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Introduction: Mitochondrial dysfunction and ferroptosis have been implicated 
in the pathophysiological processes following spinal cord injury (SCI), with 
evidence suggesting their interplay influences neuronal cell survival and repair 
mechanisms. This study seeks to identify mitochondria- and ferroptosis-related 
biomarkers through comprehensive bioinformatics analysis.

Methods: Mitochondria- and ferroptosis-associated differentially expressed genes 
(DEGs) were identified through the integration of differential expression analysis and 
weighted gene co-expression network analysis. Two machine learning algorithms, 
least absolute shrinkage and selection operator (LASSO) and Boruta, were employed 
to isolate SCI-associated feature genes. Biomarkers were subsequently identified 
by analyzing their expression levels. An artificial neural network (ANN) diagnostic 
model was constructed to predict SCI likelihood based on these biomarkers. 
Further evaluations were performed using enrichment analysis, immune infiltration 
profiling, molecular modulation assessment, and drug prediction. The biomarkers’ 
expression levels were validated using RT-qPCR.

Results: In this study, two biomarkers, Hcrt and Cdca2, linked to mitochondrial 
function and ferroptosis in SCI, were found to be highly expressed in SCI 
samples. Tissue-specific analysis from the GTEx database revealed expression of 
these biomarkers in brain and spinal cord tissues. The ANN model, constructed 
using these biomarkers, accurately discriminated between SCI and control 
samples. Enrichment analysis highlighted several co-enriched pathways for 
Hcrt and Cdca2, including “ubiquitin-mediated proteolysis,” “endocytosis,” and 
the “neurotrophin signaling pathway.” Immune infiltration analysis, based on 
the Wilcoxon test, demonstrated significant differences in T follicular helper 
cell levels, which were lower in SCI samples compared to controls. Notably, T 
follicular helper cells exhibited a positive correlation with Hcrt and a negative 
correlation with Cdca2. Furthermore, seven transcription factors, including 
CEBPB, FOXC1, and GATA2, were identified as potential co-regulators of Hcrt 
and Cdca2. Drug prediction analysis revealed stable interactions of Cdca2 with 
pinosylvin, zinc acetate dihydrate, hydroquinone, lucanthone, and dasatinib. 
RT-qPCR validation confirmed the expression patterns of Hcrt and Cdca2 in 
alignment with the dataset, showing statistically significant differences.

Discussion: This study identifies Hcrt and Cdca2 as biomarkers related to 
mitochondrial function and ferroptosis in SCI, providing new insights for the 
diagnosis and mechanistic understanding of SCI.
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Introduction

Spinal cord injury (SCI) represents a significant central nervous 
system disorder, typically resulting from external mechanical forces 
that compromise both the structural integrity and function of the 
spinal cord. Such disruption hinders motor, sensory, and reflex 
functions below the level of the lesion (1). Annually, 250,000 to 
500,000 individuals worldwide experience traumatic spinal cord 
injuries, with this incidence expected to rise due to increased 
transportation usage and an aging population (2). Current clinical 
management of SCI predominantly involves surgical and 
pharmacological approaches (3). While these strategies may 
alleviate some symptoms, they remain insufficient in restoring 
neurological function. Consequently, there is a critical need for 
novel therapeutic strategies to address this pressing 
medical challenge.

Mitochondria are double-membraned organelles that play a 
crucial role in various physiological functions such as adenosine 
triphosphate (ATP) synthesis, calcium ion homeostasis, 
apoptosis, and reactive oxygen species (ROS) production 
regulation (4). In the context of SCI, mitochondrial dysfunction 
contributes significantly to secondary pathological alterations 
and neuronal death. Research on SCI models increasingly 
emphasizes mitochondrial impairment as a central factor 
affecting cellular metabolism, immune responses, axonal 
regeneration, and the renewal and differentiation of neural stem 
cells (5, 6). Ferroptosis, an iron-dependent form of regulated cell 
death, is triggered by the leakage of red blood cells, heme, and 
iron into injured tissues, leading to the generation of free radicals 
and subsequent toxicity (7). Ferroptosis plays a substantial role 
in SCI pathogenesis, with its acute phase occurring within 2 days 
and the subacute phase extending from 3 to 14 days post-injury 
(8). Furthermore, ferroptosis contributes to oxidative damage in 
neuronal cells following SCI by disrupting the redox balance (9). 
As primary ROS producers, mitochondria generate reactive 
species that accumulate, driving ferroptosis (10). Iron imbalance 
further aggravates mitochondrial dysfunction, impairing energy 
metabolism and increasing disease susceptibility (11). Beyond 
its role in iron uptake, storage, and utilization, mitochondrial 
iron overload aggravates dysfunction and ROS production, 
thereby promoting ferroptosis. However, the specific 
contributions of mitochondrial and ferroptosis-related genes in 
SCI pathogenesis remain incompletely understood. Further 
investigation into the interactions between mitochondria, 
ferroptosis, and SCI may yield insights for developing targeted 
therapeutic strategies, including novel drugs and treatment 
approaches for SCI.

This study identified mitochondrial and ferroptosis-related 
biomarkers through bioinformatics analysis of SCI-associated 
data from public databases. qPCR validation was performed on 
spinal cord samples from a rat SCI model collected on the second 
(acute phase) and seventh (subacute phase) days post-surgery, 
corresponding to the sample types in the database validation set. 
Additionally, molecular mechanisms of these biomarkers were 
examined using enrichment analysis, immune infiltration analysis, 
and regulatory network analysis, offering novel perspectives on 
SCI clinical treatment.

Materials and methods

Animal modeling

In SCI experimental models, urinary dysfunction is a common 
complication in animals. Female rats are typically selected for SCI 
studies owing to their relatively short and straight urethra, which 
simplifies postoperative management and minimizes the likelihood of 
urinary tract infections. For this study, 18 female SPF-grade SD rats, 
aged 8 weeks and weighing approximately 220 ± 20 grams, were 
sourced from Zhuhai Baishitong Biotechnology Co., Ltd. The animals 
were housed under standardized conditions, including controlled 
temperature, humidity, and a consistent light–dark cycle, with 
unrestricted access to food and water.

The rats were randomly assigned to three experimental groups: a 
sham surgery group (n = 6), a 2-day post-SCI group (n = 6), and a 7-day 
post-SCI group (n = 6). A SCI impact model was established to replicate 
human SCI. All procedures were performed at the Experimental Animal 
Research Center of Zhujiang Hospital, Southern Medical University 
(license number: SYXK (Guangdong) 2023-0215). The study received 
approval from the Ethics Committee of Zhujiang Hospital, Southern 
Medical University (approval number: LAEC-2024-120; approval date: 
June 21, 2024). Establishing the SCI model is a fundamental step in 
neuroscience research. In this study, a precise spinal cord impact device 
was employed to induce SCI in rats. Following anesthesia with isoflurane 
to ensure pain relief and unconsciousness, the rats were positioned prone, 
and the dorsal hair was shaved to prepare the area for surgery.

The surgical procedure involved a midline incision approximately 
1.5 cm in length on the back. Using bony landmarks for guidance, the 
paraspinal muscles were dissected bluntly to fully expose the T10 
vertebral lamina. A laminectomy was subsequently performed at the 
T10 level to facilitate the creation of the SCI model.

The study employed the 68099II spinal cord precision impactor 
from Shenzhen Ruiwoerd Life Science and Technology Co., Ltd., 
which offers precise control over impact speed, depth, and dwell time, 
ensuring accurate SCI induction. The impactor settings included a size 
2 impact head, an impact velocity of 2 m/s, a depth of 1.2 mm, and a 
dwell time of 0.5 s. This controlled impact generated a significant 
hematoma at the targeted spinal segment.

Following SCI, the hematoma underwent dynamic changes over 
time. During the hyperacute phase, bleeding and inflammation 
exacerbated the hematoma, which gradually resolved in the later 
stages. This progression was typical of the natural course after SCI. The 
contusion also induced temporary involuntary spasms in the hind 
limbs and tail rigidity, serving as indicators of a successfully 
established and standardized SCI model.

Postoperatively, the muscles and skin were sutured in layers. To 
support the animals’ physiological function, manual bladder 
expression was performed three times daily for 1 week following the 
injury to ensure adequate urine elimination. In the sham group, rats 
underwent a laminectomy at the T10 level, preserving the spinal cord 
and maintaining normal BBB (Basso, Beattie, and Bresnahan) 
locomotor scores postoperatively.

At 2 and 7 days post-SCI, animals were anesthetized with a 40 mg/
kg intraperitoneal injection of 1% pentobarbital sodium. Following 
cardiac perfusion with phosphate-buffered saline, spinal cord samples 
were harvested for subsequent qPCR analysis.
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Data acquisition

The gene expression omnibus (GEO) database1 provided 
SCI-associated microarray expression profiles, specifically GSE109902 
and GSE166009. The GSE109902 dataset, derived from the GPL22396 
platform, included 20 spinal cord tissue samples from SCI rats and 10 
from control rats. The GSE166009 dataset, based on the GPL27597 
platform, contained 12 spinal cord tissue samples, consisting of nine 
from SCI rats and three from controls. Additionally, 1,136 
mitochondria-related human genes were obtained from the MitoCarta 
3.0 database2 and subsequently mapped to rat homologs, resulting in 
1,119 rat homologous genes (MRGs) (Supplementary Table S1). A 
total of 431 ferroptosis-related human genes retrieved from the 
literature were similarly converted to their rat homologs, yielding 437 
rat genes (FRGs) (Supplementary Table S2) (12).

Weighted gene co-expression network 
analysis

Expression data of MRGs and FRGs from the GSE109902 dataset 
were used to calculate single-sample gene set enrichment analysis 
(ssGSEA) scores via the GSVA package (v 1.42.0) (13). The Wilcoxon test 
was then applied to compare MRG and FRG scores between SCI and 
control groups (p < 0.05). A co-expression network was constructed using 
MRG and FRG scores as traits within the GSE109902 dataset through the 
weighted gene co-expression network analysis (WGCNA) package (v 
1.7.1) (14). Outlier samples were first removed using hierarchical 
clustering based on Euclidean distance. The scale-free network evaluation 
coefficient (R2) and mean connectivity were subsequently used to 
determine the optimal soft-threshold power (β). Genes exhibiting similar 
expression patterns were grouped into the same module using the hybrid 
dynamic tree cutting algorithm, with parameters set as 
minModuleSize = 20, deepSplit = 2, and mergeCutHeight = 0.15. 
Different colors were assigned to modules for visualization. A heatmap of 
trait-module correlations was generated, emphasizing modules 
significantly associated with both MRG and FRG scores (|cor| >0.3 and 
p < 0.05). Genes within these modules were identified as key module 
genes, strongly correlated with MRG and FRG scores.

Differential expression analysis and 
functional enrichment

Differentially expressed genes (DEGs) between SCI and control 
samples in the GSE109902 dataset were identified using the DESeq2 
package (1.34.0) (15), with thresholds set at |log2 Fold Change (FC)| >0.5 
and p < 0.05. A comprehensive visualization of DEG distribution was 
achieved by generating a volcano plot and heat map through the ggplot2 
package (v 3.4.1) (16) and ComplexHeatmap-package (v 2.14.0) (17). A 
Venn diagram, constructed with the VennDiagram package (v 1.7.1) (18) 
was used to identify overlapping genes between key modular genes and 
DEGs, which were then classified as candidate genes.

1 http://www.ncbi.nlm.nih.gov/geo/

2 http://www.broadinstitute.org/mitocarta

These candidate genes were subjected to Gene Ontology (GO) 
annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis via the clusterProfiler package (v 4.2.2) 
(19), with pathways exhibiting p < 0.05 considered statistically 
significant. The co-expression network of candidate genes was 
constructed by mapping the genes onto GeneMANIA.3

Machine learning algorithms and 
tissue-specific analysis

Two machine learning algorithms, least absolute shrinkage and 
selection operator (LASSO) and Boruta, were applied to identify feature 
genes associated with SCI from the candidate genes in the GSE109902 
dataset. For LASSO analysis, the glmnet package (v 4.1–4) (20) was 
employed, with a lambda value of 0 selected as optimal for feature gene 
selection. Boruta analysis was performed using the Boruta package (v 
8.0.0) (21) with default parameters. Subsequently, the common feature 
genes identified by both algorithms were determined through 
overlapping the results using the VennDiagram package (v 1.7.1).

Expression trends of the common feature genes were further compared 
between SCI and control samples in the GSE109902 and GSE166009 
datasets using the Wilcoxon test. Emphasis was placed on genes exhibiting 
stable expression, defined as those with consistent expression patterns 
across both datasets and significant differential expression between groups 
(p < 0.05), which were selected as biomarkers for this study.

To assess tissue specificity, gene expression levels were analyzed 
using the online tool genotype-tissue expression (GTEx, https://
gtexportal.org/home/).

Construction of artificial neural network

An artificial neural network (ANN) diagnostic model was 
developed to predict SCI likelihood based on the expression levels of 
identified biomarkers. After normalizing data from the GSE109902 
dataset, the model was constructed using the neuralnet package (v 
1.44.2) (22), employing the min-max method and configuring three 
hidden layers. To evaluate the model’s predictive accuracy, the receiver 
operating characteristic (ROC) curve was generated using the pROC 
package (v 1.18.0) (23). An area under the curve (AUC) exceeding 0.7 
was considered indicative of high accuracy.

Enrichment analysis of biomarkers

To elucidate the signaling pathways related to the biomarkers, 
GSEA was conducted on the GSE109902 dataset. Initially, Spearman 
correlation analysis was performed between the biomarkers and other 
genes across all samples using the psych package (v 2.1.6). Genes were 
then ranked based on their correlation coefficients, from highest to 
lowest. Concurrently, GSEA was carried out using the clusterProfiler 
package (v 4.2.2), with the “c2.cp.kegg.v7.4.symbols.gmt” gene set 
from the Molecular Signatures Database (MSigDB, http://www.

3 http://genemania.org/
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gsea-msigdb.org/gsea/msigdb/index.jsp) as the reference. The 
thresholds for statistical significance were set at adj. p < 0.05 and 
|Normalized Enrichment Score (NES)| >1.

Additionally, the biomarkers were analyzed using the 
GeneMANIA database (see text footnote 3) to predict genes associated 
with the biomarkers’ functions and the biological processes in which 
they participate.

Immune infiltration analysis

Immune cell infiltration plays a critical role in characterizing 
disease defense mechanisms, offering insights into the extent of 
immune involvement in specific pathologies. In this study, infiltration 
levels of 22 immune cell types were quantified in samples from the 
GSE109902 dataset using the CIBERSORT algorithm (24). 
Differential immune cell infiltration between SCI and control samples 
was then assessed via the Wilcoxon test (p < 0.05). Additionally, 
Spearman correlation coefficients were calculated to examine the 
relationships between the immune cell types, as well as between 
biomarkers and immune cell infiltration, based on the expression 
matrix of biomarkers and immune cell levels.

Correlation analysis with inflammatory 
factors

The SCI process is typically associated with the release of 
inflammatory factors (25). To explore the relationship between 
biomarkers and inflammatory factors, 200 inflammation-related 
genes (IRGs) were retrieved from the MSigDB database using the 
search term “HALLMARK_INFLAMMATORY_RESPONSE.” These 
200 IRGs formed the background gene set for subsequent analysis. 
ssGSEA was then conducted on the GSE109902 dataset via the 
GSVA package to calculate the IRG score for each sample. 
Differences in IRG scores between the SCI and control groups were 
assessed (p < 0.05). Additionally, the relationship between 
biomarkers and IRGs was examined by calculating Spearman 
correlation coefficients and their significance, with the thresholds set 
at |cor| >0.3 and p < 0.05.

Molecular regulatory network analysis

To investigate the regulatory factors targeting the biomarkers, 
upstream transcription factors (TFs) were identified through the 

miRNet database.4 Additionally, microRNAs (miRNAs) regulating the 
biomarkers were detected using miRecords,5 miRTarBase,6 and 
TarBase.7 The upstream long non-coding RNAs (lncRNAs) of the 
identified miRNAs were further explored in the same databases to 
elucidate the molecular mechanisms governing the biomarkers. 
Finally, the TF-biomarker and lncRNA-miRNA-mRNA (biomarker) 
networks were visualized using Cytoscape software (v 3.10.1) (26) 
based on the predicted results.

Drug prediction and molecular docking

Potential drugs targeting biomarkers were identified through an 
in-depth analysis of the Enrichr database8 to support drug prediction and 
inform therapeutic strategies for SCI. The relationship between 
biomarkers and drugs was further examined by obtaining biomarker 
protein structures from the Protein Data Bank (PDB) database.9 
Molecular docking was conducted using the Chemical and Biological 
Docking (CB-Dock) platform,10 focusing on interactions with binding 
energies below 5 kcal/mol, indicative of stronger biomarker-drug affinity. 
The docking results were subsequently visualized using PyMOL software 
(v 3.0.3) (27) to facilitate structural interpretation and analysis.

Real-time quantitative polymerase chain 
reaction

Spinal cord samples from T10 were collected at 2 and 7 days post-
SCI, immediately frozen, and stored at −80°C (six samples per group). 
Total RNA was extracted using TRIzol reagent (Thermo Fisher 
Scientific, Inc.) and reverse transcribed into complementary DNA 
(cDNA). Thermal cycling was performed under the following 
conditions: denaturation at 95°C for 30 s, annealing at 95°C for 3 s, 
and extension at 60°C for 30 s. GAPDH mRNA served as the 
endogenous control, and results were quantified using the 2 CT−∆∆  
method. The primers utilized in this study were listed in Table 1. Since 
the experiment involved comparing data from postoperative day 2 and 

4 https://www.mirnet.ca/

5 https://ngdc.cncb.ac.cn/databasecommons/database/id/1310

6 https://ngdc.cncb.ac.cn/databasecommons/database/id/167

7 https://dianalab.e-ce.uth.gr/tarbasev9

8 https://maayanlab.cloud/Enrichr/

9 https://www.rcsb.org/

10 https://cadd.labshare.cn/cb-dock2/php/index.php

TABLE 1 Primers of RT-qPCR used in this study.

Gene Primers forward (5′–3′) Product size (bp)

HCRT Forward: TTC TAC AAA GGT TCC CTG GG 20

Reverse: AAC AGT TCG TAG AGA CGG C 19

CDCA2 Forward: TCT CCA CAG TAA CCG TAG AG 20

Reverse: GGG AAG ATG ATG ACT TTC CTG 21

GAPDH Forward: ACT CTA CCC ACG GCA AGT TC 20

Reverse: TGG GTT TCC CGT TGA TGA CC 20

https://doi.org/10.3389/fneur.2025.1526966
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.mirnet.ca/
https://ngdc.cncb.ac.cn/databasecommons/database/id/1310
https://ngdc.cncb.ac.cn/databasecommons/database/id/167
https://dianalab.e-ce.uth.gr/tarbasev9
https://maayanlab.cloud/Enrichr/
https://www.rcsb.org/
https://cadd.labshare.cn/cb-dock2/php/index.php


Zhu et al. 10.3389/fneur.2025.1526966

Frontiers in Neurology 05 frontiersin.org

postoperative day 7 with the control group, we  selected one-way 
analysis of variance (one-way ANOVA) as the statistical 
analysis method.

Statistical analysis

Data processing and statistical analysis were conducted using R 
software (v 4.2.2). Group differences were assessed using the Wilcoxon 
test, with statistical significance set at p < 0.05.

Results

A total of 3,098 key module genes were 
obtained through WGCNA

The expression matrices of MRGs and FRGs in the GSE109902 
dataset revealed significant differences in both the MRGs and FRGs 
scores between the SCI and control groups, with the SCI group 
exhibiting a lower MRGs score and a higher FRGs score (p < 0.05) 

(Figures 1A,B), as determined by the ssGSEA algorithm. WGCNA 
was subsequently employed to identify gene clusters strongly 
associated with the MRGs and FRGs scores. Cluster analysis revealed 
no outlier samples. When the β-value was set to 11, the R2 surpassed 
0.85 (red line) and the mean connectivity approached zero, indicating 
optimal network consistency with a scale-free distribution and 
biological relevance (Figure  1C). Hierarchical clustering analysis 
identified 39 co-expression modules (excluding gray modules) 
(Figure  1D). Using a threshold of |cor| >0.3 and p < 0.05, four 
modules—MEblue, MEred, MEgreenyellow, and MEdarkmagenta—
were found to be significantly correlated with the MRGs and FRGs 
scores (Figure 1E). In total, 3,098 genes within these modules were 
identified as key module genes associated with both the MRGs and 
FRGs scores.

Elucidation of biological functions 
associated with eight candidate genes

Using the criteria of |log2FC| >0.5 and p < 0.05, 234 DEGs, 
consisting of 129 upregulated and 105 downregulated genes, were 

FIGURE 1

WGCNA analyses of MRGs and FRGs. (A,B) A comparison of ssGSEA scores for MRGs and FRGs. (C) Optimal threshold screening curve for network 
modules. (D) Gene-module clustered tree diagram. (E) Correlation heat map of the module with MRGs and FRGs.
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identified between SCI and control samples in GSE109902 
(Figures 2A,B). Overlapping 3,098 key modular genes with the DEGs 
revealed eight mitochondrial and ferroptosis-associated genes, 
designated as candidate genes: U4, AABR07048397.1, Hcrt, Rps18l1, 
Cdca2, SNORD115, RGD1560034, and Il1a (Figure 2C).

These candidate genes underwent enrichment analysis, resulting 
in 301 GO terms, including 280 biological processes (BPs), two 
cellular components (CCs), and 19 molecular functions (MFs), as well 
as 11 KEGG pathways (p < 0.05). The top  10 GO terms were 

predominantly related to “regulation of mitotic nuclear division,” 
“regulation of nervous system processes,” “temperature homeostasis,” 
“positive regulation of ion transport,” and “positive regulation of 
neutrophil extravasation,” among others (Figure 2D). KEGG analysis 
highlighted the involvement of candidate genes in “inflammatory 
bowel disease,” “graft-versus-host disease,” and “osteoclast 
differentiation,” among other pathways (Figure 2E).

Furthermore, a GeneMANIA database search identified 20 
functionally similar genes (e.g., Hertrl, Mki67, Hertr2), and a 

FIGURE 2

Identification of candidate genes and GO and KEGG enrichment analysis and GeneMANIA network construction. (A,B) Diagram of DEGs volcanoes and 
heat map. (C) Venn diagram of candidate genes. (D,E) GO and KEGG enrichment analysis. (F) GeneMANIA analysis of prognostic genes.
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co-expression network was constructed to elucidate their roles in various 
processes, including “regulation of interleukin 6 production,” “interleukin 
6 production,” and “cytokine-mediated signaling pathways” (Figure 2F).

Hcrt and Cdca2 were determined to 
be biomarkers in SCI

Two machine learning algorithms were employed to identify the 
most significant feature genes associated with SCI from the eight 
candidate genes. The Boruta algorithm highlighted five key genes (U4, 
AABR07048397.1, Hcrt, Rps18l1, Cdca2) based on feature importance 
(Figure  3A). In LASSO analysis, conducted at a lambdamin value of 
0.05360385, eight feature genes were selected: U4, AABR07048397.1, 
SNORD115, RGD1560034, Hcrt, Rps18l1, Il1a, and Cdca2 (Figure 3B). 
An overlap analysis between the two algorithms revealed five common 
feature genes: U4, AABR07048397.1, Hcrt, Rps18l1, and Cdca2 
(Figure 3C).

The expression level analysis revealed significant differences in 
the five genes between the SCI and control groups in the 
GSE109902 dataset (p < 0.05) (Figure  3D). Similarly, Hcrt and 
Cdca2 exhibited significant differential expression between groups 
in the GSE166009 dataset (p < 0.05) (Figure 3E). qPCR validation 
was performed on rat spinal cord tissue samples collected at days 

2 and 7 post-SCI surgery, showing a marked increase in the 
expression of both Hcrt and Cdca2 following the procedure. These 
results align with the expression patterns observed in the 
GSE166009 validation dataset, confirming the reliability of the 
screening process (Figure  3F). Notably, both Hcrt and Cdca2 
demonstrated elevated expression in SCI samples compared to 
control samples across the two datasets. However, no expression of 
U4, AABR07048397.1, or Rps18l1 was detected in the GSE166009 
dataset. Consequently, Hcrt and Cdca2 were selected as biomarkers 
for subsequent analyses.

Biomarkers specifically expressed in brain—
spinal cord

The GTEx database was utilized to assess the expression levels of the 
two biomarkers across various tissues under physiological conditions. 
Hcrt exhibited higher expression in the brain, particularly in regions 
such as the hypothalamus, nucleus accumbens, frontal cortex, amygdala, 
and spinal cord (Figure 4A). In contrast, Cdca2 was predominantly 
expressed in tissues like the testis, EBV-transformed lymphocytes, 
cultured fibroblasts, and esophageal mucosa (Figure  4B). Notably, 
Cdca2 was also detectable in the brain, with the highest expression 
observed in the spinal cord.

FIGURE 3

Hcrt and Cdca2 were determined to be biomarkers in SCI. (A) Boruta’s algorithm identifies candidate trait genes. (B) Cross-validation of LASSO 
regression analyses and spectrogram of LASSO coefficients. (C) Feature genes Venn diagram, with green representing the feature genes identified by 
lasso and red representing the feature genes identified by Boruta. (D) Expression profiles of candidate biomarker genes in GSE109902 (p < 0.05). 
(E) Expression status of candidate biomarker genes in GSE166009 (p < 0.05). (F) qPCR results of Hcrt and Cdca2 genes in the injured spinal cord and 
normal samples (*p < 0.05, **p < 0.01, and ***p < 0.001).
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Building an effective artificial neural 
network for diagnosing SCI

An ANN model was developed using the GSE109902 dataset to 
improve differentiation between SCI and control samples by 
integrating the expression of two biomarkers (Figure 4C). The ROC 
curve yielded an AUC value of 0.775, suggesting that the ANN model 
exhibited robust accuracy in predicting SCI (Figure 4D).

Elucidating the biological mechanisms of 
biomarkers

The potential biological mechanisms of the biomarkers were 
analyzed using GSEA, identifying 19 enriched pathways for Hcrt and 
16 for Cdca2 (adj. p < 0.05 and |NES| >1). Shared enriched pathways 
included “ubiquitin-mediated proteolysis,” “endocytosis,” and the 
“neurotrophin signaling pathway” (Supplementary Tables S3, S4). 

FIGURE 4

Tissue-specificity analysis and construction of artificial neural networks. (A) Tissue-specificity analysis network diagram for biomarker Hcrt, with the 
yellow portion of the diagram representing the brain-spinal cord region. (B) Tissue-specificity analysis network diagram for biomarker Cdca2, with the 
yellow portion of the diagram representing the brain-spinal cord region. (C) Artificial neural network model prediction. (D) The ROC curve of the 
artificial neural network model, with an AUC greater than 0.7, indicating a high prediction accuracy.
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Cdca2 was also associated with pathways such as “oxidative 
phosphorylation,” “cytokine-cytokine receptor interaction,” “inositol 
phosphate metabolism,” and “sphingolipid metabolism” (Figure 5A). 
Hcrt expression showed significant correlations with the “ErbB 
signaling pathway,” “insulin signaling pathway,” “mTOR signaling 
pathway,” and “primary immunodeficiency,” among others. The top five 
pathways for each biomarker were visualized according to pathway 
significance (Figure 5B).

Additionally, co-expressed gene networks for the biomarkers 
were constructed using the GeneMANIA platform, comprising 
39.02% co-expression, 25.61% physical interactions, 21.99% 
predicted interactions, 8.15% pathways, 2.86% co-localization, and 
2.37% shared protein domains (Figure 5C). Both biomarkers were 
linked to 20 functionally related genes (e.g., Mki67, Hcrtr1, 

Hcrtr2), participating in biological processes such as “hormone 
activity,” “chromosome segregation,” and “mitotic spindle” 
organization.

Biomarkers were linked to immune 
infiltrating cells in SCI

The infiltration levels of 22 immune cell types in each sample from 
the GSE109902 dataset were calculated using the CIBERSORT 
algorithm, as illustrated in Figure 6A. The Wilcoxon test revealed 
significant differences in T follicular helper cell levels between SCI and 
control samples, with lower levels observed in SCI samples (p < 0.05) 
(Figure 6B). Correlation analysis indicated that T follicular helper cells 

FIGURE 5

Signaling pathways and potential biological mechanisms involved by biomarkers and the construction of Gene MANIA networks. (A,B) GSEA 
enrichment analysis of biomarkers. (C) GeneMANIA network diagram.
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were negatively associated with naive CD4+ T cells (cor = −0.51, 
p = 0.004), activated mast cells (cor = −0.53, p = 0.003), and resting 
memory CD4+ T cells (cor = −0.63, p < 0.001) (Figure  6C). 

Biomarker-immune cell correlation analysis further demonstrated a 
positive association between T follicular helper cells and Hcrt, 
alongside a negative association with Cdca2 (Figure 6D).

FIGURE 6

Immune infiltration analysis of biomarkers and analysis of correlation with inflammatory factors. (A) Immune cell infiltration between SCI and control 
groups. (B) Differences in immune cells between SCI and controls. (C) Correlation between immune cells. (D) Correlation between biomarkers and 
immune cells. (E) ssGSEA scores of inflammation-related genes in SCI samples and normal samples. (F) Correlation between biomarker and immune 
cells.
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Biomarkers were linked to inflammatory 
factors in SCI

The inflammatory response plays a key role in the pathophysiology 
of SCI, with immune factors critically influencing its development and 
progression. The relationship between two specific biomarkers and 
200 IRGs was assessed. Analysis using the ssGSEA algorithm revealed 
a significant difference in IRG scores between SCI and control samples 
in the GSE109902 dataset (p < 0.05), with higher scores detected in 
the SCI samples (Figure 6E). Correlation analysis showed that Hcrt 
exhibited significant positive correlations with 10 IRGs (e.g., KLF6, 
RAF1, LY6E), while Cdca2 demonstrated significant positive 
correlations with six IRGs (e.g., IL1R1, ATP2B1, PSEN1) and 
significant negative correlations with two IRGs (BST2 and IL1B) (|cor| 

>0.3, p < 0.05) (Figure  6F). Notably, both Hcrt and Cdca2 were 
strongly positively correlated with PSEN1.

Potential regulatory mechanisms of 
biomarkers

Analysis of the miRNet database identified 110 TFs regulating the 
biomarkers, among which seven TFs (CEBPB, FOXC1, GATA2, 
HNF4A, REST, and SP1) were recognized as co-regulators of Hcrt and 
Cdca2 within the TF-biomarker network (Figure 7A). Additionally, 
predictions from individual databases identified 54 miRNAs targeting 
the biomarkers and 533 lncRNAs targeting these miRNAs. Within the 
lncRNAs-miRNAs-mRNAs network, numerous interaction pairs were 

FIGURE 7

Molecular regulatory network of biomarkers and predicted targeted candidate drugs. (A) Biomarkers-TFs regulatory networks. (B) Biomarker-miRNA-
lncRNA regulatory network. (C) Biomarker-drug association network diagram. (D–G) Molecular docking results.

https://doi.org/10.3389/fneur.2025.1526966
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhu et al. 10.3389/fneur.2025.1526966

Frontiers in Neurology 12 frontiersin.org

observed (Figure  7B). For instance, lncRNAs such as MALAT1, 
NEAT1, and XIST were predicted to regulate Hcrt expression via 
hsa-miR-30a-5p, while MALAT1 and XIST were also linked to the 
regulation of Cdca2 expression through miRNAs like hsa-miR-124-3p 
and hsa-miR-132-3p. These interactions suggest potential therapeutic 
targets for SCI.

Profiling drugs associated with biomarkers

Drug prediction via the Enrichr database identified five potential 
candidates associated with Cdca2: pinosylvin, zinc acetate dihydrate, 
hydroquinone, lucanthone, and dasatinib (Figure 7C). Notably, no 
drugs were predicted to interact with Hcrt. Molecular docking analysis 
demonstrated that all four drugs exhibited binding energies to Cdca2 
below −5 kcal/mol (Table  2), suggesting stable interactions. The 
docking patterns of these four drugs with Cdca2 were subsequently 
visualized (Figures 7D–G).

Discussion

SCI represents a severe neurological and pathological condition 
characterized by extensive motor, sensory, and autonomic 
impairments (1). Progress in its treatment remains constrained due to 
the complex interplay of its temporospatial pathological mechanisms, 
which are intricately connected and challenging to define with 
precision. The limited capacity for neural regeneration continues to 
present significant hurdles, with no effective strategies yet available to 
overcome this bottleneck (28). Secondary injuries following SCI are 
closely associated with mitochondrial dysfunction and ROS 
production (29). Ferroptosis, an iron-dependent cell death mechanism 
marked by lipid peroxidation and disruptions in iron metabolism, is 
critically influenced by mitochondrial ROS, which promote lipid 
peroxidation and may trigger ferroptosis (30). Despite these insights, 
the molecular mechanisms underlying mitochondrial dysfunction and 
ferroptosis in SCI remain poorly understood. To address this, the 
study identified two biomarkers, Hcrt and Cdca2, linked to 
mitochondrial dysfunction and ferroptosis, through transcriptomic 
analysis of SCI models combined with bioinformatics approaches. 
Additional analyses, including GSEA, immune infiltration, and drug 
prediction, were performed. These results offer valuable insights into 
the pathogenesis of SCI and provide a foundation for developing 
innovative therapeutic strategies to improve patient outcomes.

The Hcrt gene encodes orexin, also known as hypocretin, first 
identified in 1998 by Lecea at the Scripps Research Institute and 
Sakurai at Southwestern Medical Center in Texas cloned the gene 
expressed in the lateral hypothalamus of rats, identifying a 
neuropeptide structurally similar to secretin and naming it hypocretin 
(31). Neuropeptides, a class of peptides synthesized by neurons and 
neuroendocrine cells in the central nervous system, bind to specific 
surface receptors to regulate neuronal activity. Their role in SCI 
primarily involves influencing neuronal function and survival. In the 
context of SCI, neuropeptides modulate neuronal excitability, synaptic 
plasticity, and synchronized neural activity, thereby impacting 
functional recovery (32). Hcrt is hypothesized to regulate SCI recovery 
by modulating neuropeptide signaling pathways, offering novel 
perspectives and potential therapeutic strategies for SCI treatment.

Cdca2 functions as a regulatory factor in cell cycle progression 
and acts as a subunit of phosphatase 1γ (PP1γ), contributing to critical 
cellular processes such as chromosome segregation, nuclear envelope 
reconstruction, microtubule organization, and DNA damage repair 
(33). In the context of SCI, cell cycle regulation significantly influences 
post-injury repair and regeneration. Alterations in the cell cycle after 
SCI are closely associated with neuronal survival, regeneration, and 
glial cell responses (34). Neuronal regenerative capacity is inherently 
limited after SCI, largely because mature neurons typically remain in 
the G0 phase, restricting their ability to re-enter the cell cycle for 
division and repair. Additionally, glial scar formation, a major barrier 
to axonal regeneration, is linked to glial cell proliferation and cell cycle 
regulation (35). Further investigation is required to clarify the specific 
role of Cdca2  in modulating cell cycle dynamics following 
SCI. CDCA2 can activate the BRCA1-NRF2 signaling pathway (36). 
This cascade reaction enhances cellular antioxidant capacity and 
effectively reduces the content of reactive oxygen species, thus 
highlighting the complex role of CDCA2 in regulating cellular redox 
homeostasis. Its mechanism is not only reflected in direct participation 
in the production and removal of ROS but also in the activation of 
downstream antioxidant signaling pathways, thereby maintaining 
intracellular redox balance and potentially influencing mitochondrial 
function and ferroptosis processes, ultimately impacting SCI. To date, 
no research has been published investigating the roles of Hcrt and 
Cdca2 in spinal cord injury. The next step involves validating these 
findings across various species to deepen our understanding of this 
critical area of study.

GSEA enrichment analysis identified significant enrichment of 
Hcrt in the neurotrophin and ErbB signaling pathways, while Cdca2 
was prominently associated with the oxidative phosphorylation and 

TABLE 2 The binding energy between biomarkers and active ingredients.

Gene Protein PBD ID Molecular name Minimum binding free 
energy (kcal/mol)

CDCA2 Cell division cycle-associated 

protein 2

5INB Pinosylvin −6.6

CDCA2 Cell division cycle-associated 

protein 2

5INB Hydroquinone −5.0

CDCA2 Cell division cycle-associated 

protein 2

5INB Lucanthone −6.6

CDCA2 Cell division cycle-associated 

protein 2

5INB Dasatinib −8.1
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mTOR signaling pathways. The Hcrt gene, encoding orexin, is 
enriched in the ErbB signaling pathway, suggesting a potential role in 
the transformation of oligodendrocyte precursor cells and 
spontaneous remyelination following SCI, thereby contributing to its 
progression (37). The mTOR pathway, regulated by the mammalian 
target of rapamycin, is linked to the modulation of inflammation, 
apoptosis, and autophagy in SCI (38). Moreover, natural compounds 
derived from herbs and nutritional supplements may influence 
autophagy by targeting the mTOR pathway, presenting a potential 
therapeutic avenue in SCI management (39, 40). The association of 
Cdca2 with the oxidative phosphorylation pathway suggests its 
involvement in SCI progression through the regulation of 
mitochondrial respiration and oxidative phosphorylation (41). This 
analysis establishes a basis for exploring the roles of Hcrt and Cdca2 in 
SCI pathophysiology and highlights potential therapeutic 
interventions targeting these pathways.

The immunological analysis identified a significant reduction in T 
follicular helper cells (Tfh) in the SCI group compared to controls. 
SCI-induced immune deficiency syndrome (SCI-IDS), marked by 
systemic immunosuppression following SCI, substantially elevates the 
risk of infection and complicates therapeutic interventions. Research on 
the immune microenvironment emphasizes the role of Tfh cells in 
maintaining and refining immune system functionality. Evidence 
indicates that acute SCI downregulates CCR7  in peripheral tissues, 
reducing Tfh cell levels via chemokine signaling pathways, thereby 
contributing to SCI-IDS and worsening acute SCI (42). These results 
imply that Hcrt may influence immune responses through Tfh cells, 
thereby impacting SCI progression. Correlation analysis with 
inflammatory factors identified significant associations between the 
biomarkers and the inflammatory gene PSEN1. Mutations in PSEN1 have 
been implicated in atypical Alzheimer’s disease (AD) and non-AD 
phenotypes, including frontotemporal lobar degeneration (FTD), 
Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and spastic 
paraplegia (SP) (43). PSEN1, a component of the γ-secretase complex, 
regulates APP cleavage and may also modulate processes such as Notch 
signaling, β-catenin processing, and calcium homeostasis (44). Further 
investigation is needed to clarify the role of PSEN1 in SCI and its potential 
as a mediator in the onset and progression of the condition.

An mRNA-miRNA-lncRNA network was constructed, identifying 
54 miRNAs (e.g., miR-126, miR-132, miR-124) as potential regulators 
of the biomarkers, implicating their involvement in the post-
transcriptional regulation of gene expression associated with 
SCI. Among them, miR-126 has been shown to promote angiogenesis 
and inhibit vascular inflammation in endothelial cells by targeting 
genes such as SPRED1, PIK3R2, and VCAM1, highlighting its 
regulatory role in vascular repair and inflammation following SCI 
(45). Additionally, miR-124 not only activates macrophages but also 
promotes their polarization from the M1 to the M2 phenotype, 
sustaining the M2 phenotype through enhanced miR-124 expression. 
This positions miR-124 as a key modulator of microglia/macrophage 
activity in the central nervous system. Evidence indicates that 
miR-124-3p, interacting with neuron-derived exosomes, suppresses 
M1 microglia activation via the MYH9/PI3K/AKT/NF-κB signaling 
pathway, contributing to improved functional recovery after SCI (46).

This study identified 533 lncRNAs, including MALAT1, NEAT1, 
and XIST. Evidence suggests that MALAT1 interacts with Nrf2 to 
suppress neuron apoptosis associated with SCI (47). Additionally, 
NEAT1 silencing has been shown to mitigate spinal cord injury and 

decrease cavity formation by upregulating miR-29b (48). Knockdown of 
NEAT1 also significantly attenuated SCI-related inflammation via the 
miR-211-5p/MAPK1 axis. Furthermore, the analysis revealed that 
lncRNAs such as MALAT1, NEAT1, and XIST regulated Hcrt expression 
through hsa-miR-30a-5p, while MALAT1 and XIST modulated Cdca2 
expression via miRNAs such as hsa-miR-124-3p and hsa-miR-132-3p. 
Experimental validation remains necessary to substantiate these results.

Analysis using the Enrichr database identified five potential drugs 
interacting with Cdca2: pinosylvin, zinc acetate dihydrate, hydroquinone, 
lucanthone, and dasatinib. Molecular docking was performed to evaluate 
these interactions, with dasatinib demonstrating the lowest binding 
energy to Cdca2, indicative of the strongest intermolecular interaction. 
Dasatinib, an oral second-generation tyrosine kinase inhibitor, is widely 
used for treating Philadelphia chromosome-positive (Ph+) chronic 
myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) 
(49). Beyond its established applications, dasatinib has been reported to 
modulate the LPS-induced neuroinflammatory response in microglia 
and astrocytes by inhibiting the AKT/STAT3 signaling pathway (50). 
Additionally, recent studies suggest that combining dasatinib with 
quercetin reverses senescence in LPS-stimulated primary cultured 
astrocytes and decreases pro-inflammatory cytokine levels. This 
combination has shown efficacy in alleviating spinal cord 
neuroinflammation and reducing hypersensitivity in a rat model of 
chronic constriction injury of the sciatic nerve (51).

Modulation of immune cell activity, including microglia and 
astrocytes, by dasatinib may contribute to mitigating neuroinflammatory 
responses, a key factor in the pathological progression of SCI. As a 
potential anti-inflammatory agent, the therapeutic potential of dasatinib 
for SCI and its association with mitochondrial dysfunction and 
ferroptosis warrant further investigation. This study primarily examines 
the role of ferroptosis during the acute and subacute phases, specifically 
on the 2nd and 7th days post-SCI. Future investigations should 
prioritize comprehensive evaluation of the pharmacological efficacy and 
safety profiles of these agents in SCI management, with particular 
emphasis on establishing methodological frameworks to assess their 
clinical viability as potential therapeutic candidates.

This study identifies Cdca2 and Hcrt as biomarkers linked to 
mitochondrial function and ferroptosis in SCI, utilizing 
transcriptomic data, machine learning algorithms, and qPCR 
validation. The expression patterns of these biomarkers align with 
the dataset results, with statistically significant differences, 
confirming their relevance in SCI pathology. These findings offer 
valuable reference points and potential therapeutic targets for SCI 
treatment. Notably, ferroptosis may initiate within the first 2 h 
post-SCI, highlighting the importance of investigating earlier time 
points to elucidate its induction mechanisms. Additionally, the 
differential sensitivity of neural cell types to ferroptosis and the 
expression patterns of DEGs within these cells remain unexplored. 
Further research should focus on cell-specific ferroptosis sensitivity 
and its implications to uncover the distinct contributions of 
various neural cell types in SCI progression.
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