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Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder leading to 
upper  and lower motoneurons degeneration. Although several mechanisms 
potentially involved in disease development have been identified, its pathogenesis 
is not fully understood. From the patient side, ALS diagnosis, still based on clinical 
criteria, can be difficult and may take up to 1 year. More than 30 genes have been 
associated to genetically inherited ALS, among which four (C9ORF72, SOD1, 
TARDBP and FUS) would explain around 60–70% of cases. However, familial 
ALS represents only 5–10% of ALS cases while the remaining are sporadic, with 
genetics explaining 6–10% of such cases only. In this context, short tandem repeats 
(STRs) expansions, have recently been found in clinically diagnosed ALS patients. 
In this review, we discuss the recent discoveries on ALS associated STRs and their 
potential as biomarkers as well as prognosis and therapy targets.
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1 Introduction

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder leading to upper and 
lower motoneurons degeneration (1), presenting a wide-ranging clinical phenotype (2) with 
an insidious onset and an unfavorable prognosis. Its pathogenesis is not fully understood, yet 
several mechanisms potentially involved in motor neuron degeneration have been identified, 
including neuronal hyperexcitability, mitochondrial dysfunction, oxidative stress, dysregulated 
vesicular transport, impaired DNA repair, and altered protein homeostasis (3). The majority 
of cases are considered sporadic (sALS) whereas 5–10% of ALS cases show a familial (fALS) 
inheritance (4). ALS diagnosis and classification is still based on clinical criteria (e.g., El 
Escorial criteria and Gold Coast criteria) and functional scales or staging systems like the ALS 
Functional Rating Scale-Revised (ALSFRS-R), the Milano-Torino (MiToS) functional staging 
and the King’s clinical staging, aiming at measuring disease progression. However, diagnosis 
can be  difficult, the complete path can take up to 1 year and includes clinical, 
electrophysiological, and radiological investigations. Only recently, developed countries have 
begun offering genetic testing aimed at identifying mutations in specific genes known to cause 
ALS or increase the risk of developing the disease (5).

As research progresses, genetic testing and new reliable biomarkers would streamline the 
diagnostic process and/or in some cases predict different outcomes. Using whole genome 
sequencing (WGS) techniques will allow genomic profiling of patients and offer the 
opportunity to reveal the complexity of the ALS genetic landscape by identifying DNA 
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sequences related to different phenotypes. This would represents a 
breakthrough especially for sALS, in which a clear genetic background 
is currently recognizable only in a minority of cases. In this context, 
Feldman et al. (4) recently proposed to replace the sALS and fALS 
classification with, respectively, non-genetically and genetically-
confirmed ALS.

Investigation of ALS phenotypes related genes with the aim of 
reaching a diagnostic consensus based on underlying genetic 
sequences rather than clinical manifestations, could lead to improved 
screening programs and personalized therapies. In this context, short 
tandem repeats (STRs) expansions, often linked to neurodegenerative 
disorders (6), represent good candidates in the investigation of the 
molecular diagnosis of sALS.

Currently, more than 30 genes have been implicated in ALS (7), 
among which four (by decreased frequency of involvement: C9ORF72, 
SOD1, TARDBP and FUS) would explain around 60–70% of fALS 
cases and 6–10% of sALS (8). Interestingly, the pathogenic form of the 
chromosome 9 open reading frame 72 (C9ORF72) gene is a G4C2 
hexanucleotide repeat expansion (HRE) in the intron 1 between the 
non-coding first exons 1a and 1b (9). Although C9ORF72 is currently 
the only STR expansion proven to cause ALS and frontotemporal 
spectrum disorder (FTD), different expanded STRs have been found 
in clinically diagnosed ALS patients and FTD cases (10). Such STR 
expansions were reported to be pathogenic for other neurodegenerative 
diseases like ATXN1 (spinal cerebellar ataxia type 1 (SCA1)), ATXN2 
(SCA2), ATXN8 (SCA8) and HTT (Huntington’s disease) (6).

The STR research field is still in the initial stage and no clear 
evidence of the association between STRs and different ALS-related 
phenotypes or outcome prediction has been demonstrated. 
Nevertheless, the WGS results emerging from the current research 
setting studies contribute to the understanding of the genetic basis of 
this disease.

In this mini-review, we  discuss the possible involvement of 
different STRs in the pathogenesis, diagnosis, prognosis and therapy 
of sALS.

1.1 A complex genetic architecture

In addition to the more than 30 genes associated with fALS (11, 
12), heritability studies suggest a substantial genetic component (up 
to 60%) for sALS as well (13), yet only a few causal DNA sequences 
have been identified and SNP-based heritability is approximately 8.5% 
(10). This suggests that the pathological conditions of sALS are 
triggered by a complex genetic variation far from being understood. 
As an example, the most common known cause of fALS is the 
pathogenic C9ORF72 STR expansion (40–50%), which accounts only 
for approximately 7% of sALS (14). While known ALS disease genes 
account for the minority of sporadic cases, recent research highlights 
the potential role of noncoding structural variants and gene copy 
number variations in sALS susceptibility and phenotype modification. 
These variants are typically rare because they confer a significant 
increase in disease risk and a consequent negative selection 
pressure (15).

There is a growing interest in the oligogenic and polygenic 
inheritance of the disease risk (4), with some genes possibly exerting 
a pleiotropic effect on the phenotype (16). Indeed, some authors have 
shown the association between C9ORF72 variants with rapid cognitive 

decline, parkinsonism, or late-life neuropsychiatric symptoms (17). 
Moreover, a phenome-wide analysis highlights the pleiotropic nature 
of ALS by identifying 46 traits genetically correlated with ALS, 
including cognitive and behavioral traits (18). In this context, STRs 
expansions have already been linked to the ALS/frontotemporal 
spectrum disorder (ALS/FTD) development (e.g., C9ORF72 
hexanucleotide G4C2 expansions) (19, 20) or identified as risk factors 
(e.g., CAG trinucleotide expansions in ATXN2) (4, 21), and could 
represent a valuable starting point to further investigate and clarify the 
genetic predisposition of sporadic cases as well.

Most of the STRs research studies have focused on their 
pathological role. However, given that over a third of the human 
genome includes repeat sequences (a million of which are STRs), 
scientists have investigated also their functional role. STRs appear to 
be involved in multiple biochemical processes: (1) they can affect the 
transcription of neighboring and distant genes by regulating 
chromatin structure and epigenetic markers; (2) they influence 
pre-mRNA splicing by forming complex higher-order structures, like 
G-quadruplexes and hairpins; (3) STRs located in the 5′ untranslated 
and coding regions impact mRNA translational efficiency by forming 
GC-rich stable RNA hairpins; (4) once translated into proteins, STRs 
become sites for protein–protein interactions (22, 23).

The pathological role of extended STRs could be related to an 
impairment of one of the above physiological roles, yet other disease-
causing mechanisms might explain their broad involvement in 
neurodegenerative diseases. For instance, repetitive RNAs are prone 
to generate specific RNA/RNA and RNA/RNA-binding-proteins 
(RBP) interactions which may accumulate into aberrant nuclear 
aggregates, called RNA foci, often found in ALS patients (24). 
However, neurotoxicity may not arise from aggregates itself but rather 
by their ability to sequester key proteins in  vivo, impairing their 
normal functions. In particular, RNA foci can sequester RBPs, key 
regulators of RNA metabolism. When RNA foci reach a critical level, 
they impair the mRNA metabolism, as RBPs are no longer available 
to perform their specific roles (25). In addition, an alternative 
pathological mechanism might arise from the formation of dipeptide 
repeats (DPRs) through a non-ATG-dependent translation of the 
extended STR. Several studies have demonstrated the toxicity of DPRs 
both in vitro and in vivo (26).

Understanding the biological mechanisms underlying the genetic 
variants associated to disease onset is also crucial for patients, as it 
directs diagnosis, potential personalized therapy and prognosis. STR 
expansions, such as those described in here, may be truly associated 
with disease risk; however, ALS appears as an extremely genetically 
complex disease. Large patient cohorts will be  required to better 
inquire into the pathological significance of extended STR.

2 Discussion

2.1 The established role of C9ORF72 repeat 
expansions

Association between the C9ORF72 gene and ALS was observed 
in 2011 by two independent teams (9, 27) who identified a pathogenic 
G4C2 HRE in the intron 1 of the chromosome 9 open reading frame 
72 gene, separating the non-coding first exons 1a and 1b. It is currently 
the most frequent genetic abnormality linked to ALS, with a dominant 
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autosomal transmission bearing a 50% risk of developing the disease. 
However, penetrance might not be  complete since 0.06% of the 
general population carry this expansion (12).

In addition, while C9ORF mutations are the most frequent cause 
of ALS in North American and European populations, this is not the 
case in other populations, such as in Asians, in which SOD1 mutations 
appear to be more prevalent (28).

Transcription of the C9ORF72 gene produces 3 variants 
depending on the alternative initiation and termination sites used (8). 
The first is a short transcript (C9-short) including the non-coding 
exon 1a and the coding exons 2–5 responsible for a 24 kDa protein. 
The second and third variants include the coding exons 2–11, leading 
to an identical 54 kDa protein (C9-long), preceded by either the 
non-coding exon 1b (variant 2) or the non-coding exon 1a (variant 3). 
Thus, all three variants share the exons 2–5 reading frame. RNA 
variants 4 and 5 were also detected when the alternative transcription 
start site in exon 1c was used. Remarkably, G2C4 HRE can 
be generated from the opposite strand as well and were detected in 
patient brains (29).

The mechanisms by which C9ORF72 HRE triggers or contributes 
to the neurodegenerative disease are not yet fully understood. Possible 
mechanisms based on published studies include: (1) HRE leading to 
impaired function of the gene product, (2) HRE leading to RNA 
toxicity effects and (3) the non ATG translation of HRE into toxic 
DPRs (8). Regarding the first mechanism, many studies have been 
carried out showing that the C9ORF72 protein has a fairly wide 
cellular distribution and is involved in many cellular processes, 
including autophagy regulation (30), inflammation (31), DNA repair 
(32) and cellular energy homeostasis (33). On the other hand, the 
second mechanism has been supported by studies showing that HRE 
alters transcription and induce genome instability (34) by forming 
secondary structures that accumulate in cell nuclei, sequestering 
various RBPs and resulting in nuclear RNA foci (35). Evidence 
supporting the third mechanism has also been found as DPRs sense 
or anti-sense have been detected in the neocortex, hippocampus, 
thalamus, and cerebellum of C9ORF72-associated ALS patients yet, 
DPRs were rare in the spinal cord (36). The fact that DPRs are more 
present in unaffected areas (cerebellum) and less detected in 
vulnerable regions (spinal cord) is controversial and led to the 
proposal hypothesis that DPRs might paradoxically exert a protective 
role (36).

Because of the strong association with fALS, several approaches 
(from anti-sense oligonucleotides (ASO) to viral vectors delivering 
technologies) have been set up to target C9ORF72 by gene therapy 
(37). Unfortunately, none of them have yet been translated into viable 
therapies for ALS patients (8).

2.2 HTT expansion and its controversial 
role

Huntington’s disease (HD) is an inherited neurological 
condition caused by a trinucleotide CAG repeat expansion (RE) 
within exon 1 of the Huntington gene (HTT). The HTT protein has 
neuroprotective functions: is essential for neuronal survival and is 
implicated in selective autophagy (38). The latter becomes relevant 
in neurodegenerative diseases, where protein aggregation and 
cellular stress are common. In this context the interaction between 

HTT and autophagy-related proteins like SQSTM1/p62 and ULK1 
is crucial in maintaining cellular homeostasis under stress 
conditions (39).

Recently, the same pathogenic CAG RE (≥40 repeats) was found 
in patients with ALS (40). However, despite the large study cohort 
(2,442 FTD/ALS patients and 3,158 neurologically healthy 
individuals), only 3 patients (0.3%) were found to carry the HTT 
expansion compared to none in the control group. Because of these 
low percentages the study was questioned pointing out that the 
association between HTT expansions and ALS cases might simply 
arise by misdiagnosed cases of atypical HD or simply reflects the 
0.03% HTT repeats prevalence among the general population (40, 41). 
Further studies, in which ALS diagnosis was confirmed after 
re-evaluation of medical records, showed similar results (10, 42). The 
percentages of ALS patients carrying HTT expansions slightly 
increases (1.5%) when considering HTT expansions in the reduced 
penetrance range (35–40 repeats) (42), and reaches 6.7% when 
intermediate lengths HTT repeats are considered (27–35 repeats) (43).

In light of the current studies, the role of HTT pathogenic 
expansions as causative of ALS is controversial. Nevertheless, shorter 
HTT expansion repeats have been found at a higher frequency in ALS 
patients suggesting that HD and ALS might be  part of the same 
neurodegenerative disease landscape (44). Current data are still scarce 
and further cohorts are required to confirm the association and the 
pathogenic role of HTT REs within ALS.

2.3 Ataxin families’ expansion as a risk 
factor for ALS

Studies have shown that intermediate STR expansions in the 
spinocerebellar ataxia (SCA) genes, ATXN1 (SCA1) and ATXN2 
(SCA2) are associated with ALS risk (45, 46). Yet, as observed for the 
HTT REs, the difference in frequency in ALS patients compared to 
healthy control subjects is narrow. Notably, a recent study involving 
414 ALS patients and 713 control subjects from Scandinavian origin 
(42) showed no association between ALS and ATXN1 expansions 
whereas 1.7% carried >28 repeats in ATXN2 compared to 0.4% in 
healthy control. The ATXN2 gene codes for an RBP and regulator of 
stress granule assembly. CAG expansions of >34 repeats within 
ATXN2 are causative of SCA2 whereas shorter expansions (27–33 
repeats) are now recognized as a risk factor for ALS. The first study, in 
2010, compared 915 ALS patients to 980 controls and identified CAG 
RE (>26) to be enriched in the ALS population (5.5%) compared to 
controls (2.4%) (45). Subsequently, several groups have replicated such 
results, although the appropriate threshold cut-off varied from ≥29 to 
≥31 (47–49).

At present, expansions of ≥31 repeats are associated with a 
markedly increased risk (odds ratio of 6.31) (50). These expansions 
are also linked to a more rapid disease progression and shorter 
survival (3). Additionally, the ATXN2 role in ALS is further supported 
by both its co-localization with known ALS proteins like TDP-43 and 
FUS in stress granules, and the observation that ATXN2 deficiency 
extends the lifespan of TDP-43-mutant mice (2). These findings 
collectively highlight the critical role of ATXN2  in ALS and the 
potential of targeting it for therapeutic interventions, as demonstrated 
by the beneficial effects of antisense oligonucleotide technology in 
preclinical models (2, 5). While our understanding of the precise role 
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of ATXN2 in ALS is still evolving, its involvement underscores the 
intricate relationship between various neurodegenerative disorders.

3 Conclusion

The list of neurological disorders found to be  caused by STR 
expansions is currently over 40, and is likely to grow (51). Although 
several hypotheses on STR expansions have been proposed over the 
years, its pathogenic mechanism is not yet fully understood. Recent 
studies, like those presented in this mini-review, showed that STR 
expansions may be truly associated with disease risk. However, so far, 
accurate identification of STR expansion regions has been challenging 
mainly due to technological and financial limitations. Until recently 
short-read sequencing was essentially the only option, yet it has 
several drawbacks that probably limited research progresses (52). In 
the last few years, the costly long-read sequencing has become more 
accessible and proved to be an effective method for identifying these 
targets, allowing for rapid and accurate genotyping (52). Moreover, 
alternative cost-effective approaches for the investigation of STR 
expansions have been tested with promising results (53, 54), leading 
to the increased identification of these mutations and further reducing 
the diagnostic gap.

The identification of REs as risk factors for ALS might have major 
clinical implications including improved understanding of the disease 
etiology and diagnostic advancements. Unraveling the reason by 
which STR expansions cause neurodegeneration may lead, in the near 
future, to effective novel therapies based on genetic approaches like 
CRISPR/Cas9 gene editing or antisense oligonucleotides.

Thus, genetic screening for REs could become a crucial 
component of ALS diagnostics whereas therapeutic strategies 
targeting the pathways involving REs may provide novel interventions 
for ALS. Nevertheless, future studies involving larger ALS patient 
cohorts will be required to elucidate the molecular mechanisms and 
potential therapeutic targets related to REs.
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