regression models to be applied in the future in

healthy subjects as a risk calculator was designed. The results for the
study were obtained analyzing the database owned by the Quirénsalud
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Dementia Team. This database contains data from individuals who
were assisted by the Neurology Department at Hospital Quirénsalud
Madrid between 2007 and 2022 due to cognitive complaints, including
determinations such as Global Deterioration Scale (GDS) or
Neuropsychiatric Inventory (NPI-Q) scale. Each patient could have
more than one assessment, so each assessment was considered as a
singular case in the majority of analyses.

The Quironsalud Madrid University Hospital is a private
healthcare center in Spain specializing in neurological care and
research. The neurology department includes 20 neurologists and two
neuropsychologists. Annually, the department handles approximately
50,000 neurological consultations, with about 15% (7,500
consultations) related to cognitive disorders.

The NPI consists of 12 items assessing the presence and severity
of 12 neuropsychiatric symptoms (22). All patients with more than 1
point in this questionnaire were considered as a case for this variable
in the present study. Regarding GDS score, this score is made up of the
following categories: 1. Absence of cognitive impairment; 2. Memory
complaints; 3. MCI; 4. Moderate cognitive impairment; 5. Moderate—
severe cognitive defect; 6. Severe cognitive impairment; 7. Very severe
cognitive defect (23). Based on this score, patients and assessments
were classified as controls and cases for the regression models created
for this study in the next step: those with a low GDS score, GDS =1
or 2, were “controls,” while those with higher scores, GDS > 3, were
considered “cases” Within this last category, MCI cases were those
with GDS = 3 and AD cases were those with GDS > 3 and neurological
clinical diagnosis compatible with AD. This neurological diagnosis
was also considered in the database and was based on the International
Classification of Diseases.

Individuals with multiple neuropsychological tests determinations
during data collection were analyzed in an additional model that
aimed to identify worsening cognitive impairment/dementia. In this
case there were two groups; patients who worsened their GDS score
over time (increase in GDS score of at least one point) and patients
who kept or improved it (no increase in GDS score or decrease of at
least 1 point). The difference between scores was calculated taking last
determination as reference.

These neuropsychological tests, as well as age, educational level,
profession, and familiar history of cognitive impairment were
obtained during the routine visits of patients to neurologists during
the data collection period (between 2007 and 2022), following the
standard clinical practice.

Clinical variables and medical history including diabetes mellitus
(DM), hypertension, smoking, and alcohol consumption were
extracted from electronic medical records for those patients.

The four models proposed to achieve the study’s objectives were
as follows:

- One model for cognitive impairment/dementia (model 1):
comparison of cases with any cognitive impairment and dementia
(GDS > 3) vs. controls (GDS =1 or 2).

- A second model for MCI (model 2): comparison of cases with
MCI (GDS = 3) vs. controls (GDS =1 or 2).

- A third model for AD (model 3): comparison of cases with AD
diagnosis (GDS score > 3 and neurological clinical diagnosis of
AD) vs. controls (GDS =1 or 2).

- A fourth model for cognitive impairment and dementia in
patients with multiple neuropsychological test determinations
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(model 4): comparison of cases who worsen their GDS score over
time vs. those who keep or improve it.

All models were constructed from the same database of patient
assessments. The analysis of the four models were independenly
performed and no comparisons between models were made.

Population

Assessments of individuals with cognitive complaints between
2007 and 2022 were included in the database. Individuals who were
unable to perform the required neurological tests for any reason were
excluded. No other criteria were considered as inclusion or
exclusion criteria.

This pilot study included a final sample of 2,497 individuals. Of
these, there were 24 individuals without a GDS score. The data from
these patients were included in the descriptive analysis of demographic
characteristics but not in the regression models. Regarding number of
assessments, there were 2,996 assessments, 2,965 of them with a GDS
score, the remaining 31 that did not present a cognitive assessment
were not included in the models.

Statistical methods

First, a descriptive analysis to understand the characteristics of the
sample studied was performed. Continuous variables were reported
as mean (and standard deviation) or median and interquartile range
where appropriate. Categorical variables were summarized as relative
and absolute frequencies. Such descriptive statistics were reported for
the total study population, and for each subsample used in each
model. No imputation of missing values was performed for any
variable. The number of missing values was quantified and provided.

Next, four logistic regression models were developed to identify
the predictor variables of the corresponding outcomes. All the models
were performed at the level of number of assessments and not at the
level of number of individuals. Since the same participant could have
different determinations and different score in each, each
determination was considered as a singular case.

Logistic regression models were built as Generalized Linear
Mixed Models (GLMM). GLMM contain terms to account for both
fixed and random effects. When introducing random effects, variance
within subjects was considered, therefore several entries from the
same subject could enter the model. The use of GLMM allowed the
utilization of the entire data set, since it contained patients with
multiple entries, providing more complete and precise models. Models
were built following the steps below:

- Step 1: Corresponding subset of assessments was extracted from
raw data for each model to estimate binary response of presence
or absence of dementia (model 1); MCI (model 2) or AD (model
3). For model 4 (exploratory), only patients with more than one
measurement were selected: to estimate worsening cognitive
impairment based on GDS score (patients with more than one
point increase in GDS score).

- Step 2: In all models, a categorical variable was created to discern
corresponding controls and cases. For the last model (4), a
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variable indicating worsening (case) or not (control) was created,
based on the difference between the last and the first GDS score.

- Step 3: Data was randomly divided into a training dataset and a
test dataset at an approximate ratio of 3:1. The model was
developed in the training data set and was later validated in the
test dataset.

- Step 4: A multiple logistic regression model was built by selecting
the best features for the model through stepwise regression. This
is a procedure which enters and removes predictors in a stepwise
manner into the model until there is no statistically valid reason
to enter or remove any more.

- Step 5: Collinearity of selected variables was tested by using the
variance inflation factor.

- Step 6: A multiple logistic regression model was fitted with
previously selected variables. If only one covariate was to
be included, a simple logistic regression model was used.

- Step 7: Receiver Operating Characteristics (ROC) curve and Area
Under the ROC Curve (AUC) were calculated on a
training dataset.

- Step 8: To validate the model, it was applied to the test dataset to
see if the model predicted well when faced with different data.
Discrimination was evaluated by means of ROC and AUC.

An AUC > 0.9 was considered excellent, between 0.8 and 0.9 is
good, between 0.7 and 0.8 fair, between 0.6 and 0.7 poor, and between
0.6 and 0.5 was considered a fail (24).

Sensitivity and specificity were reported corresponding to
probability thresholds selected by the highest Youden Index.

For all tests, a p-value lower than 0.05 was considered significant
and p-values between 0.05 and 0.1 were considered as trend towards
to significance.

Results
Studied population

A final sample of 2,497 individuals was included. The total
number of assessments was 2,996; of these, 2,965 had a GDS score
and 31 did not present cognitive assessment and were not included
in the models but were included in the descriptive analysis. Based on
GDS score, 623 assessments were cataloged as “cognitive healthy”
(controls evaluations), 2,342 as cognitive impairment and dementia
(patients included in model 1), 644 as MCI (patients included in
model 2), and 966 as AD (these assessments were based on GDS
score and clinical diagnosis, patients included in model 3). So, of the
2,342 assessments included in model 1, 644 correspond to MCI and
966 correspond to AD; these were also included in model 2 and 3,
respectively. In addition, there were 379 patients that had more than
one neuropsychological evaluation (758 assessments, corresponding
to the first and the last assessments of these patients).

Sociodemographic characteristics
The sociodemographic characteristics of the different evaluation

groups included in the study are shown in Table 1. The mean age of
the whole sample analyzed was 73 years; almost half of evaluated
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TABLE 1 Sociodemographic data for the four different evaluation groups used to build the regression models.

Variable Control Dementia MCI (N = 644) AD (N = 966) Total evaluations
(N = 623) (N =2,342) (N =2,996)

Age [Mean (SD), years] 64.4 (10.7) 75.4 (7.8) 72.1(7.9) 76.8 (7.3) 73.0 (9.6)
Education [1 (%)]

<5 years 4(0.6%) 47 (2.0%) 8(1.2%) 26 (2.7%) 52 (1.7%)

5-10 years 2 (0.3%) 73 (3.1%) 14 (2.2%) 33 (3.4%) 75 (2.5%)

11-15 years 103 (16.5%) 715 (30.5%) 149 (23.1%) 330 (34.2%) 822 (27.4%)

16-20 years 154 (24.7%) 574 (24.5%) 167 (25.9%) 229 (23.7%) 740 (24.7%)

>20 years 360 (57.8%) 932 (39.8%) 306 (47.5%) 348 (36.0%) 1,306 (43.6%)
Profession [n (%)]

Manual 10 (1.6%) 109 (4.7%) 21 (3.3%) 60 (6.2%) 119 (4.0%)

Technical 17 (2.7%) 71 (3.0%) 23 (3.6%) 26 (2.7%) 88 (2.9%)

Professional 475 (76.2%) 1,399 (59.7%) 423 (65.7%) 502 (52.0%) 1,897 (63.3%)

Manager 34 (5.5%) 105 (4.5%) 40 (6.2%) 49 (5.1%) 139 (4.6%)

Military 15 (2.4%) 51 (2.2%) 15 (2.3%) 12 (1.2%) 67 (2.2%)

N/A 72 (11.6%) 607 (25.9%) 122 (18.9%) 317 (32.8%) 686 (22.9%)
Smoking status [# (%)]

Yes ‘ 47 (7.5%) ‘ 116 (5.0%) 44 (6.8%) ‘ 43 (4.5%) ‘ 164 (5.5%)
Alcohol consumption [ (%)]

Yes ‘ 8(1.3%) ‘ 63 (2.7%) 16 (2.5%) ‘ 23 (2.4%) ‘ 72 (2.4%)
First degree history of dementia [# (%)]

Yes ‘ 132 (21.2%) ‘ 374 (16.0%) 114 (17.7%) ‘ 193 (20.0%) ‘ 513 (17.1%)

AD, Alzheimer’s disease; MCI, mild cognitive impairment; SD, standard deviation; N/A, not available.

patients (43.6%) had more than 20years of education and
approximately two-thirds (63.3%) were professionals and 17.1% had
first-degree family history of dementia (Table 1).

By groups, the control group had the lowest mean age (64.4 years)
and the highest level of education (99.0% of entries were from subjects
who had studied for 11 years or more). By contrast,the AD group had
the highest mean age (76.8 years) and fewer years of education (93.9%
of group entries represented patients that had studied for 11 years or
more, being the smallest percentage compared to the same categories
in other groups). Variables corresponding to profession, smoking
status and alcohol consumption presented similar distribution across
all groups. Regarding family history, controls (21.2%) and AD (20.0%)
patients were those with the highest percentage of first-degree history
of dementia (Table 1).

Regression models

The results obtained for the different regression models were
as follows:

- For model 1 (cognitive impairment and dementia) the selected
predictive variables were: age (OR = 1.721), apathy (OR = 34.952),
anxiety (OR = 0.223) and education [OR = 0.024 (16-20 years)
and 0.026 (>20 years) vs. <15 years] with an AUC of the ROC
curve of 0.796 and a sensitivity of 0.60 and specificity of 0.86.

- For model 2 (MCI), the selected variables were: age (OR = 1.222),
apathy (OR = 2.650), depression (OR =0.318) and education
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[OR =0.232 (16-20 years) and 0.217 (>20 years) vs. <15 years]
with an AUC of the ROC curve of 0.657 and a sensitivity of 0.82
and specificity of 0.45.

- For model 3 (AD), the variables included were age (OR = 1.490),
family history (OR =4.147 first degree vs. none), apathy
(OR = 8.247), anxiety (OR = 0.302), and education [OR = 0.103
(16-20 years) and 0.119 (>20 years vs. <15 years)] with an AUC
of the ROC curve of 0.852 and a sensitivity of 0.84 and specificity
of 0.73.

- For model 4 (worsening cognitive impairment and dementia)
only age was selected (OR = 1.003) with an AUC of the ROC
curve of 0.532 and a sensitivity of 0.59 and specificity of 0.65.

The estimated parameters of probability’s distribution for each of
the 4 models are described in Table 2.

Model 3 showed the best selection capacity (AUC 0.85) followed
by model 1 (AUC 0.80). On the contrary, model 4 demonstrated the
poorest selection ability (AUC 0.53), followed by model 2 (AUC 0.67).
Figure 1. shows the AUC for ROC curves for model 1 (Figure 1a) and
model 3 (Figure 1b).

Discussion

Cognitive impairment, particularly AD, can often be linked to
potentially modifiable risk factors, such as diabetes mellitus, arterial
hypertension, obesity, smoking, physical inactivity, depression,
cognitive inactivity, and social isolation (11). Other recent publications
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TABLE 2 Parameters of probability’s distribution for the regression models.

10.3389/fneur.2025.1522340

Analysis of maximum likelihood estimation

Parameter Coefficient Standard p-value (O] 95%Cl OR VIF
error
Model 1 cognitive Intercept —29.5419 3.0089 <0.0001 - - -
impairment/ Anxiety —-1.5014 0.6524 0.0223 0.223 0.062-0.806 1.04821
dementia
Apathy 3.5540 0.6536 <0.0001 34.952 9.642-126.704 1.04920
Age 0.5431 0.04385 <0.0001 1.721 1.579-1.877 1.03833
Education (16-20 vs. 0-15 years) —3.7477 0.9402 <0.0001 0.024 0.004-0.150 1.03275
Education (> 20 vs. 0-15 years) —3.6324 0.8177 <0.0001 0.026 0.005-0.132
Model 2 mild Intercept —12.1441 1.9266 <0.0001 - - -
cognitive Depression —1.1447 0.4315 0.0106 0.318 1.134-0.757 1.37536
fmpairment Apathy 0.9747 0.4364 0.0299 2.650 1.104-6.364 1.35099
Age 0.2004 0.02664 <0.0001 1222 1.158-1.289 1.04757
Education (16-20 vs. 0-15 years) ~1.4606 0.6012 0.0187 0.232 0.069-0.776 1.07999
Education (> 20 vs. 0-15 years) —1.5277 0.5472 0.0074 0.217 0.072-0.651
Model 3 Alzheimer | Intercept —26.1965 2.4343 <0.0001 - - -
disease Apathy 2.1099 0.4428 <0.0001 8.247 3.416-19.913 1.05904
Age 0.3989 0.03362 <0.0001 1.490 1.394-1.593 1.06661
Anxiety —1.1974 0.4361 0.0075 0.302 0.127-0.720 1.6876
Family history (1st degree vs. None) 1.4224 0.5375 0.0098 4.147 1.423-12.091 1.00643
Family history (Ist degree vs. none) —0.05578 0.9572 0.9537 0.946 0.141-6.359
Family history (Ist degree vs. none) 4.1139 2.3047 0.0782 61.184 >999.999
Education (16-20 vs. 0-15 years) —2.2751 0.5909 0.0002 0.103 0.032-0.333 1.06236
Education (>20 vs. 0-15 years) —2.1270 0.5179 <0.0001 0.119 0.043-0.344
Model 4 worsening | Intercept —15.4738 1.1641 <0.0001 - - -
in cognition Age 0.03248 0.01561 0.0386 1.033 1.002-1.065 -

CI, Confidence interval; OR, Odd ratio; VIF, Variance Inflation Factor.

also have highlihted other factors such as untreated vision loss,
osteoporosis or high LDL cholesterol, as risk factors for dementia (25,
26). Early identification and prevention of these risk factors, along
with accurate disease forecasting, are essential strategies to prevent
new cases. Disease forecasting has been a significant focus of the
scientific community for over 70 years, and various groups have
developed tools to identify the disease based on patients’ characteristics
and medical history.

Age, low educational level, and apathy were the most important
risk factors in the main models analyzed in our study. It is known that
aging is the most powerful risk factor for the development of many
chronic diseases including dementia, due to the alteration of numerous
cellular and molecular pathways (27). It has been described that
adaptation to stress, epigenetic, inflammation, macromolecular
damage, metabolism, proteostasis, stem cells, regeneration and
defective autophagy may be considered the main cellular and
molecular mechanisms that underpin the aging process (28).
Individuals with a higher level of education had a lower risk of
development of cognitive impairment and dementia (OR = 0.024),
MCI (OR = 0.232) or AD (OR = 0.103), in line with previous studies.
Educational attainment has long been linked for to an increased
cognitive function over the lifespan and to a lowered risk of dementia
(29-31). Education level is related to cognitive abilities such as
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psychomotor speed, memory, and abstract reasoning. Some authors
have found that the development improvement of these cognitive
abilities during the first decades of life carries great potential for
improving cognitive ability in early adulthood and persist into older
age (32). Moreover, cognitive training intervention can decrease the
deterioration of cognitive function once the diagnosis of MCI has
been performed and can help to delay the progression to other
dementias (33). This is because cognitive training could stimulate
pre-existing neural reserves or recruit neural circuitry as
“compensatory scaffolding” prompting neuroplastic reorganization as
an adaptive response (34, 35). In our sample, almost half of patients
had more than 20 years of education, denoting a highly educated
patient population.

Apathy and anxiety were also predictive variables in our study.
Nevertheless, while apathy was a risk factor for all three models (OR
model 1 = 34.952; OR model 5.650; OR model 3 = 8.247), anxiety was
revealed as a protective factor for models 1 (cognitive impairment and
dementia; OR=0.223) and 3 (AD; OR=0.302). In addition,
depression was a protective factor in regression model 2 (OR = 0.318).

Depression, anxiety, and apathy are neuropsychiatric features
commonly observed in MCI (36-39). Some publications have
described that in subjects with MCI, symptoms of anxiety, agitation
and irritability may reflect underlying AD pathology. Ramakers et al.
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FIGURE 1
Area under the curve (AUC) for Receiver Operating Characteristics (ROC) curves for model 1 (@) and model 3 (b).

found that patients with symptoms of anxiety had abnormal
cerebrospinal fluid amyloid-p 42 (OR =2.3) and t-tau (OR = 2.6)
concentrations with respect to patients with normal cognitive status
(40). Although anxiety may be a psychological reaction to the insight
into their cognitive decline, or induce a hypothalamic-pituitary-
adrenal axis dysregulation in AD pathology (35, 41), other studies in
line with our findings did not find this association, considering the
anxiety as a non-predictor for conversion to AD (42). The justification
for these results is not easy, but probably one explanation could
be that once the cognitive impairment progresses, patients could lose
their objective perception of memory deficits and symptoms and
their anxiety levels would go down. Also, because the use of anxiolytic
and antidepressant treatments is common in this population group,
its use could influence the NPI scores obtained, so that the symptoms
could be under control with the treatment received at the time of
neurological assessment.

Regarding the influence of depression in MCI and dementia, the
results published are also discrepant, as other authors in line with our
results did not find an association between depressive symptoms and
AD (40, 43, 44). In contrast, other studies have reported that depressive
symptoms predicted cognitive decline and AD in subjects with MCI (45,
46). Because depressive symptoms in subjects with MCI may be related
to other neurodegenerative processes, such as synaptic or neuronal loss,
vascular changes, neurotransmitter deregulation or primary affective
disorder (47, 48), further studies would be necessary to elucidate its role
in the MCI and dementia. As mentioned above, it would also
be important to know the influence that antidepressant treatments may
have had on the NPI scores obtained, since the study population is a
population with a high demand for treatment.

On the other hand, apathy may be the result of the degeneration of
frontal circuits and white-matter lesions, and more severe cholinergic
dysfunction (49, 50). Recent studies associated apathy with incident
dementia and worse clinical outcomes (cognition, function,
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neuropsychiatric symptoms, and caregiver burden) considering this
symptom a marker of clinical decline in older people and poorer
outcomes across neurocognitive disorders (51). In addition, apathy has
been associated with an increased risk of conversion to AD in patients
with MCI (52). Considering all these findings, the evaluation of this
variable must be key to predicting the diagnosis of MCI and conversion
to AD and other dementias and its therapeutic approach must
be considered once the diagnosis is confirmed.

In model 3 (AD), in addition to age, education, apathy and
anxiety, family history was also considered a risk factor for developing
the disease. It has been previously published that the heritability in
this pathology is high, it has been estimated that up to 60-80% of
patients with AD have previous family history (53). Although
numerous studies are still being carried out, this strong genetic
component is widely accepted, and recent studies have detected up to
73 independent loci that could be implied in developing the of disease
(54). Therefore, this factor must be taken into account when a
dementia diagnosis is performed, and must be a key factor to
be included in a model for the early detection of presymptomatic AD.

Cognitive impairment, and specially AD, can be attributed to
other potentially modifiable risk factors. In fact, hypertension, high
cholesterol, diabetes, and smoking at midlife are each associated with
a 20 to 40% increased risk of dementia (55-58). Although the control
of these factors is recommended, and lifestyle modification is always
a strategy for preventing of different complications, in our study no
association with vascular risk factors was found. It may have been
because these variables were directly extracted from medical records,
and they were not collected at the time of neuropsychological tests
performing. These results should be taken with caution since they
could be underestimated, because existing medical chart data might
not contain all the information required or might not be up to date.

As previously mentioned, cognitive decline is usually progressive
going from different phases ranging from subjective cognitive
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impairment (cognitive complaint with normal cognitive screening
test) to MCI to dementia (mostly in the form of AD) (59). In the
present study, an exploratory model was created in order to predict
worsening cognitive impairment/dementia (model 4). In this model,
a comparison between patients who worsen their GDS score over time
vs. those who keep or improve it was made, however a poor sensitivity
(0.59) and specificity (0.65) and, therefore, a poor selection capability,
was obtained. Thus, additional studies with systematic and protocoled
evaluations in this population should be performed to obtain data that
are more conclusive.

According to the results of AUCs obtained in our study, model
3 (AD) was the model with the best selection capacity with an AUC
of 0.85 followed by model 1 (cognitive impairment and dementia
that obtained a good selection performance model with an AUC of
0.80). Its use, therefore, could be recommended to predict the
diagnosis of cognitive impairment and dementia (including AD) in
healthy individuals who go to the clinic after or before the
appearance of suspected symptoms. Based in our results, the age,
education level, apathy and anxiety could be key factors to include
in both models. In addition, family history could be also considered
in the AD model.

By contrast model 4 (worsening cognitive impairment and
dementia) demonstrated the poorest selection ability with an AUC of
0.53, followed by model 2 (MCI) that was also considered poor with
an AUC of 0.66 its clinical application could not be reccommended for
the time being.

This study has several limitations. Key variables such as smoking,
alcohol consumption, diabetes mellitus, and hypertension were
directly extracted from electronic medical records rather than being
collected contemporaneously with the neuropsychological
assessments. These factors might be underestimated due to
incomplete or inconsistent documentation in medical charts, which
can vary according to the practice patterns of different specialists. In
our sample, almost half of the patients had more than 20 years of
education, denoting a highly educated patient population, in
concordance with the type of patient followed in a private healthcare
setting, with more socioeconomic resources and possibility of
academic formation. Also, probably the age at which the patient
consults as first time may be different in a private compared to public
setting, patients would go to private healthcare earlier to evaluate
neurological symptoms since access to the specialist could be faster.
So, the results obtained to this regard may not be directly
generalizable to other populations. Therefore, caution should
be exercised when interpreting the results, and the possibility of
conducting additional studies with more diverse samples should
be considered.

Because the database used is the same for all the models, patients
included in the more general model 1 could overlap with those
patients included in the more specific models 2 and 3. Since the
comparison between models was not the objective of study and the
clinical significance and utility of these models as well as interpretation
were different, no interferences due to this fact were estimated. Also,
although all-cause dementia cases were included in model 1 and it was
our population of interest in the study, a separate model excluding
MCI and AD could have helped to elucidate if the key predictors
detected in all-cause model 1 remained significant and consistent once
the subtypes were removed. However, because majority of cases
included in model 1 corresponded to MCI and AD and this model was
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not the scope of study, the analysis of this additional model was not
finally performed.

Additionally, in patients with longitudinal data, follow-up visits
were scheduled based on individual patient needs rather than a
standardized protocol. This variability could affect the consistency and
reliability of the data. Moreover, both the physicians and patients
involved in the study may not be fully representative of all specialists
and individuals with cognitive impairment or dementia in Spain, as
the sample was drawn from a private healthcare setting. Finally,
despite these limitations, this study provides valuable insights into
these conditions in a real-life context, given the lack of previous
similar data in our region. Also, the models use variables that are easy
to extract from computerized medical records, making possible to
apply them in any healthcare setting for the early detection of cases at
risk of cognitive impairment that could be subject to more
intensive monitoring.

Conclusion

Our study highlights the significance of age, education level, and
apathy as key risk factors for cognitive impairment and AD. While
anxiety and depression presented mixed associations, our findings
emphasize the protective role of higher educational attainment against
cognitive decline. Notably, apathy emerged as a consistent risk factor
across various models, underscoring its importance in predicting the
progression of cognitive impairment. Family history also contributed
to the risk of AD, aligning with the recognized genetic predisposition
in this pathology. The robust performance of our AD prediction
model (AUC of 0.85) and the cognitive impairment and dementia
model (AUC of 0.80) supports their potential utility in clinical
settings. Conversely, models predicting the progression of cognitive
impairment and MCI demonstrated limited predictive capability,
indicating the need for further research.

The integration of age, education level, apathy, and anxiety into
predictive models offers a promising approach for early identification
and intervention in cognitive impairment and AD. Future studies
should focus on systematic and standardized data collection to
enhance the reliability and applicability of these predictive tools.
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