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Background: Research on the associations between the stress hyperglycemia

ratio (SHR) and adverse outcomes in patients with hemorrhagic stroke is limited.

Therefore, we aimed to investigate the relationship between the SHR and

all-cause mortality in patients with hemorrhagic stroke.

Methods: Clinical data of patients with hemorrhagic stroke were extracted

from the Medical Information Mart for Intensive Care (MIMIC-IV) database. The

patients were divided into four groups based on the SHR quartiles. Outcomes

including 28-, 90-, and 365-day all-causemortality were analyzed. Kaplan–Meier

curves, Cox proportional hazard regression, and restricted cubic splines were

used to investigate the relationships between the SHR and all-cause mortality. A

machine learning prediction model integrating SHR was developed to assess its

prognostic value for all-cause mortality.

Results: The final analysis cohort consisted of 939 patients. Compared to the

lowest SHR quartile, the highest quartile had significantly increased mortality

risks at 28 days [hazard ratio (HR) = 4.53, 95% CI: 2.75–7.46; p < 0.001], 90 days

(HR = 3.29, 2.19–4.95; p < 0.001), and 365 days (HR = 2.25, 1.60–3.17; p <

0.001). A significant upward trend inmortality risk was observed across ascending

SHR quartiles (p-trend <0.001 for all time points). Restricted cubic spline analysis

demonstrated non-linear associations between SHR and all-causemortality at 28

and 90 days (p-non-linear <0.05), while the overall trend remained significantly

positive. Themachine learningmodels identified SHR as a key predictor, with area

under the curves (AUC) of 0.771 (28-day), 0.778 (90-day), and 0.778 (365-day).

Conclusion: This study revealed threshold-dependent associations between the

SHR and short- and long-term all-cause mortality in patients with hemorrhagic

stroke. The SHR was a reliable predictor for adverse outcomes in patients with

hemorrhagic stroke.
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1 Introduction

Stroke remains the second leading cause of death and a

critical threat to public health globally (1). Hemorrhagic stroke,

comprising intracerebral hemorrhage (ICH) and subarachnoid

hemorrhage, is a particularly severe subtype of stroke with

mortality rates as high as 45%−50% in the first 30 days (2, 3).

In China, there were 1.07 million new hemorrhagic stroke cases

and 1.16 million hemorrhagic stroke deaths in 2019, accounting

for 27.1% of new strokes and 53% of stroke deaths (4). In recent

decades, considerable efforts have been made to treat and care for

hemorrhagic stroke. However, the availability of ideal treatment

options to improve patient prognosis remains limited. Therefore,

the identification of modifiable prognostic factors for individuals

with hemorrhagic stroke is crucial for providing insights into

potential therapeutic strategies.

Stress hyperglycemia, which refers to a transient increase in

blood glucose levels in response to acute physiological stressors

(5), is common among patients experiencing hemorrhagic stroke.

After the occurrence of a stroke, activation of the sympathetic

nervous system and the hypothalamic-pituitary-adrenal axis leads

to the release of catecholamines and cortisol (5, 6). These increased

hormone levels subsequently inhibit insulin secretion, promote

glycogenolysis, and stimulate hepatic gluconeogenesis, resulting in

a temporary elevation in blood glucose levels (7). Research has

indicated that ∼60% of patients with intracerebral hemorrhage

experience hyperglycemia, and over 70% of patients with

subarachnoid hemorrhage also exhibit elevated blood glucose levels

as well (8, 9). Previous studies have extensively documented the

associations between stress hyperglycemia and adverse outcomes,

such as prolonged hospital stays, poor functional recovery, and

increased mortality (10, 11). In these studies, stress hyperglycemia

is indicated by admission blood glucose levels in hemorrhagic

stroke patients.

However, in cases of hemorrhagic stroke, the sole reliance

on absolute admission blood glucose levels proves insufficient to

distinguish between a physiological stress response and inadequate

background glycemic control. Because diabetes mellitus is a well-

established risk factor for stroke (12). To address this issue,

Roberts et al. (13) introduced the stress hyperglycemia ratio

(SHR), a novel index integrating fasting blood glucose with

glycosylated hemoglobin (HbA1c, reflecting glycemic status over

2–3 months), to better assess stress-induced hyperglycemia. The

SHR has emerged as a critical tool for risk stratification, enabling

clinicians to identify patients at higher risk of complications such as

hematoma expansion, and tailor glycemic management strategies

(e.g., intensive glucose monitoring or targeted insulin therapy)

(14, 15). For example, in acute care settings, SHR thresholds >1.31

has been associated with a 3.3-fold increase in 30-day mortality

risk, prompting earlier intervention in such cases (15). Several

studies have investigated the correlations between the SHR and

patient outcomes in hemorrhagic stroke patients. Notably, Chu

et al. (14) have revealed that the SHR is a reliable predictor of

hematoma expansion and unfavorable outcomes, such as secondary

neurological decline and poor functional recovery at 3 months,

among patients with spontaneous intracerebral hemorrhage. Liang

et al. (15) further highlighted the SHR as a risk factor for 30-

day and 1-year mortality in this patient population. Similarly, Li

et al. (16) reported that the SHR is associated with both short-

and long-term functional outcomes in patients with intracerebral

hemorrhage. Despite of these advances in the knowledge of

SHR, three critical gaps persist in the literature. First, previous

studies have focused exclusively on intracerebral hemorrhage, while

subarachnoid hemorrhage, a subtype with distinct pathophysiology

and high prevalence of stress hyperglycemia, remains understudied.

Second, conflicting results have been reported in previous studies

investigating the interactions between diabetes mellitus, the SHR,

and patient outcomes (15, 17), indicating the need for further

clarification of the associations between the SHR and the prognosis

of hemorrhagic stroke patients, considering their varied glucose

metabolism statuses. Third, no prior research has systematically

compared the predictive performance of SHR against established

prognostic markers in hemorrhagic stroke populations.

Therefore, our aim was to investigate the associations between

the SHR and all-cause mortality in patients with hemorrhagic

stroke stratified by the presence of diabetes mellitus and other

conditions, and to clarify the importance of the SHR in predicting

prognosis. The findings of this study may contribute to a better

understanding of the impact of stress hyperglycemia on the

outcomes of patients with hemorrhagic stroke, and potentially

inform the development of new strategies for risk stratification and

management in stress hyperglycemia.

2 Materials and methods

2.1 Study design and population

The Medical Information Mart for Intensive Care (MIMIC-IV,

version 2.2), a comprehensive and publicly accessible critical care

database maintained by the Computational Physiology Laboratory

at the Massachusetts Institute of Technology (MIT), served as the

primary data source for this retrospective study. This database

comprises ∼73,000 detailed records of intensive care unit (ICU)

stays at Beth Israel Deaconess Medical Center (18). Patients

with hemorrhagic stroke were recruited for this study based

on the International Classification of Diseases, Ninth Revision

(ICD-9) and Tenth Revision (ICD-10). Specifically, for non-

traumatic subarachnoid hemorrhage, the following ICD codes

were selected: ICD-9 code 430, ICD-10 codes I60, I601-I609,

I600, I6000-I6002, I6010-I6012, I6020-I6022, I6030-I6032, and

I6050-I6052. For intracerebral hemorrhage, the study included

the ICD-10 codes I61, I610-I619, I62, and I629, in addition

to the ICD-9 codes 431, 4329, 7670, and a range of 77,210–

77,214. Patients were excluded if they were: (1) under 18 years

of age; (2) had ICU stays shorter than 3 h; or (3) lacked

records of fasting blood glucose or glycated hemoglobin within

24 h following ICU admission. Furthermore, in cases where

patients had multiple ICU admissions, only the initial record

was considered.

2.2 Data extraction

To access the data, one of the authors, Wei Zhu, completed a

training course provided by the National Institutes of Health (NIH)
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FIGURE 1

Flow chart of the patients enrolled throughout the trial. ICU, intensive care unit.

to protect human study participants and obtained certification

from the Collaborative Institutional Training Initiative (Record

ID: 62,749,768). Data retrieval was performed via Navicat

Premium software (version 17), which employed structured query

language to extract information from five distinct categories:

sociodemographic variables, clinical characteristics, comorbidities,

laboratory parameters, and vital signs. Sociodemographic variables

included age, sex, and weight. Clinical characteristics consisted of

the Glasgow Coma Scale (GCS) score, Sequential Organ Failure

Assessment (SOFA) score, and diagnosis. The comorbidity list

included hypertension, diabetes, heart failure (HF), peripheral

vascular disease (PVD), chronic pulmonary disease (COPD),

malignant cancer, renal disease, and the Charlson Comorbidity

Index (CCI). The laboratory parameters included red blood cell

count (RBC), hemoglobin (Hb), white blood cell count (WBC),

platelet count (PLT), serum sodium, potassium, calcium, chloride,

anion gap, bicarbonate, creatinine, blood urea nitrogen (BUN),

international normalized ratio (INR), prothrombin time (PT),

activated partial thromboplastin time (APTT), fasting blood

glucose (FBG), and HbA1c. Vital signs including heart rate

(HR), systolic blood pressure (SBP), diastolic blood pressure

(DBP), peripheral oxygen saturation (SpO2), temperature, and

respiratory rate, were also recorded. The SHR was calculated via

the following formula: SHR = FBG (mmol/L)/[1.59 × HbA1c

(%)−2.59] (13, 19). The detailed data screening process was

summarized in Figure 1. Briefly, from the MIMIC-IV database,

we initially identified 2,946 adult hemorrhagic stroke patients

with first ICU admission based on predefined ICD codes. After

excluding patients those with missing HbA1c (N = 2,007), and

length of ICU stays <3 h (N = 1), 939 patients were included in

the final analysis.

2.3 Outcomes

The primary outcome of this study was 28-day all-cause

mortality of patients with hemorrhagic stroke. The secondary

outcomes were 90- and 365-day all-cause mortality.

2.4 Data analysis

Variables with more than 20% missing data were excluded

prior to the final analysis. For the remaining variables, missingness

ranged from 0.2 to 18.7% (see Supplementary Table S1). The

Little’s missing completely at random test was performed, revealing

a missing at random (MAR) pattern (Chi-square = 1,652.901,

df = 1,030, p < 0.001). Given the MAR mechanism, the

expectation maximization (EM) algorithm was chosen over

alternative methods due to its statistical rigor in maximizing

observed data likelihood, its ability to preserve multivariate

covariance structures (unlike mean imputation which introduces

bias), and its computational efficiency compared to resource-

intensive approaches such as multiple imputation by chained

(20). Missing data were subsequently imputed using the EM

algorithm. To identify multicollinearity, the variance inflation

factor was calculated for all variables. Patients were divided into

four groups based on the SHR quartiles. Continuous variables

were summarized using means and standard deviations (SDs) for

normally distributed data, and median and interquartile ranges

(IQRs) for non-normally distributed data. Categorical variables

were presented as frequencies and percentages. To compare

variables across SHR-stratified groups, the Kruskal–Wallis test and

Chi-square test were performed.

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2025.1526169
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhu et al. 10.3389/fneur.2025.1526169

The Kaplan–Meier survival curves were used to compare

survival rates among the four groups stratified by quartiles

of the SHR, with the log-rank test used to assess statistical

significance. A multivariate Cox proportional hazard regression

analysis was then conducted to estimate the hazard ratio (HR)

and 95% confidence interval (95% CI) for the occurrence of the

event. Variables that were significant in the univariate analysis

and had clinical significance were included in the multivariate

model. Model 1 served as the unadjusted model, whereas Model

2 was adjusted for age, sex, diagnosis, hypertension, diabetes,

COPD, CCI, SOFA scores, WBC, anion gap, bicarbonate, BUN,

calcium, chloride, potassium, APTT, and PLT. The restricted cubic

spline (RCS) method was applied to investigate the non-linear

relationship between the SHR and all-cause mortality through Cox

proportional hazard models and to identify the optimal threshold.

The optimal number and placement of knots in the RCS were

determined by minimizing the Akaike information criterion. Two-

segment Cox proportional risk models were subsequently applied

on both sides of the inflection point to further evaluate the

associations between the SHR and mortality risk. Additionally,

stratification and interaction analyses were performed to dissect

the impact of factors such as sex, age (dichotomized as below or

above 65 years), the presence of diabetes and hypertension, and

diagnosis on the relationship between the SHR and mortality risk.

For each subgroup analysis, Cox proportional hazard regression

analyses were employed, adjusting for the same confounders

as in Model 2. Likelihood ratio tests were utilized to identify

significant interactions.

Boruta’s algorithm can determine features that are most

important for predicting the target variable by simulating

randomness (21, 22). It was also utilized to select features for

establishing a mortality prediction model and to determine the

importance of the SHR as a predictor. The dataset was randomly

divided into a training set and a validation set at a ratio of 7:3

for model establishment and evaluation, respectively. The variables

identified by Boruta’s algorithm were integrated into the Cox

proportional hazard survival learner (coxph) algorithm to predict

all-cause mortality at 28, 90, and 365 days. The ROC curve and

its corresponding area under the curve (AUC) were utilized to

assess model performance, and decision curve analysis (DCA)

was employed to evaluate clinical effectiveness. The calibration

curves were used to assess the accuracy of the model in predicting

absolute risk. All the statistical analyses were conducted via R

software (version 4.2.2) and SPSS 24.0 (IBM SPSS Statistics,

Armonk, NY, USA). A two-tailed p value of <0.05 was considered

statistically significant.

3 Results

3.1 Baseline characteristics

Table 1 displays the baseline characteristics of the included

patients stratified by SHR quartiles [quartile 1 (SHR < 0.90),

quartile 2 (0.90 ≤ SHR < 1.05), quartile 3 (1.05 ≤ SHR < 1.26),

and quartile 3 (SHR > 1.26)]. The median age of the patients in

this study was 71.0 years (IQR: 60.0–82.0), and 53.6% of them were

male. Significant differences were identified in age, SOFA scores,

diagnosis, presence of diabetes, CCI scores, WBC, serum sodium,

anion gap, bicarbonate, chloride, FBG, HbA1c, HR, respiratory

rate, body temperature, and SpO2 across patients stratified by the

SHR quartiles.

3.2 Clinical outcomes

The overall mortality rates in this cohort progressively

increased from 15.9% in the hospital to 19.9% at 28 days, 25.6%

at 90 days, and culminated at 31.4% at 365 days. Furthermore,

significant changes inmortality rates were observed among patients

stratified by quartiles of the SHR. The Kaplan–Meier survival

analysis underscored significant disparities in all-cause mortality at

28, 90, and 365 days among patients stratified by the SHR quartiles

(Figure 2). Notably, patients in the SHR Quartile 4 presented the

lowest survival probability at all the assessed time points (28,

90, and 365 days), with statistical significance confirmed by log-

rank tests (p < 0.001). Table 2 shows the outcomes of the Cox

proportional hazard regression models. High SHR, treated as a

continuous variable, was significantly associated with an elevated

risk of all-cause mortality at 28 days (HR= 3.06, 95% CI: 2.20–4.26,

p < 0.001), 90 days (HR =2.54, 95% CI: 1.87–3.43, p < 0.001), and

365 days (HR = 2.09, 95% CI: 1.56–2.78, p < 0.001). Additionally,

when compared to patients with an SHR of <0.90 (Quartile 1),

those with a higher quartile of SHR had an increased risk of all-

causemortality at both 28 and 90 days (p< 0.05). Similarly, patients

with an SHR of >1.26 (Quartile 4) had an increased risk of 365-

day (HR = 2.25, 95% CI: 1.60–3.17, p < 0.001) all-cause mortality

compared with Quartile 1.

The RCS analysis results indicated significant non-linear

associations between the SHR and mortality risk at 28 and 90

days, as illustrated in Figure 3. The inflection points in the non-

linear relationship between the SHR and mortality risk at 28,

90, and 365 days were identified as 1.03. To further investigate

these associations, two-segment Cox proportional hazard models

were employed (see Supplementary Table S2). Specifically, when

the SHR exceeded 1.03, a 1-unit increase in the SHR was associated

with a 2.82-, 2.61-, and 2.39-fold elevated risks of 28-, 90-, and

365-day all-cause mortality (p < 0.001), respectively.

3.3 Subgroup analysis

The associations between the SHR and mortality risk were

further assessed in different patient subgroups, including age

(below or over 65 years), sex, diagnosis, and the presence

of hypertension and diabetes. The HRs were significant at 28

days (Figure 4), 90 days (Supplementary Figure S1), and 365 days

(Supplementary Figure S2), regardless of age subgroup. The HRs

were significant at 28 and 90 days regardless of the sex subgroup,

while there was no statistically significant difference in male

patients at 365 days. Additionally, the HRs were significant in

patients with hypertension at all three time points. No statistically

significant difference was observed in patients diagnosed with SAH

at 28, 90, or 365 days. Notably, in patients without diabetes, the

HRs were significant at 28 days (HR= 2.40, 95%CI: 1.63–3.54, p <
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TABLE 1 Baseline characteristics and outcomes of patients stratified by SHR.

Characteristics Overall (N = 939) Q1 (N = 234) Q2 (N = 236) Q3 (N = 234) Q4 (N = 235) p-value

SHR 1.05 (0.90, 1.25) 0.81 (0.74, 0.86) 0.97 (0.93, 1.01) 1.14 (1.09, 1.19) 1.43 (1.35, 1.68) <0.001†

Demographic variables

Age (year, IQR) 71.0 (60.0, 82.0) 73.0 (63.0, 83.0) 73.0 (61.8, 83.0) 70.0 (58.0, 80.0) 70.0 (58.0, 79.0) 0.007†

Male (n, %) 503 (53.6) 130 (55.6) 135 (57.2) 125 (53.4) 113 (48.1) 0.215‡

Weight (kg, IQR) 76.8 (63.8, 91.7) 76.9 (63.1, 89.2) 74.6 (63.4, 90.0) 80.0 (68.3, 94.8) 75.0 (61.0, 92.7) 0.112†

Clinical characteristics

GCS 14 (12, 15) 14 (12, 15) 14 (12, 15) 14 (12, 15) 14 (11, 15) 0.939†

SOFA 3 (1, 4) 2 (1, 4) 2 (1, 4) 3 (1, 4) 3 (2, 5) <0.001†

ICH (n, %) 797 (84.9) 213 (91.0) 211 (89.4) 186 (79.5) 187 (79.6) <0.001‡

Comorbidities

Hypertension (n, %) 681 (72.5) 162 (69.3) 169 (71.6) 174 (74.4) 176 (74.9) 0.488‡

Diabetes (n, %) 280 (29.8) 79 (33.8) 58 (24.6) 51 (21.8) 92 (39.2) <0.001‡

HF (n, %) 141 (15.0) 43 (18.4) 36 (15.3) 28 (12.0) 34 (14.5) 0.279‡

PVD (n, %) 63 (6.7) 20 (8.6) 19 (8.1) 17 (7.3) 7 (3.0) 0.063‡

COPD (n, %) 115 (12.3) 28 (12.0) 25 (10.6) 26 (11.1) 36 (15.3) 0.397‡

Malignant cancer (n, %) 47 (5.0) 12 (5.1) 10 (4.2) 13 (5.6) 12 (5.1) 0.929‡

Renal disease (n, %) 123 (13.1) 42 (18.0) 31 (13.1) 23 (9.8) 27 (11.5) 0.056‡

CCI 6 (4, 8) 6 (4, 8) 6 (4, 8) 5 (4, 7) 6 (4, 8) 0.010†

Laboratory parameters

RBC (109/L) 4.2 (3.7, 4.6) 4.2 (3.8, 4.6) 4.3 (3.8, 4.6) 4.2 (3.8, 4.5) 4.1 (3.6, 4.5) 0.088†

Hb (g/L) 12.6 (11.3, 13.8) 12.5 (11.1, 13.8) 12.7 (11.5, 13.9) 12.6 (11.7, 13.8) 12.4 (10.9, 13.8) 0.087†

WBC (109/L) 9.8 (7.8, 12.4) 8.7 (7.1, 10.7) 9.3 (7.2, 12.1) 10.4 (8.6, 12.9) 11.4 (8.8, 14.3) <0.001†

PLT (109/L) 211 (171, 259) 214 (177, 253) 209 (170, 260) 205 (170, 264) 208 (169, 259) 0.912†

Sodium (mmol/L) 140 (137, 142) 140 (138, 143) 139 (138, 142) 140 (137, 142) 139 (137, 141) <0.001†

Potassium (mmol/L) 4.0 (3.7, 4.3) 4.0 (3.6, 4.3) 4.0 (3.7, 4.3) 3.9 (3.7, 4.3) 4.0 (3.7, 4.4) 0.242†

Calcium (mmol/L) 8.9 (8.5, 9.2) 8.9 (8.5, 9.2) 8.9 (8.6, 9.2) 8.9 (8.5, 9.2) 8.9 (8.4, 9.2) 0.773†

Creatinine (mg/dl) 0.9 (0.7, 1.1) 0.9 (0.7, 1.1) 0.9 (0.7, 1.0) 0.9 (0.7, 1.1) 0.9 (0.8, 1.2) 0.108†

Bun (mg/dl) 17.0 (13.0, 21.9) 16.0 (12.0, 21.8) 17.0 (13.0, 21.0) 16.0 (12.3, 20.0) 18.0 (13.0, 23.0) 0.069†

Anion gap (mmol/L) 15 (13, 17) 14 (12, 16) 14 (13, 16) 15 (13, 16) 16 (14, 18) <0.001†

Bicarbonate (mmol/L) 24 (22, 26) 24 (22, 26) 24 (22, 26) 24 (22, 26) 22 (21, 24) <0.001†

Chloride (mmol/L) 103 (101, 106) 104 (102, 107) 103 (10, 105) 103 (101, 106) 103 (100, 106) <0.001†

INR 1.1 (1.1, 1.2) 1.1 (1.1, 1.3) 1.1 (1.1, 1.2) 1.1 (1.1, 1.2) 1.1 (1.0, 1.3) 0.682†

PT (s) 12.4 (11.5, 13.8) 12.5 (11.6, 13.8) 12.3 (11.6, 13.7) 12.5 (11.6, 13.6) 12.3 (11.3, 14.1) 0.384†

APTT (s) 28.1 (25.8, 30.8) 28.3 (26.0, 30.7) 28.4 (26.2, 30.9) 27.6 (25.3, 30.2) 28.0 (25.4, 31.0) 0.257†

FBG (mmol/L) 6.9 (5.8, 8.6) 5.4 (5.1, 6.1) 6.3 (5.6, 7.0) 7.4 (6.7, 8.1) 9.6 (8.3, 12.5) <0.001†

HbA1c (%) 5.7 (5.4, 6.3) 5.9 (5.6, 6.5) 5.7 (5.4, 6.1) 5.6 (5.3, 6.1) 5.6 (5.2, 6.6) <0.001†

Vital signs

HR (beats/min) 78 (70, 87) 74 (68, 85) 77 (70, 87) 78 (69, 87) 83 (74, 93) <0.001†

SBP (mmHg) 133 (124, 142) 133 (124, 142) 135 (125, 142) 134 (124, 142) 132 (125, 138) 0.513†

DBP (mmHg) 69 (62, 77) 70 (63, 77) 68 (62, 78) 69 (63, 76) 67 (59, 75) 0.036†

Respiratory rate 18 (17, 20) 18 (16, 20) 18 (17, 20) 18 (16, 20) 19 (17, 21) <0.001†

(Continued)
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TABLE 1 (Continued)

Characteristics Overall (N = 939) Q1 (N = 234) Q2 (N = 236) Q3 (N = 234) Q4 (N = 235) p-value

Temperature (◦C) 36.9 (36.7, 37.2) 36.9 (36.7, 37.1) 36.9 (36.7, 37.2) 37.0 (36.8, 37.2) 37.0 (36.8, 37.3) 0.010†

SpO2 (%) 97 (96, 98) 97 (96, 98) 97 (96, 98) 97 (96, 98) 98 (96, 99) 0.001†

Outcomes

In-hospital ACM 149 (15.9) 19 (8.1) 32 (13.6) 27 (11.5) 71 (30.2) <0.001‡

28 days ACM 187 (19.9) 24 (10.3) 39 (16.5) 41 (17.5) 83 (35.3) <0.001‡

90 days ACM 240 (25.6) 38 (16.2) 52 (22.0) 55 (23.5) 95 (40.4) <0.001‡

1 year ACM 295 (31.4) 61 (26.1) 68 (28.8) 64 (27.4) 102 (43.4) <0.001‡

Q1 (SHR < 0.90), Q2 (0.90 ≤ SHR < 1.05), Q3 (1.05 ≤ SHR < 1.26), Q4 (SHR > 1.26).

SHR, stress hyperglycemia ratio; GCS, Glasgow Coma Scale; SOFA, Sequential Organ Failure Assessment; ICH, intracranial hemorrhage; CCI, Charlson comorbidity index; HF, Heart failure;

PVD, Peripheral vascular disease; COPD, chronic pulmonary disease; RBC, red blood cell count; Hb, hemoglobin; WBC, white blood cell count; PLT, platelet; BUN, blood urea nitrogen; INR,

international normalized ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; FBG, fasting blood glucose; HbA1c, glycated hemoglobin; HR, heart rate; SBP, systolic blood

pressure; DBP, diastolic blood pressure; SpO2 , saturation of peripheral oxygen; ACM, all-cause mortality.
†Kruskal–Wallis rank sum test.
‡Pearson’s Chi-squared test.

FIGURE 2

Kaplan–Meier survival analysis curves for (A) 28-day, (B) 90-day, and (C) 365-day all-cause mortality; stress hyperglycemia ratio (SHR) quartile 1 (SHR

< 0.90), quartile 2 (0.90 ≤ SHR < 1.05), quartile 3 (1.05 ≤ SHR < 1.26), and quartile 4 (SHR > 1.26).

0.001), 90 days (HR = 1.90, 95%CI: 1.37–2.65, p < 0.001), and 365

days (HR= 1.60, 95%CI: 1.19–2.14, p= 0.002). In contrast, the HRs

in the diabetic cohort demonstrated non-significant associations

across all follow-up intervals.

3.4 Establishment and validation of the
prediction model

Supplementary Figure S3 displays the results of Boruta’s

algorithm. Variables within the green area were identified as

important features and were used in the establishment of

the prediction model. Figure 5 shows the ROC curves of the

mortality prediction model. The AUC values were 0.771, 0.778,

and 0.778 for the 28-, 90-, and 365- intervals, respectively.

The calibration curves of each prediction model aligned well

with the reference line, suggesting good predictive performance

(Supplementary Figure S4). The DCA curves demonstrated net

benefits at 28, 90, and 365 days, suggesting robust clinical validity

for each model (Supplementary Figure S5).

4 Discussion

This study revealed that the SHR was associated with

both short- and long-term all-cause mortality in patients with

hemorrhagic stroke. Notably, a significant non-linear association

was observed between the SHR and all-cause mortality, featuring

an inflection point at 1.03. Furthermore, the SHR emerged as an

important risk factor for all-cause mortality. The predictive model,

which incorporated the SHR along with other established risk

factors, showed good performance.

This study highlighted the significant associations between

elevated SHR and increased all-cause mortality in patients with

hemorrhagic stroke at various time intervals (28, 90, and 365

days). This finding aligns with those of previous studies that

reported associations between the SHR and adverse outcomes

in stroke patients (10, 23, 24). The potential mechanisms

underlying how SHR contributes to these negative effects

are complex and multifaceted. First, SHR is thought to be

associated with increased oxidative stress and inflammatory

responses. Neutrophil-derived reactive oxygen species (ROS) can

activate the TLR4/MyD88/NF-κB pathway, promoting NLRP3
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TABLE 2 Cox proportional hazard ratios for ACM at 28, 90, and 365 days.

SHR Unadjusted model Adjusted model

HR 95% CI p-value HR 95% CI p-value

28 days ACM

Continues variable per unit 3.18 2.47–4.10 <0.001 3.06 2.20–4.26 <0.001

Quartile

Q1 Reference – – Reference – –

Q2 1.65 0.99–2.74 0.053 2.02 1.19–3.44 0.01

Q3 1.79 1.08–2.97 0.023 2.18 1.28–3.71 0.004

Q4 4.19 2.66–6.59 <0.001 4.53 2.75–7.46 <0.001

p for trend <0.001 <0.001

90 days ACM

Continues variable per unit 2.82 2.22–3.59 <0.001 2.54 1.87–3.43 <0.001

Quartile

Q1 Reference – – Reference – –

Q2 1.41 0.92–2.14 0.111 1.68 1.09–2.59 0.019

Q3 1.53 1.01–2.32 0.043 1.85 1.20–2.85 0.005

Q4 3.12 2.14–4.54 <0.001 3.29 2.19–4.95 <0.001

p for trend <0.001 <0.001

365 days ACM

Continues variable per unit 2.31 1.81–2.95 <0.001 2.09 1.56–2.78 <0.001

Quartile

Q1 Reference – – Reference – –

Q2 1.15 0.81–1.62 0.431 1.35 0.95–1.93 0.097

Q3 1.11 0.78–1.58 0.557 1.34 0.93–1.94 0.113

Q4 2.12 1.54–2.91 <0.001 2.25 1.60–3.17 <0.001

p for trend <0.001 <0.001

Q1 (SHR < 0.90), Q2 (0.90 ≤ SHR < 1.05), Q3 (1.05 ≤ SHR < 1.26), Q4 (SHR > 1.26).

SHR, stress hyperglycemia ratio; ACM, all-cause mortality; Adjusted model: adjusted for age, gender, diagnosis, hypertension, diabetes, COPD, CCI, SOFA scores, WBC, anion gap, bicarbonate,

BUN, calcium, chloride, potassium, APTT, and PLT.

FIGURE 3

Restricted cubic spline curve for (A) 28-day, (B) 90-day, and (C) 365-day all-cause mortality; Curves represent estimated adjusted hazard ratios;

shaded ribbons represent 95% confidence intervals; and red dot represents inflection point of the RCS curve; (A) The inflection point was identified at

SHR = 1.03, p-non-linear = 0.020; (B) The inflection point was identified at SHR = 1.03, p-non-linear = 0.038; (C) The inflection point was identified

at SHR = 1.03, p-non-linear = 0.598. HR, hazard ratio; CI, confidence interval; SHR, stress hyperglycemia ratio.
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FIGURE 4

Subgroup forest plot for 28-day all-cause mortality; adjusted for age, sex, diagnosis, hypertension, diabetes, COPD, hypertension, diabetes, CCI,

SOFA scores, WBC, anion gap, bicarbonate, BUN, calcium, chloride, potassium, APTT, and PLT. HR, hazard ratio; CI, confidence interval.

FIGURE 5

ROC curves of the prediction model for (A) 28-day, (B) 90-day, and (C) 365-day all-cause mortality. AUC, area under the curve; CI, confidence

interval.

inflammasome assembly and IL-1β maturation (25). This cascade

leads to endothelial dysfunction and neuronal apoptosis (26–

28). Second, hyperglycemia can activate specific enzymes, such

as protein kinase C and NADPH oxidase, further amplifying

reactive oxygen species production and inhibiting nitric oxide

synthase, leading to insufficient reperfusion and exacerbating

neuronal injury (29). Moreover, SHR can compromise the

structural integrity of blood vessels near the initial bleeding

site, enhancing the expression of factors such as nuclear factor

kappa B and matrix metalloproteinase-9 (30). These changes

may contribute to hematoma expansion (14), a well-established

predictive factor for poor prognosis in hemorrhagic stroke

patients. Additionally, SHR may downregulate Aquaporin-4, a

protein that helps prevent brain edema and protects blood-

brain barrier (BBB) integrity (31, 32). In ischemic stroke rats,

neutrophil-derived IL-1α/TNF induce Aquaporin-4 polarization to

perivascular astrocyte end-feet, disrupting water homeostasis (33).

This aggravates edema and blood-brain barrier (BBB) disruption.

Finally, hyperglycemia can directly increase blood-brain barrier

permeability, leading to edema and death of neuro-cells (34). Given

these mechanisms, strategies to control blood glucose levels, reduce

oxidative stress and inflammation, and protect BBB integrity could
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mitigate the negative effects of stress hyperglycemia and enhance

patient outcomes.

In this study, we identified a significant non-linear association

between the SHR and all-cause mortality at 28 and 90 days, with an

inflection point at 1.03. This result is consistent with the outcomes

reported by Liang et al. (15), who detected a similar inflection point

of 1.04 for SHR in relation to 30-day mortality among patients

with spontaneous intracerebral hemorrhage. The significance

of glucose monitoring and management as pivotal components

of comprehensive care for improving prognosis of hemorrhagic

stroke patients is widely acknowledged (35). Nevertheless,

the precise optimal range for blood glucose targets remains

elusive. Ma et al. (36) conducted a multinational, multicenter,

randomized controlled trial, and revealed that a bundled approach

incorporating blood glucose management positively impacted

6-month outcomes for patients with intracerebral hemorrhage.

Notably, their study set individualized blood glucose targets:

6.1–7.8 mmol/L for non-diabetic patients and 7.8–10.0 mmol/L

for those with diabetes. Similarly, Middleton et al. (37) conducted

a cluster randomized controlled trial, and demonstrated that a

multifaceted intervention targeting temperature, glucose levels,

and swallowing dysfunction led to improved outcomes in acute

stroke patients. However, they adopted a target of 8.0 mmol/L for

both diabetic and non-diabetic individuals. The aforementioned

studies have determined target blood glucose levels based solely

on absolute glucose values, which are inherently influenced by

diabetic status and insulin sensitivity, potentially leading to bias

in glycemic control. Consequently, the inflection points of SHRs,

which take both the absolute blood glucose value and background

glycemic level into account, may offer a new perspective on blood

glucose management. Our subgroup analysis further revealed

that diabetic patients had greater short- and long-term mortality

risks than non-diabetic patients. This disparity could stem from

diabetic patients’ increased tolerance to hyperglycemia, as well as

their routine insulin therapy, which may provide neuroprotective

benefits through its anti-inflammatory properties, mitigating brain

damage (38). Overlooking hyperglycemia in non-diabetic patients

may also contribute to this discrepancy (15).

This study is the first to evaluate the importance of the

SHR in predicting short- and long-term mortality risk in patients

with hemorrhagic stroke. The results of the Boruta algorithm

indicated that the SHR played a significant role in predicting all-

cause mortality in patients with hemorrhagic stroke, along with

other well-established risk factors, such as SOFA and GCS score.

Moreover, this result suggests that the SHR is not a definitive

decision factor, despite its importance in predicting mortality

risk. By incorporating other acceptable variables selected by the

Boruta algorithm, the models predicting all-cause mortality in

patients with hemorrhagic stroke exhibited good performance.

These findings align with previous studies in ischemic stroke.

For example, Huang et al. (39) conducted a systematic review

and meta-analysis that included 13 studies involving 184,179

acute ischemic stroke patients, and revealed that the SHR is

a risk factor for functional outcomes and mortality. Similarly,

Liang et al. (15) found SHR superior to admission blood

glucose in predicting mortality in spontaneous intracerebral

hemorrhage (ICH). Our study extends these observations by

demonstrating SHR’s predictive value in hemorrhagic stroke

including both intracerebral hemorrhage and subarachnoid

hemorrhage, while uncovering non-linear relationships between

SHR levels and mortality risk. Importantly, SHR’s accessibility and

cost-effectiveness make it a practical tool for risk stratification in

clinical settings.

However, this study is subject to several limitations. First,

the limited nature of its retrospective observational design makes

it impossible to establish causality. Although rigorous statistical

adjustments were applied, residual confounding from unmeasured

variables remains possible. Second, while EM algorithm was used

to impute missing data in key variables, the accuracy of imputed

values could not be clinically validated due to the lack of prospective

data collection protocols, particularly for time-sensitive parameters

such as blood glucose. Third, the use of blood glucose records from

the initial ICU admission day as fasting glucose, in the absence

of data to differentiate between random and fasting glucose levels,

may introduce bias into the study findings. Finally, this study only

used data from a single center, and the external validity of the

findings is limited.

5 Conclusion

In conclusion, the SHR is an important and reliable indicator

for mortality risk prediction in patients with hemorrhagic stroke.

The optimal threshold of the SHR identified in this study may

facilitate blood glucose monitoring and management and further

improve patient prognosis. Future research should focus on

conducting prospective, multicenter studies with larger cohorts to

evaluate the clinical validity of this SHR threshold across diverse

populations and healthcare settings. Such efforts will be crucial

for establishing causal relationships and developing standardized

clinical protocols.
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