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Introduction: Spinal cord injury (SCI) severely affects the central nervous system. Copper 
homeostasis is closely related to mitochondrial regulation, and cuproptosis is a novel 
form of cell death associated with mitochondrial metabolism. This study aimed to 
explore the relationship between SCI and cuproptosis and construct prediction models.

Methods: Gene expression data of SCI patient samples from the GSE151371 dataset 
were analyzed. The differential expression and correlation of 13 cuproptosis-related 
genes (CRGs) between SCI and non-SCI samples were identified, and the ssGSEA 
algorithm was used for immunological infiltration analysis. Unsupervised clustering 
was performed based on differentially expressed CRGs, followed by weighted gene 
co-expression network analysis (WGCNA) and enrichment analysis. Three machine 
learning models (RF, LASSO, and SVM) were constructed to screen candidate 
genes, and a Nomogram model was used for verification. Animal experiments 
were carried out on an SCI rat model, including behavioral scoring, histological 
staining, electron microscopic observation, and qRT-PCR.

Results: Seven CRGs showed differential expression between SCI and non-SCI samples, 
and there were significant differences in immune cell infiltration levels. Unsupervised 
clustering divided 38 SCI samples into two clusters (Cluster C1 and Cluster C2). WGCNA 
identified key modules related to the clusters, and enrichment analysis showed involvement 
in pathways such as the Ribosome and HIF-1 signaling pathway. Four candidate genes 
(SLC31A1, DBT, DLST, LIAS) were obtained from the machine learning models, with 
SLC31A1 performing best (AUC = 0.958). Animal experiments confirmed a significant 
decrease in the behavioral scores of rats in the SCI group, pathological changes in tissue 
sections, and differential expression of candidate genes in the SCI rat model.

Discussion: This study revealed a close association between SCI and cuproptosis. 
Abnormal expression of the four candidate genes affects mitochondrial function, 
energy metabolism, oxidative stress, and the immune response, which is detrimental 
to the recovery of neurological function in SCI. However, this study has some 
limitations, such as unidentified SRGs, a small sample size. Future research requires 
more in vitro and in vivo experiments to deeply explore regulatory mechanisms 
and develop intervention methods.
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1 Introduction

Spinal cord injury (SCI) is a condition in which traumatic violence 
to the spine causes spinal fractures and dislocations, resulting in 
damage to the spinal cord and cauda equina and impairment of motor 
function, sensory function, nerve reflexes, and sphincter function in 
the limbs below the plane of injury (1–3). Epidemiological studies 
over the past 30 years have shown that the incidence of SCI is 
increasing year by year, with the number of cases reaching 250,000 to 
500,000 per year, causing huge losses and heavy burdens to patients, 
families, and society (1, 4). There are two main stages in the 
development of SCI: the first stage is primary injury, which is the 
result of mechanical external forces acting on the spinal cord, mainly 
in the form of damaged blood vessels, ruptured axons, ruptured nerve 
cell membranes, etc. (5–11). The second stage belongs to secondary 
injury, a period of delayed tissue destruction, including vascular 
dysfunction, edema, ischemia, excitotoxicity, electrolyte transfer, free 
radical production, inflammation, suppressed apoptotic cell death, etc. 
(12–14).

Mitochondria are semi-autonomous organelles that not only 
provide energy for cellular activities but also play a crucial role in the 
production of reactive oxygen species, programmed cell death, redox 
signaling, transmembrane transport of various ions and regulation of 
electrolyte homeostasis (15–18). Copper is among the indispensable 
heavy metals present in the human body. It is a cofactor for many 
enzymes in the body and has a strong ability to bind to proteins, as 
well as having strong redox properties, and it is involved in regulating 
and maintaining the homeostasis of the body’s internal environment 
(19). However, excess copper in the body promotes the accumulation 
of lipidated proteins and the destabilization of iron–sulfur proteins 
(Fe-S cluster proteins). This leads to proteotoxic stress and, ultimately, 
cell death; a new mechanism of cell death called cuproptosis is 
classified as programmed cell death (20–22). Previous studies have 
demonstrated that copper homeostasis is intricately associated with 
mitochondrial regulation (23). Copper primarily exists within 
mitochondria through cytochrome C oxidase (COX) and superoxide 
dismutase (SOD1), which directly bind to the lipidated components 
of the tricarboxylic acid cycle (TCA), causing the accumulation and 
dysregulation of these proteins, obstructing the TCA cycle and 
initiating proteotoxic stress, among other interventions in various 
biological processes (21, 24). After the occurrence of SCI, the 
homeostasis of the body’s internal environment suffered severe 
trauma, and the metabolism of copper ions was also thrown into 
disarray, which was inextricably linked to the abnormal fluctuation of 
copper ions in cuproptosis (22, 25). At the moment of SCI, the blood–
brain barrier, a ‘fortress’ guarding the central nervous system, is 
breached, its integrity is impaired, and its permeability is instantly 
increased. The copper ion transport channel, which had been precisely 
regulated, was like a ‘city gate failure,’ and copper ions in the 
bloodstream took advantage of the chaos to pour into the spinal cord 
tissue in large quantities. The local concentration of copper ions 
soared dramatically, forming the copper overload phenomenon. At 
the same time, SCI-induced inflammatory response, oxidative stress 
and other ‘secondary disasters’ further interfere with the normal 
function of intracellular copper ion transport proteins so that the 
uptake, distribution, and excretion of copper ions in the cell have been 

‘out of control’ (26–28). On the contrary, the copper death mechanism, 
the abnormal increase or decrease of intracellular copper ion 
concentration is the key factor that triggers this death procedure, 
while when copper ions are overloaded, the process of copper death 
is initiated; while when copper ions are deficient, the dysfunction of 
related proteins involved in copper transport, binding and metabolism 
will also affect the mitochondrial metabolism, antioxidant defenses, 
and other key physiological processes, making the cells more sensitive 
to other stress factors, and indirectly laying the groundwork for 
cuproptosis. The imbalance of copper ion metabolism after SCI is just 
like a ‘key’ that precisely opens the ‘door’ to cuproptosis, and the two 
are intertwined, together exacerbating the pathological process after 
SCI (28, 29).

Based on the above, we analyzed the differential expression and 
immune infiltration of 13 CRGs between SCI and non-SCI based on 
the SCI dataset. Subsequently, unsupervised clustering based on the 
presence of differentially expressed cuproptosis-related genes (CRGs) 
was performed to divide the 38 SCI samples into two clusters of 
molecules associated with copper death and to analyze the expression 
profile and immune profile between Clusters. The co-expression 
modules between Cluster C1 and Cluster C2 were identified by 
WGCNA, and the differential genes within the significant modules 
were selected for GO and KEGG analysis. We then constructed RF, 
LASSO, and SVM models based on the differentially expressed CRGs, 
determined the optimal prediction model and validated the model 
performance using the Nomogram model, and constructed receiver 
operating characteristic (ROC) curves and mountain range plots to 
show the prediction accuracy and expression of the candidate genes. 
To further validate the accuracy of the candidate genes, we constructed 
an SCI rat model, and behavioral scores were used to assess the 
validity of the model. Perfusion-fixed rat spinal cord tissue specimens 
were observed using electron microscopy, and candidate gene 
expression in the rat model was verified by qRT-PCR.

2 Methods

2.1 Data collection and processing

Gene expression data for SCI patient samples were acquired 
from the Gene Expression Omnibus (GEO) database1 in the 
GSE151371 dataset. A total of 38 SCI samples and 10 healthy 
controls were included in the test set. A total of 13 CRGs, namely 
Solute Carrier Family 31 Member 1 (SLC31A1), PDHB, PDHA1, 
LIPT1, Ferredoxin 1-mediated protein (FDX1), DLD, 
Dihydrolipoamide S-succinyltransferase (DLST), Dihydrolipoamide 
branched chain transacylase E2 (DBT), Lipoic acid synthase (LIAS), 
DLAT, GCSH, ATP7A and ATP7B were identified through previous 
studies by Tsvetkov et al. (21). The raw data from the GSE151371 
dataset was subjected to RMA analysis and log2 transformation, 
and the data was normalized by executing the Arrays function in 
the “limma” package.

1 http://www.ncbi.nih.gov/geo
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2.2 Differential expression and correlation 
identification of CRGs between SCI and 
control samples

The “limma” package (30) was used to identify the differential 
expression of CRGs between SCI and non-SCI samples, and the 
“pheatmap”, “reshape2”, and “ggpubr” packages were used to create 
heat maps and box plots. Correlations between CRGs with differential 
expression were plotted by performing the “corrplot” package (31).

2.3 Immunological infiltration analysis

Based on the single sample gene set enrichment analysis (ssGSEA) 
algorithm, the “limma,” “GSVA,” and “GSEABase” packages were used 
to assess the relative abundance of SCI samples versus non-SCI 
samples with 28 immune cell types (32). Gene sets for immune cell 
types were obtained from Charoentong’s study (33).

2.4 Unsupervised clustering based on 
differentially expressed CRGs

Based on differentially expressed CRGs and the 
“ConsensusClusterPlus” package, unsupervised cluster analysis was 
performed to distinguish between different molecular clusters of SCI 
samples (34). The 38 SCI samples were classified into various clusters 
utilizing the k-means algorithm, with 1,000 iterations. The maximum 
number of clusters was set at 9, and the optimal number of clusters 
was determined through the assessment of the cumulative distribution 
function (CDF) curve, consensus matrix, and consistent cluster score. 
Subsequently, PCA with t-distributed stochastic neighbor embedding 
(tSNE) was performed to assess whether these genes could effectively 
differentiate between SCI samples (35, 36).

2.5 Cluster expression profile and immune 
infiltration characteristics

Analysis of cluster-to-cluster expression and immunity was 
constructed. The ‘ggpubr’ and ‘reshape2’ packages were executed to 
analyze the expression of CRGs between Cluster C1 and Cluster C2. 
The immune infiltration of Cluster C1 and Cluster C2 was assessed 
based on the ssGSEA algorithm.

2.6 Cluster-based clustering for weighted 
gene co-expression network analysis 
(WGCNA) and enrichment analysis

WGCNA is a systematic biological method that can be used to 
computationally analyze correlations between genes in microarray 
profiles (37). The “WGCNA” package was performed to identify 
co-expression modules between Cluster C1 and Cluster C2. 
WGCNA analysis was performed on the genes with the highest 
variability in the top 25%, thus ensuring the quality and accuracy 
of the results. A weighted adjacency matrix was constructed after 
determining the optimal soft threshold, which was further 
converted to a topological overlap matrix (TOM). Minimum 

module size = 100, modules were obtained using a TOM 
dissimilarity measure (1-TOM) based on a hierarchical clustering 
tree algorithm. Each module was given a random color. The 
signature genes within the module represent the overall gene 
expression profile in each module. Modular significance (MS) 
indicates the relationship between the module and the disease, and 
gene significance (GS) represents the correlation between the gene 
and the clinical phenotype (38). Differential genes between Cluster 
C1 and Cluster C2 within significant modules were obtained and 
imported into the David Online Platform2 for Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis (39), as a way to explore the potential biological 
functions of differentially expressed genes between clusters.

2.7 Constructing RF, LASSO, and SVM 
models based on differentially expressed 
CRGs

We obtained the key genes by constructing the Least absolute 
shrinkage and selection operator (LASSO), Support vector machine-
recursive feature elimination (SVM-RFE), and Random forest (RF) 
algorithms to obtain the key genes for each of the three machine 
learning models (40). The “Venn” package was executed to take the 
intersection of the key genes of the three algorithms. The Nomogram 
model was built using candidate genes derived from the intersection, 
and its predictive capability was assessed through calibration curve 
and decision curve analysis (DCA) (41).

2.8 Validation of candidate genes

To further evaluate the diagnostic sensitivity of SCI candidate genes 
and column line graphs, we performed the “pROC” package to visualize 
the Receiver Operating Characteristic (ROC) curve underneath as well 
as the Area Under Curve (AUC) as a means to determine the candidate 
gene’s predictive accuracy. The expression of each candidate gene in SCI 
and non-SCI samples is also shown as a mountain range plot.

2.9 Animal experiments and validation

2.9.1 Grouping of animals and establishment of 
SCI model rats

12 SD female rats were randomly and equally divided into sham 
and model groups according to the random number method, with 6 
rats in each group. The study was in accordance with the requirements 
of the Ethical Committee of Beijing University of Chinese Medicine 
(approval No. BUCM-2021040802-2029).

After the rats were anesthetized with 2% sodium pentobarbital 
(0.25 mL/100 g) by intraperitoneal injection, they were fixed in a prone 
position on the operating table, prepared for skin preparation, and the 
area T9-T11 was marked along the mid-axis of the spine. Under aseptic 
conditions, a 2–3 cm incision was made at the marker, and the skin, 
fascia, and muscles were incised in turn to expose the spinous process, 

2 https://david.ncifcrf.gov/home.jsp
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the vertebral plate and the transverse process, and the vertebral plate and 
both sides of the vertebral arch were carefully removed with a biting 
forceps to expose the T9-T11 dura. The rat was fixed on the spinal cord 
percussion table, and the percussion device (steel rod, 10 g) was dropped 
from a height of 5 cm onto the T10 segment. Successful modeling is 
indicated when the rat shows rapid retraction and shaking of the whole 
body, hematoma, and congestion on the spinal cord surface, and the dura 
mater is intact (42). The rats were given intramuscular penicillin sodium 
8 × 104 U/day for three consecutive days after surgery and urinated 
artificially twice daily until the rats recovered their urinary function. In 
the sham group, the rats were only sutured after biting off the vertebral 
plate to expose the spinal cord (without damaging the spinal cord).

2.9.2 Behavioral scoring
In this experiment, the locomotor function of the rats was observed 

using the Basso, Beattie, and Bresnahan locomotor rating scale (BBB) 
(43), which is a two-person, double-blind method, and the scores were 
averaged. The score was 21 out of 21, with 0 being complete paralysis.

2.9.3 Hematoxylin–eosin (HE) staining
The fixed spinal cord tissue was removed, along with the excess nerve 

roots. Then, the tissue was paraffin-embedded and 4-μm paraffin sections 
were made for backup. The spinal cord slices were rewarmed in an oven at 
60°C for 30 min and then routinely dewaxed and rehydrated, followed by 
hematoxylin staining for 5 min, tap water for 30 s, hydrochloric acid 
staining for 1 s, tap water for 30 s, tap water for 30 min (return to blue), 
eosin staining for 1 s, and finally, after immersion in tap water for 30 s, after 
the initial judgment of the staining situation under the microscope, the 
slices could be air-dried and sealed.

2.9.4 Nissl staining
After the prepared spinal cord sections were routinely rewarmed, 

dewaxed and rehydrated, the Nissl’s staining solution was added 
dropwise and placed in a 60°C warm box for 1 h, rinsed with ultrapure 
water for 3 times (5 min/times), and then stained with the color 
separation solution for 1-2 min, and then the slices could be air-dried 
and sealed when the background was suitable.

2.9.5 Transmission electron microscopy (TEM) 
observation

The material was taken 3 days after modeling. After the rat had 
been anesthetized, the heart was perfused with 4% paraformaldehyde, 
and a spinal cord segment approximately 1 cm long was taken from 
the center of the injury. Samples for transmission electron microscopy 
were placed in pre-electron microscopy fixative and stored in a 4°C 
refrigerator immediately after sampling.

The perfusion-fixed spinal cord tissue specimens were finely 
trimmed to a size of 1x1x3 mm3 and then fixed for several days in 
pre-electron microscopic fixative, rinsed three times in PBS solution, 
and then soaked in post-fixative for 1.5 h; after rinsing, dehydration, 
embedding, sectioning and staining in that order. The tissues were 
then rinsed, dehydrated, embedded, sectioned, and stained, and then 
they were observed and photographed under an HT7700 (Hitachi, 
Japan) transmission electron microscope.

2.9.6 Quantitative reverse 
transcription-polymerase chain reaction 
(qRT-PCR)

The differential expression of genes (DEGs) was additionally 
confirmed using qRT-PCR (Applied Biosystems, USA). Gene 
expression levels were normalized to GAPDH using the 2−ΔΔCT 
method. The primer sequences employed are detailed in Table 1.

2.9.7 Statistical methods
All the experimental results in this study were data obtained 

independently at least 3 times. GraphPad Prism8 software is used for 
statistical analysis and chart drawing of the results. The unpaired 
T-test was used to compare between the two groups.

3 Results

3.1 Differential expression and correlation 
of CRGs

Based on the GSE151371 dataset, the expression of 13 CRGs 
between SCI and non-SCI samples was analyzed. The findings indicated 
that 7 CRGs exhibited differential expression (Figure 1A). Among them, 
ATP7B, DLD, and SLC31A1 showed an up-regulation trend in SCI 
samples, while DLST, DBT, LIAS, and LIPT1 showed a down-regulation 
trend (Figure 1B). The positions of the 13 CRGs on the chromosomes 
are shown in Figure 1C. Next, we investigated the correlation among the 
seven CRGs exhibiting differential expression to further explore their 
potential involvement in the development of SCI, explicitly focusing on 
their association with copper death-related genes (Figure 1D).

3.2 Immuno-infiltration analysis of SCI and 
non-SCI samples

The results showed that the expression levels of Activated 
dendritic cell, Macrophage, Neutrophil, and Regulatory T cell were 

TABLE 1 The primers used in this study.

Gene Forward primer Reverse primer

DLST TGCAGGAGCAGCCTGTAGTA ATGACAGGAACCACGAGACC

DBT GTCACCATCACCAGCCGTTACG CTGCCATCCTTTCCTGAGCCAAC

LIAS ATGGCTTTACGCTGCTGGGATG GGCTGTGGCGGTGGCATATTC

SLC31A1 AACCACACGGACGACAACATCAC CACAGGCATGGAATTGTAGCGAATG

GADPH ACTCCCATTCTTCCACCTTTG CCCTGTTGCTGTAGCCATATT
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significantly higher in SCI samples than in non-SCI samples 
(p < 0.001) (Figure 2A), while the expression levels of Activated B cell, 
Activated CD8 T cell, Immature B cell, Natural killer T cell, Type 1 T 
helper cell, Effector memory CD4 T cell, Memory B cell, Central 
memory CD4 T cell, Central memory CD8 T cell, and Effector 
memory CD8 T cell were significantly lower in SCI samples than in 
non-SCI samples (p < 0.001) (Figure 2B).

3.3 SCI unsupervised clustering analysis

To analyze the expression of SCI and CRGs, we identified 38 SCI 
samples in groups based on a consensus clustering algorithm and the 
expression profiles of seven CRGs. The results showed that the number 
of clusters was optimal when k = 2 (Figure  3A). The CDF values 
gradually increased when k = 2, 3, and 4 and became smaller when 
k = 4 (Figures 3B–D). We divided the 38 SCI samples into two groups: 
Cluster C1 (n = 22) and Cluster C2 (n = 16). PCA analysis was 

performed on them, and the results showed a significant difference 
between Cluster C1 and Cluster C2 (Figure 3E).

3.4 Cluster expression profile and immune 
infiltration analysis

To further analyze the inter-Cluster specificity, we analyzed the 
expression of seven CRGs among Cluster C1 and Cluster C2 
(Figure 4A). The results showed that the expression of ATP7B and 
SLC31A1 was higher in Cluster C1 than in Cluster C2, while the 
expression of LIPT1 was lower than in Cluster C2 (Figure 4B). In 
addition, we analyzed the immune infiltration between Cluster C1, and 
Cluster C2 based on the ssGSEA algorithm (Figure 4C). The findings 
indicated that Cluster C2 exhibited elevated levels of T cells CD8, T 
cells CD4 memory activated, and T cells gamma delta. In contrast, 
Cluster C1 displayed higher levels of T cells regulatory (Tregs), 
Macrophages M0, Macrophages M2, Dendritic cells activated, and 
increased expression of Neutrophils (Figure 4D). Based on the above, 

FIGURE 1

Expression and correlation analysis of CRGs with SCI. (A) Box plot of expression of 13 CRGs in SCI and non-SCI samples. (B) Heat map of 7 CRGs with 
differential expression. (B) Heat map of 7 CRGs with differential expression. (C) Position on chromosome of 7 CRGs with differential expression. 
(D) Correlation analysis of 7 CRGs with differential expression, yellow and blue represent positive and negative correlations respectively, area of the pie 
chart represents the correlation coefficient. ***p < 0.0001, **p < 0.001, *p < 0.05.
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FIGURE 2

Immuno-infiltration analysis of SCI vs. non-SCI. (A) Results of heat map of SCI vs. non-SCI samples in 28 classes of immuno-infiltration analysis, yellow 
represents high expression and blue represents low expression. (B) Violin plot of the difference in immuno-infiltration between SCI and non-SCI 
samples.
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FIGURE 3

Molecular cluster identification of SCI and cuproptosis-related genes. (A) Consensus clustering matrix at k = 2. (B–D) Representative cumulative 
distribution function (CDF) curves, CDF incremental area curves, consensus clustering scores. (E) PCA analysis of Cluster C1 and Cluster C2 
distributions.
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Cluster C2 appears to be  more strongly associated with the 
progression of SCI.

3.5 Cluster-based screening of key 
modules and enrichment analysis

We used WGCNA to analyze key modules closely related to 
Cluster C1 and Cluster C2. A scale-free network was constructed with 
β = 5, R2 = 0.9 (Figure 5A). The 4,375 genes were categorized into 8 
significant modules, and a heat map was generated to illustrate the 
TOM of genes associated with each module (Figures 5B–D). Cluster 
C1 and Cluster C2 module relationship analysis showed that the 
MEgreen module (39 genes) was associated with Cluster 2 and had a 
high negative correlation (−0.53) with intra-module gene significance 
of 6e-04 (Figure 5E). MEgreen module genes were analyzed in relation 
to Cluster2 in Figure 5F.

Based on Figure 5E, we selected the top 3 key modules for GO and 
KEGG enrichment analysis, namely MEgreen (39 genes), MEturquoise 
(65 genes), and MEred (12 genes), for a total of 113 genes after 
de-duplication of the three modules. (BP) mainly involves cytoplasmic 
translation, translation, fructose 2,6-bisphosphate metabolic process, 

etc. Cellular Components (CC) mainly involve cytosolic ribosome, 
cytosolic small ribosome subunit, ribosome, etc. Molecular Function 
(MF) mainly involves structural constituents of ribosomes, RNA 
binding, protein binding, etc. (Figure 6A). KEGG enrichment results 
showed that it was mainly involved in Ribosome, HIF-1 signaling 
pathway, and other related pathways (Figure 6B).

3.6 Identification of candidate genes based 
on multiple machine learning methods

To further screen CRGs for candidate genes associated with 
SCI, we  used three machine learning methods (LASSO, RF, 
SVM-RFE) for feature identification based on seven CRGs with 
differential expression. Five key genes were obtained by the LASSO 
logistic regression algorithm (Figures 7A,B). Six key genes were 
detected by the RF algorithm (Figures 7C,D). Seven key genes 
were identified by SVM-RFE analysis (Figure 7E). Finally, the key 
genes obtained by the 3 algorithms were crossed to obtain 4 
candidate genes, namely SLC31A1, DBT, DLST, and LIAS 
(Figure 7F).

FIGURE 4

Clustered expression and immuno-infiltration analysis. (A) Expression of seven differentially expressed CRGs between Cluster C1 and Cluster C2. 
(B) Heat map of CRGs expression between Cluster C1 and Cluster C2. (C) Immunological infiltration analysis of Cluster C1 and Cluster C2. (D) Heat 
map of immunological infiltration analysis of seven differentially expressed CRGs (*p < 0.05, **p < 0.01, ***p < 0.001).
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We generated column line plots to further assess the predictive 
performance of the RF model (Figure  8A). The predictive 
performance of the generated line plot model was assessed using a 

combination of calibration curves and decision curve analysis. The 
calibration curve showed that there was a small error between the 
actual risk of SCI clustering and the predicted risk (Figure 8B), while 

FIGURE 5

Weighted network analysis between Cluster C1 and Cluster C2. (A) Determination of soft threshold power. (B) Cluster tree dendrogram of  
co-expression modules; different colors indicate different co-expression modules. (C) Representation of clusters of module signature genes. 
(D) Representative heat map of correlations between 8 key modules. (E) Correlation analysis of module signature genes with clinical status. (F)  
Scatter plots between MEgreen module genes and Cluster2 significantly different genes.
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the DCA results indicated that the line plot had high accuracy and 
could offer some reference and groundwork for clinical treatment 
decisions (Figures 8C,D).

3.7 Evaluation analysis of candidate genes

We analyzed the ROC curves of the four candidate genes within 
the GSE151371 dataset and also contrasted their expression levels 
between SCI and non-SCI samples. The ROC curve results indicated 
that SLC31A1 exhibited the greatest relative diagnostic value 
(AUC = 0.958), followed by LIAS (AUC = 0.833), with a more 
favorable predictive effect (Figure 9A). Furthermore, the expression 
analysis revealed a significant increase in SLC31A1 expression levels 
among SCI samples compared to non-SCI samples, while the 
expression levels of DBT, DLST, and LIAS were all notably lower in 
SCI samples than non-SCI samples, all with statistical significance 
(Figure 9B).

3.8 Animal experiments and validation

3.8.1 Behavioral scoring of SCI
The behavioral scoring of SCI was done using BBB Scale to assess 

the recovery of motor function in the hind limbs of rats. The 
assessment, with a full score of 21 points, was divided into three main 
sections: the movement of each joint of the rat’s lower limb, the gait 
and coordination function, and the precision of paw movements 
during lower limb activity. Our study found a significant decrease 
(p < 0.001) in the same time review score for the rats in the SCI group 
compared to the sham group (Figure 10), which is partly evidence of 
the success of our SCI model.

3.8.2 Pathological tissue sections
In the HE-stained pathological sections, we can observe that the 

spinal cord tissue of the sham operation group was structurally intact, 
with uniform distribution of nerve cells, and no pathological changes 
such as vacuoles or inflammatory infiltration were seen; the spinal 
cord tissue of the SCI group had a large number of vacuolated changes, 
with neuronal atrophy and apoptosis or even disappeared, 
accompanied by a large number of inflammatory cells infiltration, and 
with structural disorders of the gray and white matter with unclear 
boundaries (Figures 11A,B). In the Nissl stained pathological sections, 
it is found that the spinal cord of the sham-operated group was 
structurally intact, with obvious butterfly-shaped gray matter areas 
and clear boundaries between the gray and white matter areas, and the 
neuronal cells were morphologically intact, with large nuclei and clear 
nucleolus, and clear intracellular tiger-spot-like Nissl bodies were 
seen; In the SCI group, the center of spinal cord injury was severely 
damaged, and stasis-like lesions were seen, as well as vacuole-like 
structures formed after neuronal crumpling, necrosis and liquefaction, 
with lighter coloring and reduced number of Nissl bodies 
(Figures 11C,D).

3.8.3 Transmission electron microscopic 
observation of myelin and neuronal 
histomorphology

In the sham group, the spinal cord myelin sheath was regular in 
shape, arranged in concentric circles, with an intact structure, no 
rupture or loss; the laminae were intact, dense, uniform, and regularly 
arranged; the neuronal mitochondria were abundant, full and clearly 
visible, evenly distributed, microfilaments and microtubules were 
abundant, the neurons were oval in shape, the cell membrane was 
intact, the organelles were abundant, more mitochondria and rough 
endoplasmic reticulum were visible, and the mitochondrial cristae 
were not obviously broken or missing in the SCI group, the spinal cord 
myelin sheath was irregular in shape, disorganized in structure, with 

FIGURE 6

Enrichment bubble plots of three key module genes. (A) Bubble plots of GO enrichment analysis of three key module genes. (B) Bubble plots of KEGG 
enrichment analysis of three key module genes.
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FIGURE 7

Multiple machine learning approaches to screen candidate genes. (A,B) LASSO analysis identifies 5 key genes. (C,D) RF analysis identifies 6 key genes. 
(E) SVM-RFE features identify 7 key genes. (F) LASSO, RF, and SVM-RFE intersection analysis yields 4 candidate genes.
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FIGURE 8

Validation analysis of candidate genes. (A) Construction of calibration curves. (B) Riskiness prediction. (C) Construction of DCA. (D) Nomogram model 
for predicting SCI riskiness based on 4 candidate genes.

FIGURE 9

Validation and expression analysis of candidate genes. (A) ROC curves of the four candidate genes. (B) The mountain range of expression levels of the 
four candidate genes between SCI and non-SCI (*p < 0.05, **p < 0.01, ***p < 0.001).
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varying thickness, local curling and folding, and the laminae were 
loosened, twisted, folded, fused or even partially ruptured and 
missing. The neuronal mitochondria were swollen, and the number of 
mitochondria was reduced or even partially dissolved and disappeared. 
The mitochondrial cristae were broken and missing, and the 
microfilaments and microtubules were dissolved and fewer in number 
(Figures 11E,F).

3.8.4 qRT-PCR for DLST, DBT, LIAS, SLC31A1 
mRNA expression

qRT-PCR was employed to analyze and compare the expression 
levels of the identified genes in the spinal cord tissues of SCI and sham 
groups (Figure 12). Compared with the sham group, the expression of 
DLST, DBT, and LIAS, 3 genes significantly decreased, whereas the 
expression of the SLC31A1 gene notably increased in the spinal cord 
tissues of the SCI rat model (*p < 0.05, **p < 0.01, ***p < 0.001).

4 Discussion

SCI is a devastating neurological pathology that causes major 
motor, sensory, and autonomic dysfunction, and the most serious 
damage in SCI is to the mitochondria. When mitochondrial damage 
leads to axonal degeneration and apoptosis (44, 45), it also causes a 
weakening of oxidative phosphorylation, a significant decrease in the 
efficiency of releasing energy through oxidation and generating ATP, 
disruption of Ca2+ homeostasis (46), and the release of cytochrome C 
and other pro-apoptotic proteins from mitochondria into the 
cytoplasm, inducing apoptosis (47); while in the secondary damage 
phase of SCI, vasospasm causes a lack of oxygen and energy supply 
to the damaged parts of the spinal cord In the secondary phase of SCI 
injury, vasospasm causes a lack of oxygen and energy supply to the 
damaged area of the spinal cord and disruption of the mitochondrial 
electron transport chain, resulting in damage to the mitochondria 
and the release of large amounts of reactive oxygen species, which in 
turn aggravates oxidative damage to the damaged area of the spinal 
cord (48, 49). It has likewise been shown that changes in 
mitochondrial number, localization, abundance, and substrate 
utilization are closely related to axonal regeneration capacity and 
prognosis (50–54).

Trace elements are indispensable nutrients in the animal’s body 
and are required for normal growth, development, and many 
physiological functions. Deficiencies in the balance of trace elements 
are closely related to a wide range of diseases and their prognosis, so 
maintaining normal homeostasis of all trace elements is essential for 
cell survival and function (55–60). Like many other metallic trace 
elements, copper plays an important role as one of the essential 
elements and as a cofactor for essential enzymes necessary for human 
activity (61). Under normal conditions, intracellular copper ion 
concentrations are generally maintained at very low levels, but when 
copper ions exceed the threshold, they become toxic, which in turn 
leads to cell death (62–64). The copper-triggered cell death that has 
been studied in recent years is a new model of cell death, with a 
specific mechanism whereby excess intracellular copper induces the 
accumulation of specific lipases, resulting in proteotoxic stress and, 
ultimately, cell death, which is linked to the mitochondrial 
tricarboxylic acid (TCA) cycle (21, 24).

This study marks the inaugural investigation and analysis of the 
varied expression of 13 CRGs between SCI patients and the healthy 
population. The results showed that seven CRGs exhibited distinct 
expression patterns between SCI patients and the healthy population, 
and ATP7B, DLD, and SLC31A1 were up-regulated in SCI patients, 
while DLST, DBT, LIAS, and LIPT1 were down-regulated. This 
suggests that there may be  a close association between SCI and 
cuproptosis. Subsequently, we conducted an analysis to explore the 
correlation between the 7 differentially expressed CRGs, aiming to 
elucidate the relationship between SCI and cuproptosis. We performed 
unsupervised cluster analysis on 38 SCI samples based on the 7 CRGs 
and classified them into Cluster C1 and Cluster C2. To further explore 
the inter-cluster specificity, we explored the expression of the 7 CRGs 
among Clusters, and the results showed that ATP7B and SLC31A1 in 
Cluster C1 expression were higher than those of Cluster C2, while 
LIPT1 expression was lower than that of Cluster C2. The results of 
ssGSEA analysis indicated that Cluster C2 exhibited elevated levels of 
T cells CD8, T cells CD4 memory activated, and T cells gamma delta. 
Cluster C1 displayed increased expression levels in T cells regulatory 
(Tregs), Macrophages M0, Macrophages M2, Dendritic cells activated, 
and Neutrophils. Based on the above, Cluster C2 appears to be more 
strongly associated with the progression of SCI. Next, we performed 
WGCNA analysis based on Cluster C1 and Cluster C2 and selected 
the top 3 key modules (MEgreen, MEturquoise, MEred) genes in 
terms of relevance for GO and KEGG enrichment analysis, and the 
results showed that the above genes were mainly involved in the 
Ribosome, HIF-1 signaling pathway, and other pathways. Based on 
seven CRGs, three machine learning methods (LASSO, RF, SVM-RFE) 
were used for feature identification, and four candidate genes (DBT, 
SLC31A1, LIAS, DLST) were obtained after crossover. The ROC curve 
results indicated that SLC31A1 exhibited the highest diagnostic value 
(AUC = 0.958) relatively. According to the results of qRT-PCR 
experiments, the observed expression of the four candidate genes in 
the SCI model rats was consistent with the above analysis.

DBT constitutes a crucial element within the branched-chain 
α-keto acid dehydrogenase complex, an intramitochondrial enzyme 
complex that plays an important role in amino acid metabolism (65–
67). DLST is a subunit of the alpha-ketoglutarate dehydrogenase 
complex, the second oxidative decarboxylation limiting enzyme of the 
TCA cycle, which acts mainly in the mitochondria and partly in the 
nucleus (68, 69). In our study, the finding that DLST expression is 

FIGURE 10

BBB scores of rats in each group. Compared with the Sham group, 
rats in the SCI group had significantly lower scores at the same time 
review (*p < 0.001).
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down-regulated in the disease would indicate that mitochondrial 
respiratory chain function would be  impaired and energy ATP 
production would be reduced, failing to meet the energy requirements 
for repair of damaged spinal cord tissue and neuronal survival. 
Meanwhile, DBT and DLST are enzymes that are lipidated by copper 
ions, and they are involved in the metabolic complex that regulates the 
entry of carbon into the TCA cycle (70, 71). The DBT gene expression 
disorder, likewise, affects the TCA cycle, leading to disruption of the 
mitochondrial energy metabolism chain and impaired mitochondrial 
function, exacerbating the energy crisis of cells in the region of spinal 
cord injury, which is detrimental to the recovery of neurological 
function. The SLC31A1 gene, also known as copper transporter 
protein 1, has a high affinity for copper transport in individual cells 
and is a key gene for copper ion transport, which is used in the study 
of cancer-related therapies (64). Abnormal expression of SLC31A1 
leads to insufficient or excessive levels of copper ions in mitochondria, 
affecting the activity of copper ion-dependent enzymes, which in turn 
affects the function of the mitochondrial respiratory chain, resulting 

in mitochondrial oxidative damage. LIAS belongs to the lipoic acid 
synthase family and is a highly conserved enzyme found in prokaryotes 
and eukaryotes. It participates in lipoic acid metabolism and lipid 
acylation and is an important regulator. LIAS is involved in Fe-S cluster 
biosynthesis, which is an important component of the mitochondrial 
respiratory chain complex. Abnormal expression of the LIAS gene 
leads to impaired synthesis of Fe-S clusters, reduced activity of the 
respiratory chain complex, impeded electron transfer, reduced 
efficiency of ATP generation, and generation of a large amount of ROS, 
which further damages the mitochondrial membrane and the internal 
structure of the mitochondrion, forming a vicious circle. FDX1 is an 
upstream regulator of protein lipidation and is also a direct target of 
copper ion carriers, which has a role in regulating protein-lipid 
acylation (72, 73). In previous studies, it was found that deletion of 
FDX1 and LIAS conferred resistance to copper-induced cell death (21), 
but it has also been shown that defects in neonatal LIAS are associated 
with severe metabolic disorders (74). Based on the above mechanism, 
it is not difficult to judge that the abnormal expression of the above 

FIGURE 11

Histopathological sections of the spinal cord of rats in various groups, groups (A,C,E) are Sham groups and groups (B,D,F) are SCI. (A,B) HE staining of 
spinal cord tissue (50 μm). (C,D) Nissl staining of spinal cord tissue (50 μm). (E,F) Microstructure of myelin and neurons in the spinal cord (15000x).
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genes also causes oxidative stress and immune response (75, 76). When 
oxidative stress is combined with mitochondrial injury, DAMPs will 
be released to activate macrophages, T cells and other immune cells, 
and the abnormal expression of the genes will indirectly regulate the 
expression of chemokines and cytokines of immune cells by 
influencing the function of mitochondria and oxidative stress, and 
affect the infiltration of immune cells into the site of SCI (77, 78). 
Normal immune cell function depends on mitochondrial energy 
supply and redox homeostasis, and mitochondrial damage and 
oxidative stress caused by genetic abnormalities affect immune cell 
activity. For example, macrophage polarization is disturbed, which 
prevents effective immunomodulation, and T-cell activation and 
proliferation are inhibited, affecting the body’s immune repair ability. 
Meanwhile, oxidative stress induces the release of inflammatory factors 
such as TNF-α and IL-1β, etc. Oxidative stress caused by abnormal 
gene expression promotes the expression and release of inflammatory 
factors by activating inflammatory signaling pathways such as NF-κB, 
which further recruits immune cells and exacerbates the inflammatory 
response, and the excessive inflammatory response will also lead to the 
dysfunction of the immune cells, resulting in a vicious circle and 
exacerbating the pathological process of SCI (79–81).

In summary, the four CRG genes, namely DLST, DBT, LIAS, and 
SLC31A1, obtained from this study based on the crossover of the three 
models of LASSO, RF, and SVM-RFE had satisfactory results in 
assessing the immune infiltration and subtype and pathology of SCI.

However, this study still has shortcomings. First, this study 
obtained a certain number of SRGs from the CellAge database, 
but more SRGs currently exist that have not been identified. 
Secondly, the sample size of the three training sets in this study 
was small, although we  compensated by choosing external 
validation and experimental validation to confirm the candidate 
genes obtained in this study. Thirdly, although the four candidate 
genes eventually obtained in this study are closely associated 
with cuproptosis and SCI, validation by qRT-PCR alone is not 
sufficient, and it is expected that more in vitro and in vivo studies 
will be conducted in subsequent research work to confirm the 
above findings. Future research should focus on exploring the 
regulatory mechanisms of the candidate genes and developing 
effective interventions. Multidisciplinary cooperation and big 
data analysis are expected to provide a solid theoretical 
foundation and practical guidance for addressing the clinical 
challenges of related diseases.
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FIGURE 12

Spinal cord genes were expressed using qRT-PCR. Spinal cord genes in the SCI model and Sham group. Spinal cord expression of all 3 genes DLST, 
DBT, and LIAS were significantly increased in the SCI model, while SLC31A1 gene expression was significantly increased (*p < 0.05, **p < 0.01, 
***p < 0.001).
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