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Introduction: This study proposes a deep learning–based image analysis 
method for automated scoring of the severity of horizontal ocular movement 
disorders and evaluates its performance against traditional manual scoring 
methods.

Methods: A total of 2,565 ocular images were prospectively collected from 
164 patients with ocular movement disorders and 121 healthy subjects. These 
images were labeled and used as the training set for the RetinaEye automatic 
scoring model. Additionally, 184 binocular gaze images (left and right turns) 
were collected from 92 patients with limited horizontal ocular movement, 
serving as the test set. Manual and automatic scoring were performed on the 
test set using ImageJ and RetinaEye, respectively. Furthermore, the consistency 
and correlation between the two scoring methods were assessed.

Results: RetinaEye successfully identified the centers of both pupils, as well as 
the positions of the medial and lateral canthi. It also automatically calculated 
the horizontal ocular movement scores based on the pixel coordinates of these 
key points. The model demonstrated high accuracy in identifying key points, 
particularly the lateral canthi. In the test group, manual and automated scoring 
results showed a high level of consistency and positive correlation among all 
affected oculi (κ = 0.857, p < 0.001; ρ = 0.897, p < 0.001).

Conclusion: The automatic scoring method based on RetinaEye demonstrated 
high consistency with manual scoring results. This new method objectively 
assesses the severity of horizontal ocular movement disorders and holds great 
potential for diagnosis and treatment selection.
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1 Introduction

Ocular movement disorders refer to limitations in eye movement or fixed eye positions 
that result from damage to the ocular motor nerves or dysfunction of the neuromuscular 
junction, often accompanied by diplopia (1). These conditions considerably affect the patient’s 
quality of life. Therefore, accurate and objective assessment of the severity of ocular movement 
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disorders is essential for diagnosing ocular motor nerve palsy, 
evaluating prognosis, and selecting appropriate treatment options. 
Clinically, the corneal reflex test, combined with a grading scale, is 
commonly used to assess the range of ocular movements (2). Our 
preliminary research indicated that manual measurement and 
comparison of the distances from the pupil center to the medial and 
lateral canthi in different gaze positions represents a reliable and 
clinically useful approach for scoring the severity of ocular movement 
disorders (3, 4). However, the accuracy of these two grading methods 
depends on the expertise of trained physicians, presenting subjectivity. 
The modified limbus test is a method that captures photographs of the 
nine cardinal gaze positions, sequentially overlays semi-transparent 
images of the secondary gaze positions onto the primary gaze position 
image, and measure the edge-to-edge distance. Then, geometric 
analysis is performed to calculate the angles of ocular rotation 
corresponding to each gaze position (5), though it requires manual 
measurement after overlaying two images, which can lead to issues 
such as imperfect alignment and measurement error.

Advancements in artificial intelligence for ocular movement analysis 
are rapidly progressing. Traditional machine learning models can 
generate classification models from ocular movement datasets (6). Deep 
learning models based on convolutional neural networks can 
automatically locate and segment the ocular region, facilitating the 
measurement of ocular movement distance in photographs of nine gaze 
positions (7). However, this model is limited to the localization and 
segmentation of the ocular region. It still requires manual input for 
distance measurement and has not been validated in patients with eyelid 
dysfunction or ocular motility disorders. Additionally, the results of 
automatic and manual measurements using through this method show 
significant differences, warranting caution in clinical practice. Therefore, 
we aim to explore a fully automated model for scoring the severity of 
ocular movement disorders to rapidly obtain accurate results.

RetinaFace is a high-precision face detection algorithm that employs 
self- and joint-supervised multi-task learning to perform pixel-level 
facial localization across faces of varying scales (8). Besides detecting the 
position of the facial bounding box, this algorithm can accurately localize 
key points of interest. Therefore, the present study aims to introduce an 
improved method based on RetinaFace to achieve orbital localization 
and detection of ocular key points. Furthermore, this approach will 
be integrated with our previously developed scoring scale for ocular 
movement disorders (3) to enable accurate and efficient automated 
scoring of ocular movement disorders.

2 Materials and methods

2.1 Study participants

A total of 164 patients with ocular motility disorders (including 
vertical and horizontal movement disorders) who visited the Ocular 
Motility Disorder Center at the First Affiliated Hospital of Harbin 
Medical University between January 2024 and October 2024 were 
prospectively enrolled. Additionally, 121 healthy volunteers were 
recruited. Photographs were obtained in nine gaze positions for all 
participants. Then, this training dataset was used to train the 
automatic scoring model.

A total of 92 patients with horizontal ocular motility limitations 
were also enrolled (these 92 patients were not included among the 164 

patients in the training set). Photographs of each patient in leftward 
and rightward gaze positions were taken and used as the test set for the 
automatic scoring model. The exclusion criteria for the test group were 
patients with horizontal nystagmus or myogenic myasthenia gravis.

2.2 Ethics statement

This study was conducted in accordance with the principles 
outlined in the Declaration of Helsinki and was approved by the Ethics 
Committee of the First Affiliated Hospital of Harbin Medical 
University (No: 2024JS97), with informed consent obtained from each 
volunteer in advance.

2.3 Photography and image collection

Ocular images were collected by an experienced clinical 
ophthalmologist. Subjects’ chins and foreheads were stabilized on a 
headrest, with the head maintained at a horizontal position and 
secured with straps. A digital camera (G1X Mark II; Canon Inc., Japan) 
was positioned 50 cm in front of the eyes and aligned horizontally with 
the head. Subjects in the training set were directed to gaze at each of 
nine gaze positions (The directions are: up, down, left, right, upper left, 
upper right, lower left, lower right, and straight ahead.), with images 
captured at each position. In the test group, images were collected only 
when subjects gazed maximally to the left and right. In all subjects, 
when gazing downward or in cases of ptosis, the upper eyelid was 
gently lifted to improve the visualization of the pupil position.

2.4 Scoring criteria and calculation method

The scoring method for ocular movement disorders followed the 
scoring criteria in the ocular motor nerve palsy scale (3): 1 = affected 
eye movement is close to that of the healthy oculus, with the pupil 
center reaching or exceeding the ipsilateral 1/4 line in the paralyzed 
direction; 2 = the pupil center of the affected eye just crosses the 
midline but does not reach the ipsilateral 1/4 line in the paralyzed 
direction; 3 = the pupil center of the affected eye reaches or exceeds the 
contralateral 1/4 line in the paralyzed direction but does not reach or 
only reaches the midline; 4 = no movement toward the paralyzed side, 
or it does not reach the contralateral 1/4 line in the paralyzed direction. 
When both eye gazed to the right, the scoring included the abduction 
movement of the right eye and the adduction movement of the left eye. 
When both eyes gazed to the left, the scoring included the abduction 
movement of the left eye and the adduction movement of the right eye 
(Figure 1). Table 1 summarizes the calculation method for ocular 
movement disorder scores based on the aforementioned criteria.

2.5 Automatic scoring

2.5.1 Eye feature point annotation
An experienced ophthalmologists used Labelme software to 

annotate ocular images at nine gaze positions in the training group, 
marking the locations of both eye, pupil center points, medial 
canthi, and lateral canthi (Figure 2). The position of the pupil center 
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if the cornea was occluded by the eyelid was determined through 
manual fitting. All annotation data were reviewed by another 
physician. In cases of ambiguous annotation points, decisions were 
made through discussion between the two physicians.

2.5.2 Model development
This study utilized a convolutional neural network–based 

RetinaFace detector architecture, adjusting the head network and 
improving data augmentation methods to suit the tasks of ocular 
detection and key point localization in this research. The overall 
architecture of RetinaEye included image feature extraction, 
classification, position detection, and key point localization multi-
task learning (Figure 3).

Step 1 was image preprocessing. The images and annotation data 
of the training set were preprocessed using the OpenCV and 
Albumentations image processing libraries. The preprocessing 
operations included random cropping, aspect ratio padding, random 
rotation (within 40°), random brightness adjustment, aspect ratio 
scaling, and mean subtraction to augment the sample size.

Random rotation may cause in the loss of key points (Figure 4). 
In such cases, the random rotation was performed again (up to three 
times) to ensure that the key points remained usable after rotation. 
Rarely, when an image still had no usable key points after 3 random 
rotations, it was considered unsuitable for random rotation operations; 
thus, the rotation step was skipped.

Step 2 was establishing the RetinaEye algorithm structure. The 
algorithm structure of this study was based on the RetinaFace single-
stage detector, with the feature extraction module built upon a feature 
pyramid that incorporated independent context modules, calculating 
multi-task loss for each anchor on the feature maps (Figure 5).

For each trained anchor i, its classification loss + bounding box 
regression loss + key point regression loss were calculated, as shown 
in Equation 1.

 ( ) ( ) ( )λ λ∗ ∗ ∗ ∗ ∗= + +1 2, , ,Total cls i i i box i i i pts i ip p p t t p l l   
 

(1)

where ip  represents the probability predicted for the ocular region, 
while ∗

ip  represents the ground truth. The formula shows, that for all 
negative sample anchors, only the classification loss is utilized. For 
positive sample anchors, the multi-task loss was calculated.

( )∗,cls i ip p  denotes the classification loss for the ocular region, 
and cls  uses the softmax binary classification loss function.

( )∗box t ,ti i  represents the bounding box regression loss for the 
ocular region, where = x y wt (t , t , t , ti h,) and ( )∗ ∗ ∗ ∗ ∗= x y wt t ,t ,t ,ti h  denote 
the predicted bounding box position and the ground truth annotation 
position for the positive sample anchor, respectively. The regression 
function employs the L1smooth  loss.

( )∗pts l ,li i  represents the regression loss for ocular keypoints, 
where = x1 y1 x2 y2 x3 y3l (l , l , l , l , l , li ,) and ( )∗ ∗ ∗ ∗ ∗ ∗ ∗= x1 y1 x2 y2 x3 y3l l ,l ,l ,l ,l ,li  
denote the predicted and ground truth values, respectively, for the outer 
canthus, pupil, and inner canthus points of the positive sample anchor.

The measurements of the three loss functions correspond to the 
outputs of the three different head networks illustrated in Figure 3: the 
classification of whether the current anchor region contains the ocular 
position, the output of the bounding box for foreground anchors, 
which include the ocular position; and the output of the key points for 
the ocular region.

Step 3 was training. The RetinaEye training set comprised 2,565 
images with corresponding annotation information. Training was 
conducted on a server equipped with an Intel Xeon 8-core processor, 
a Tesla P40 GPU, and 64 GB of memory, running the Ubuntu 20.04 
operating system. The training utilized the Python programming 
language and the PyTorch deep learning framework, with the SGD 
optimizer selected. The initial learning rate was set to −310 , which was 
increased to −210  after 5 epochs. Subsequently, the learning rate was 
reduced to one-tenth of its original value at epochs 40 and 50, with 
training concluded at epoch 80.

Step 4 was automatic scoring. The images of patients gazing left 
and right in the test group were automatically scored according to the 
established scoring criteria.

2.6 Manual scoring

A clinically experienced ophthalmologist manually marked the 
positions of the pupil center, medial canthus, and lateral canthus in 

FIGURE 1

Horizontal ocular movement scoring diagram. (A) Scoring diagram for both eyes gaze to the right. (B) Scoring diagram when both eyes gaze to the 
left.

TABLE 1 Scoring method for horizontal ocular movement disorders.

Ocular movement direction Score Ratio

Abduction movement 1 R1 ≤ 1/4

2 1/4 < R1 ≤ 1/2

3 1/2 < R1 ≤ 3/4;

4 3/4 < R1

Adduction movement 1 R2 ≤ 1/4

2 1/4 < R2 ≤ 1/2

3 1/2 < R2 ≤ 3/4;

4 3/4 < R2

R1 = (|Xpupil-Xtemporal|)/(|Xinner-Xtemporal|); R2 = (|Xpupil-Xinner|)/(|Xinner-
Xtemporal|); Xpupil, Xtemporal, and Xinner represent the horizontal pixel coordinates of the 
pupil center point, the temporal canthus, and the inner canthus in the image, respectively.
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FIGURE 2

Annotated images of nine gaze positions.

FIGURE 3

Overall architecture diagram of RetinaEye.

FIGURE 4

Key point loss due to rotation.

FIGURE 5

Feature extraction module.
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the test group images for left and right gazes using ImageJ software. 
The scoring was performed based on the horizontal coordinates of 
these three points according to the ocular movement scoring 
calculation method.

2.7 Statistical analysis

The mean Euclidean distance (MED) was calculated as the average 
distance between the pixel coordinates of the key points identified by 
the model and the pixel coordinates of the manually annotated points 
to assess the accuracy. A smaller average distance indicated higher 
accuracy. The weighted kappa coefficient (WK) was calculated to 
evaluate the consistency between manual and automatic scoring. If 
WK = 1, it indicated complete agreement between the two methods; 
0.75 ≤ WK < 1 was generally considered high consistency; 
0.4 ≤ WK < 0.75 indicated moderate consistency; 0 < WK < 0.40 
represented low consistency; and WK = 0 signified complete 
disagreement. The Spearman correlation coefficient was calculated to 
assess the correlation between the results obtained from the two 
scoring methods. All statistical analyses were conducted using SPSS 
version 25.0, with p < 0.05 indicating statistical significance.

3 Results

The training group included a total of 285 participants, with 2,565 
ocular images collected. The testing group initially included 94 
patients with horizontal ocular movement disorders; however, 2 
patients were excluded for refusing to sign the informed consent, 
resulting in a final total of 92 participants with 184 ocular images. 
Among them, 25 patients had adduction movement disorders and 67 
had abduction movement disorders, comprising 26 eyes with 
adduction disorders and 73 eyes with abduction disorders. All patients 
were of Asian ethnicity. The basic demographic information of 
participants in the training and testing groups is shown in Table 2.

3.1 Key point recognition results

After training using the nine gaze positions from the training 
group, RetinaEye was tested on images from the test group. The model 
successfully detected the positions of both eyes, identifying their pupil 
centers, medial canthi, and lateral canthi. It also output the coordinates 
of the three key points and automatically calculated the scores for 
abduction and adduction movement disorders of both eyes. Figure 6 
illustrates a representative example of the automatic scoring output for 
the abduction of the right eye.

3.2 Results of key point recognition 
accuracy by the model

Table 3 shows the MED between the pixel coordinates of key 
points (The pupil center point, inner canthus point, and outer canthus 
point identified by the model) identified by the model and those of 
manually annotated points. The average Euclidean distance for the 
lateral canthi of both eyes was relatively small, while that for the 

medial canthi was somewhat larger, indicating that the model 
performed well in predicting the lateral canthi but was slightly less 
accurate in predicting the medial canthi. The average Euclidean 
distances for all three key points of the right eye were smaller than 
those of the left eye, suggesting that the model achieved greater 
accuracy in predicting the coordinates of the left eye key points 
compared to the right eye.

3.3 Consistency between manual and 
automatic scoring results

After scoring the adduction and abduction movements of both 
eyes in the test set images using manual annotation and automatic 
prediction methods, the weighted kappa coefficients between the 
manual and automatic scoring results were calculated (Table 4). The 

TABLE 2 Basic demographic information of participants in the training 
and testing groups.

Basic information Training 
group

Testing 
group

Total number of participants (n) 285 92

Mean age (years ± SD) 55.89 ± 9.30 60.9 ± 12.2

Male (%) 61.8% 65.2%

Different types 

(n)

Horizontal movement 

disorder

97 92

Vertical movement 

disorder

32 0

Horizontal and 

vertical movement 

disorder

35 0

Healthy 121 0

Different 

etiologies (n)

Oculomotor nerve 

palsy

62 25

Trochlear nerve palsy 11 0

Abducens nerve palsy 79 67

Mixed nerve palsy 4 0

Thyroid 

ophthalmopathy

5 0

Others 3 0

FIGURE 6

Example of automatic scoring output for ocular abduction. Blue box: 
position of the right eye; red dot: medial canthus; green dot: pupil 
center; blue dot: lateral canthus. The position of the pupil center in 
different regions (1, 2, 3, 4) represents the movement scores for the 
abduction of the right eye.
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consistency results indicate a high degree of agreement between the 
two measurement methods (κ = 0.857, p < 0.001), particularly in eyes 
with adduction movement disorders, where the consistency was 
highest. The Spearman correlation coefficient between the two scoring 
methods was as ρ = 0.897 (p < 0.001), demonstrating a strong positive 
correlation between the results obtained from both methods.

4 Discussion

This study proposes a deep learning model named RetinaEye. 
Trained on ocular photographs with manually annotated key points, 
this model accurately identified the pixel coordinates of the orbit, 
pupil centers, medial canthi, and lateral canthi of both eyes. 
Additionally, it automatically calculated scores for ocular 
movement disorders.

Clinically, multiple traditional methods exist to assess ocular 
movements; however, grading the severity of movement disorders 
remains challenging. The corneal light reflex test, a common clinical 
method, instructs the subject to maintain a steady head position while 
attempting the maximal gaze in nine directions. Then, the positions 
of the eyes and corneal light reflex are observed, allowing for the 
assessment of ocular movements, with scores ranging from −1 to −4 
or +1 to +4 (2). Additionally, corneal limbus measurement (9) is a 
convenient and efficient assessment method. It involves placing a 
transparent ruler directly in front of the cornea to measure the 
movement distance of the limbus when the ocular shifts from the first 
gaze position to the second or third positions, allowing for the 
evaluation of ocular motility. Despite being straightforward, 
non-invasive, and easy to perform, the accuracy of these methods 
largely depends on the clinician’s experience. Additionally, the corneal 
light reflex test is less applicable in patients with corneal damage, and 
the limbus measurement has limited precision. Other methods that 
quantify ocular movement angles, such as manual perimetry, scleral 
search coils, and synoptophore, have drawbacks, including extended 
measurement time, high costs, and limited measurement ranges (7).

Photographic eye assessment is increasingly used to evaluate 
ocular movements. Photos taken in various gaze positions can be used 
to assess the severity of abduction dysfunction (10) and oblique 
muscle dysfunction (11, 12) for scoring. Compared to traditional 
assessments, photography offers greater objectivity, although the 
photo analysis can be labor-intensive and slow when processing large 
volumes of images. Artificial intelligence applications have enabled the 
rapid analysis of such images for ocular movement assessment. For 
instance, an application using ResNet-50 as its neural network 
architecture was trained on facial photographs to classify images into 
nine gaze positions (13). Zheng (14) developed a deep learning model 
that identifies horizontal strabismus from primary gaze images, 

achieving diagnostic performance comparable to, or exceeding, that 
of ophthalmologists. These models lay the foundation for early 
detection of horizontal strabismus and for distinction between 
leftward and rightward gaze images, facilitating subsequent ocular 
movement scoring. Lou (7) developed an image analysis method using 
deep learning to automatically measure ocular movement distance 
based on nine gaze photos, aiding in the evaluation of the range of 
ocular movements. However, this model does not provide automated 
grading for the range of movements.

Therefore, this study introduces RetinaEye, which can achieve 
rapid, objective, and automated scoring of ocular movement disorders. 
RetinaEye demonstrated overall excellent performance in key point 
recognition, although its accuracy varied across different key points. 
A comparison of left and right eye key point predictions showed that 
RetinaEye achieved slightly higher accuracy for the right oculus in 
predicting the coordinates of the pupil center (d  = 8.590 ± 1.086), 
medial canthus (d  = 10.366 ± 0.983), and lateral canthus 
(d  = 4.957 ± 0.482), compared to the left ocular pupil center 
(d  = 9.661 ± 0.719), medial canthus (d  = 11.777 ± 0.879), and lateral 
canthus (d  = 5.047 ± 0.470). Additionally, the prediction accuracy of 
RetinaEye for the medial canthi of both eyes was lower than for the 
pupil center and lateral canthus. This might stem from the common 
presence of epicanthus in Asians, which shortens the horizontal 
distance between the eyes (15) and may lead to annotation and 
prediction discrepancies in the medial canthus.

The manual and automated scoring results also showed high 
consistency, particularly in scoring adduction disorders, with a 
weighted kappa coefficient of 0.912 (p < 0.001). The Spearman 
correlation coefficient was 0.897 (p < 0.001), further demonstrating a 
strong correlation between the two and indicating that RetinaEye can 
provide clinicians with a reliable automated tool to reduce workload 
and improve diagnostic efficiency, especially in cases requiring large-
scale photo analysis. This outcome provides robust support for 
artificial intelligence–based automated assessment of ocular 
movement disorders.

However, this study has some limitations. First, it only addresses 
horizontal movement scoring without evaluating vertical movement 
disorders. Vertical movement assessment involves additional 
anatomical complexities, including the positions of the lower edge of 
the pupil and the lower eyelid, posing greater demands on the model. 
Future research should expand on this foundation to achieve 
comprehensive automated scoring for ocular movement disorders. 
Secondly, the model’s mean Euclidean distance in predicting medial 
canthus positions was relatively high, suggesting room for further 
improvement in key point recognition. Additionally, when calculating 

TABLE 3 Mean Euclidean distance of different key points.

Unit: pixel

Eye Medial 
canthus ( ,d X
± s)

Pupil center 
( ,d X ± s)

Lateral 
canthus ( ,d X
± s)

Left eye 11.777 ± 0.879 9.661 ± 0.719 5.047 ± 0.470

Right eye 10.366 ± 0.983 8.590 ± 1.086 4.957 ± 0.482

d  represents the mean Euclidean distance; X ± s represents the mean ± standard deviation.

TABLE 4 Consistency results between manual scoring and automatic 
scoring.

Affected eye 
category

Weighted kappa 
coefficient (κ)

Pearman 
correlation 
coefficient (ρ)

All affected eyes 0.857* 0.897*

Eyes with abduction 

movement disorders

0.835* 0.864*

Eyes with adduction 

movement disorders

0.912* 0.899*

*p < 0.001.
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horizontal ocular movement scores, this study did not fully account 
for the vertical disparity between the medial and lateral canthi, which, 
though minor, may slightly affect scoring accuracy.

Future research should expand the scope of this model, exploring 
its performance across different races, age groups, and in vertical 
movement disorders. The model’s potential for remote application is 
also highly promising. With further refinements, it may facilitate 
remote ocular selfies for diagnostic purposes, reducing healthcare 
costs for patients and providing valuable resources, particularly in 
remote or underserved areas.

5 Conclusion

This study presents a deep learning model named RetinaEye, which 
can automatically analyze ocular photographs taken during horizontal 
gaze positions. The model accurately identifies the positions of the orbit, 
pupil center, inner canthus, and outer canthus, and calculates scores for 
ocular movement disorders. A comparison with traditional manual 
scoring results revealed a high correlation and strong consistency between 
the two methods. These findings strongly support the use of artificial 
intelligence for the automated assessment of ocular movement disorders.
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