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Introduction: Accurate prediction of the prognostic outcomes for patients 
with ischemic stroke can contribute to personalized treatment decisions and 
improve life-saving outcomes. This study focuses on the performance of critical 
moments DSC-PWI in the prognostic prediction of acute ischemic stroke (AIS). It 
aims to integrate this with perfusion parameters to enhance prediction accuracy.

Methods: Firstly, The radiomics technique employed to extract DSC-PWI features 
of critical moments and perfusion parameter features. Following this, a T-test 
and Lasso algorithm was used to select features associated with the prognosis. 
Subsequently, machine learning techniques were applied to predict the predictive 
outcomes of AIS patients.

Results: The experimental results showed that DSC-PWI sequences at three critical 
time points—the first moment after contrast injection, the moment of minimum 
mean time intensity, and the last moment, collectively referred to as 3PWI, had better 
prognostic prediction than a single perfusion parameter, achieving an optimal model 
AUC of 0.863. The performance improved by 23.9, 19.6, 6, and 24% compared 
with CBV, CBF, MTT, and Tmax parameters. The best prognostic prediction for AIS 
was obtained by integrating the radiomic features from both 3PWI and perfusion 
parameters, resulting in the highest AUC of 0.915.

Discussion: Integrating the radiomics features of DSC-PWI sequences of three 
critical scan time points with those from perfusion parameters can further improve 
the accuracy of prognostic prediction for AIS patients. This approach may provide 
new insights into the prognostic evaluation of AIS and provide clinicians with 
valuable support in making treatment decisions.
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1 Introduction

Acute Ischemic Stroke (AIS) is a sudden blockage in the 
intracranial blood vessels that disrupts the brain’s blood circulation. 
This disruption leads to varying degrees of tissue damage and necrosis 
in the affected area, forming two key regions: the infarct core and the 
ischemic penumbra (1). The infarct core causes brain tissue necrosis 
due to prolonged ischemia and hypoxia, resulting in irreversible 
damage (2). In the ischemic penumbra, brain cells retain partial 
function due to limited blood flow supplied by collateral vessels. 
However, if the blood supply continues to be insufficient, the cells may 
gradually die. Therefore, timely reperfusion of the blood vessels in the 
ischemic penumbra is crucial and is expected to improve patient 
outcomes. However, there may be a certain degree of prognostic risk 
such as hemorrhage (3). Therefore, individualized treatment strategies 
are necessary for patient recovery. Accurately predicting a patient’s 
prognosis can help physicians more accurately evaluate the treatment 
effect, make individualized treatment decisions for patients, and 
reduce the risk of poor treatment outcomes.

In clinical analysis, the modified Rankin scale (mRS) is clinicians’ 
most commonly used metric to report overall disability in stroke 
patients. It has been formally recommended for use in acute stroke 
clinical trials by regulatory agencies and clinical trial methodology 
consensus groups (4). The scale was adapted by Charles Warlow and 
others from the Rankin Scale in the 1980s (5). It measures a patient’s 
ability to live independently, encompassing physical function, 
mobility, and participation in daily life. A score of 0–2 is often 
considered a good prognosis; a score of 3–6 is a poor prognosis (6, 7). 
Although there are clear definitions for each level, the specific scores 
are derived from the physician’s experience by asking the patient 
through telephone follow-up, which is highly subjective, and the 
telephone questioning needs to rely on the patient’s self-representation, 
which may be  subject to bias. These potential factors can affect 
physicians’ assessment of the prognosis of AIS patients. Thus, a more 
objective means of analyzing the prognosis of AIS is needed.

In terms of examination cost and scanning time, computed 
tomography perfusion (CTP) has long been considered the most 
suitable choice for patients with acute stroke. However, with 
advancements in MRI speed, concerns about radiation exposure and 
the use of iodinated contrast agents (which are contraindicated in 
patients with a history of allergic reactions or renal insufficiency) have 
prompted considerations of alternative imaging methods (8). 
Dynamic Susceptibility Contrast-Perfusion Weighted Imaging (DSC-
PWI) is currently one of the most commonly used PWI techniques 
for assessing cerebral perfusion (9). Its fundamental principle relies 
on the local magnetic field inhomogeneity induced by a paramagnetic 
contrast agent as it passes through cerebral vasculature after 
intravenous injection. This leads to varying degrees of T2* signal 
attenuation proportional to the concentration of the contrast agent, 
allowing dynamic monitoring of signal intensity to reflect cerebral 
blood flow changes. DSC-PWI offers a temporal resolution of 
approximately 0.5–2 s, which is significantly higher than that of 
Arterial Spin Labeling (ASL), typically ranging from 1 to 4 s. This 
higher temporal resolution enables real-time, detailed recording of the 
T2* signal decay process and facilitates the capture of rapid cerebral 
blood flow changes. By applying mathematical modeling to signal 
variations allows obtaining the perfusion parameter maps, including 
Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Mean 

Transit Time (MTT), Time to Peak (TTP), and Time to Peak of 
Residual Function (Tmax). These parameters provide information 
about cerebral blood supply and perfusion, which is critical for 
understanding brain function, disease diagnosis, and therapeutic 
regimens development. Many current studies have explored the 
correlation between perfusion parameter maps and prognostic 
outcomes in AIS. For example, Park et al. (10) demonstrated that a 
reduction in rCBV ratio was associated with a poor prognosis in AIS 
in 58 patients undergoing intravenous thrombolysis, and Schaefer 
et al. (11) found that an MTT lesion of less than 50 mL had a better 
performance in predicting a good prognosis for patients. The results 
of these studies confirm the potential of perfusion parameters in the 
prognostic prediction of AIS. However, they have analyzed prognosis 
through statistical methods, with few studies utilizing radiomics 
features of perfusion parameters to construct prognostic models.

In addition to perfusion parameter maps, numerous studies have 
utilized information from CT and MRI images to construct prognostic 
prediction models for AIS through machine learning (ML) and deep 
learning (DL) methods (12–14). However, few studies have analyzed 
the ability of 4D perfusion sequences for AIS prognostic prediction. 
Meng et  al. (15) generated four perfusion parameters (CBV, CBF, 
MTT, and TTP) from PWI to predict the prognosis of AIS patients 
with or without hemorrhage. After combining the clinical factors, the 
prediction accuracy reached 89.4%. The generated perfusion 
parameter maps are more targeted to utilize the cerebral hemodynamic 
information but ignore the time-dimensional and rich anatomical 
information of the 4D perfusion sequence. Some researchers have also 
used spatiotemporal convolutional networks to obtain the time-
dimensional features of the 4D CTP (16). However, the features 
obtained with DL techniques cannot provide the corresponding 
meanings and will suffer from the problem of poor interpretability. 
Guo et  al. (17) extracted whole-brain Radiomics features for all 
sequences of DSC-PWI to prognostic prediction of AIS, and the best 
Area Under the Curve (AUC) obtained was 82.8%. Although this way 
of analyzing all sequence features ensured comprehensive information, 
it also brought about problems of high computational volume and 
tedious tasks. In summary, to ensure the preservation of some 
temporal information while reducing the computational cost, the 
present study took radiomics technology to feature quantification of 
the DSC-PWI sequences at three representative time points as well as 
the perfusion parameters obtained by post-processing and then 
constructed a prognostic prediction model for AIS using the ML 
model, which is expected to become a new clinical auxiliary tool.

In conclusion, this study investigated the roles of DSC-PWI 
sequences at different scanning time points. It also assessed the impact 
of individual perfusion parameters (Cerebral Blood Volume [CBV], 
Cerebral Blood Flow [CBF], Mean Transit Time [MTT], and Time to 
Peak [Tmax]) as well as their combinations on the prognostic 
prediction of Acute Ischemic Stroke (AIS). Our findings aim to assist 
clinicians in making informed treatment decisions, developing 
personalized treatment plans for patients, and providing new ideas for 
clinical research. The main contributions of the research fall in the 
following three key areas.

 (1) Six groups of radiomics features of DSC-PWI images at 
different key time points were used to construct different 
prediction models. The impact of time point selection on the 
prediction effect was compared. Ultimately, it was confirmed 
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that the selection of radiomics features of DSC-PWI sequences 
at three key time points has better prediction performance, 
which can reduce the computational complexity while 
ensuring accuracy.

 (2) To explore the performance of the four perfusion parameters 
(CBV, CBF, MTT, and Tmax) obtained by post-processing on 
the prediction aspect of AIS results, the prediction performance 
of a single parameter and the prediction performance of the 
combination of the four parameters were explicitly analyzed. 
The results confirmed that combining these parameters can 
effectively improve prediction accuracy.

 (3) The best prediction model was constructed by integrating 
source features derived from DSC-PWI sequences at three key 
time points and parameter features obtained from four 
perfusion parameter maps. The approach confirmed that the 
information on DSC-PWI sequences and perfusion parameters 
was complementary, highlighting the significant prognostic 
value inherent in the DSC-PWI sequences.

2 Materials

The dataset for this study was provided by the neurology 
department of the Shanghai Fourth People’s Hospital, affiliated with 
the Tongji University School of Medicine, China. The dataset was 
retrospectively analyzed and included DSC-PWI images of 537 AIS 

patients from 2013 to 2019. All DSC-PWI sequences were approved 
by the Hospital Ethics Committee for ethical certification. For MR 
perfusion imaging, the contrast agent Gd-DTPA (Gadopentetate 
Dimeglumine, Shanghai Pharmaceutical Company, China) was 
infused intravenously at a rate of 4 mL/s at a dose of 0.2 mmol/kg 
according to the patient’s body weight, and a saline flush of 30 mL was 
given at the same flow rate. The patient’s inclusion and exclusion 
criteria were as follows (Figure 1): (1) The MR examinations were 
conducted within 24 h of symptom onset; (2) the presence of the 
middle cerebral artery (M1 segment) occlusion; (3) availability of 
complete clinical report including mRS score; (4) and availability of 
complete MR imaging sequences (DSC-PWI, CBV, CBF, MTT, and 
Tmax). A total of 72 AIS patients’ DSC-PWI images were selected for 
this study. Based on the 90-day mRS score obtained through telephone 
follow-up, the patients were categorized into two groups: 39 with a 
good prognosis (mRS ≤ 2) and 33 with a poor prognosis (mRS > 2).

Further statistical information of the patients and the scanning 
parameters of the DSC-PWI sequence are provided in Table 1. All 
DSC-PWI sequences were scanned on a 1.5-Tesla MR scanner 
(Siemens, Munich, Germany). The matrix size of each scan was 
256 × 256, the number of slices was 19 or 20, the slice thickness was 
5 mm, the slice spacing was 6.5 mm, the echo time (TE) was set to 
32 ms, and the repetition time (TR) was 1,590 ms. The pixel bandwidth 
was 1,347 Hz/pixel, and the field of view (FOV) was 230 × 230 square 
millimeters to capture medium-sized regions of interest. Each 
sequence had a temporal resolution of 1.59 s, with a total of 50 

FIGURE 1

Flowchart of exclusion and inclusion of patients in our study. SWI, susceptibility weighted imaging; MRA, magnetic resonance angiography; NIHSS, 
National Institute of Health stroke scale.
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sequences acquired. The study included 72 patients with a mean age 
of (71.32 ± 10.26) years and 22.2% of the participants were female. The 
patients’ functional outcomes were measured using the 90-day 
modified Rankine Scale (mRS) with a Mean–Variance of 2.60 ± 2.37.

Among the 72 patients, 54 had hypertension, 22 had diabetes, and 
25 had atrial fibrillation. Reperfusion of the ischemic penumbra was 
primarily achieved through thrombolysis and thrombectomy. The 
thrombolytic agent used was recombinant tissue plasminogen 
activator (rt-PA). A total of 30 patients underwent thrombolysis, and 
21 patients underwent thrombectomy. Specifically:

 • 12 patients received intravenous rt-PA (IV rt-PA).
 • 3 patients received intraarterial rt-PA (IA rt-PA).
 • 4 patients received both IV rt-PA and IA rt-PA.
 • 11 patients underwent thrombectomy.
 • 6 patients received IV rt-PA and thrombectomy.
 • 2 patients received IA rt-PA and thrombectomy.
 • 2 patients received IV rt-PA, IA rt-PA, and thrombectomy.
 • 1 patient received IV rt-PA and intraarterial stenting.

3 Methods

The proposed framework of our conducted research is depicted in 
Figure 2, which consists of four main parts: (1) Data preprocessing; 
(2) Region of interest (ROI) segmentation and time of interest (TOI) 
computation; (3) Feature extraction and selection; (4) Prognosis 
prediction model construction. The data processing includes cleaning 
and registration of the input data to ensure consistency and improve 
the dataset’s quality, further generating new parameters. The ROI 
phase is intended to identify the areas of the brain affected mainly by 
ischemia, known as regions of interest (ROI). Following this, key time 
points, referred to as times of interest (TOI), are selected, which are 

essential for understanding stroke progression. The feature extraction 
part extracts meaningful features from the imaging data, including 
DSC-PWI sequences and perfusion parameters like CBV, CBF, MTT, 
and TTP. Further, feature selection techniques are applied to retain the 
most relevant features, minimize dimensionality, and enhance model 
efficiency. A machine learning-based prediction model is constructed 
using the selected features in the prognosis prediction model 
construction part. The proposed model is trained to predict patient 
outcomes, helping to guide clinical decision-making. The overall 
framework of our study is shown in Figure 2. Each section of the 
proposed framework has been described in detail.

3.1 Data preprocessing

The data preprocessing in this study mainly involved several 
key steps: registration of position, segmenting brain tissue regions, 
denoising of images, and generation of perfusion parameters, as 
outlined in Figure  3. First, the spatial position of the multi-
temporal DSC-PWI sequences was registered using the 
neuroimaging software package FSL (18). This step was taken to 
eliminate the positional deviation caused by head movement that 
might exist during scanning. At the same time, non-brain tissues 
were removed using the BET method in FSL, and brain tissue 
regions were preserved for further feature parameter analysis. 
Then, the DSC-PWI sequences were denoised by processing the 
DSC-PWI sequences using three-shift panning with a window of 
3 × 3 and a step size of 1 to improve the data quality. Finally, four 
perfusion parameter maps, CBV, CBF, MTT, and Tmax, were 
generated by back-convolution of the arterial input function. This 
process was fully automated using the RAPID Perfusion and 
Diffusion Processing software (19), which calculated the perfusion 
parameters directly from the DSC-PWI sequences.

3.2 ROI segmentation and TOI calculation

DSC-PWI enables the visualization of blood flow within brain 
tissue by capturing the perfusion process, making it suitable for 
identifying areas of ischemic penumbra and infarct core (20, 21). The 
threshold of the quantitative perfusion parameter Tmax > 6 s obtained 
through DSC-PWI post-processing is commonly used to identify the 
ischemic penumbra region (22–24). This has emerged as a novel 
strategy to identify patients most likely to benefit from treatment by 
targeting salvageable penumbra tissue (25). Therefore, in this study, 
the ischemic penumbra region was used as the ROI for feature 
extraction, and the segmentation of ROI was performed using the 
commercial software RAPID (19).

DSC-PWI images usually contain dozens of time sequences, 
extracting features for each sequence increases computational 
complexity. Thus, to avoid repeated extraction of anatomical 
information from the images while effectively retaining temporal 
information about the dynamic changes in blood flow, we  chose 
DSC-PWI sequences at specific scanning time points to obtain the 
information. DSC-PWI reflects intracranial blood flow status by 
inducing changes in tissue signal intensity through the contrast agent. 
When the contrast agent reaches poorly perfused brain tissues, it is 
reflected in the DSC-PWI sequence as a small or unchanged signal 

TABLE 1 Scanning parameters of DSC-PWI images and patient 
information.

Scanning parameters of 
DSC-PWI images

Patient information

Matrix 256 × 256 Patients 72

Number of slices 19 ± 1 Female (%) 16 (22.2%)

Spacing between 

slices
6.5 mm Age (Mean ± Std) 71.32 ± 10.26

Number of 

measurements
50

90-day mRS 

(Mean ± Std)
2.60 ± 2.37

Thickness 5 mm
Onset time 

(Mean ± Std)

5.24 ± 4.15

TE/TR 32/1,590 ms Hypertension 54

Pixel bandwidth 1,347 Hz/pixel Diabetes 22

FOV 230 × 230 mm2 Atrial fibrillation 25

Temporal 

resolution

1.59 s
rt-PA therapy

19

Thrombectomy 11

rt-PA + Thrombolytic 10

rt-PA + intraarterial 

stent

1
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intensity value (26). By analyzing the signal intensity within the brain 
tissue over time in the DSC-PWI sequence following contrast 
injection, Figure 4A shows the mean time-intensity curve for all pixel 

points within the brain tissue of a particular patient, measured across 
50 time points. This curve illustrates a distinct pattern of decreasing 
and increasing signal intensity in the brain tissue.

FIGURE 2

The framework of our method. (A) Data preprocessing. (B) Region of interest (ROI) segmentation and time of interest (TOI) calculation. (C) Feature 
extraction and selection. (D) Model construction.

FIGURE 3

Data preprocessing. The unregistered multi-temporal DSC-PWI was registered, deboned, and denoised to generate perfusion parameters by 
specialized software.

https://doi.org/10.3389/fneur.2025.1528812
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2025.1528812

Frontiers in Neurology 06 frontiersin.org

To consider the influence of the time-dimensional information and 
the number of selected time points on the prediction results, 
we  identified nine key time points, referred to as Times of Interest 
(TOI). These include the first moment (T1), the moment with the lowest 
average intensity (Tmin), the last moment (T50), the midpoint between 
T1 and Tmin (Ta), between Tmin and T50 (Tb), between Ta and Tmin 
(Tc), between Tmin and Tb (Td), between Ta and T1 (Te), and between 
Tb and T50 (Tf). Figure 4B shows the number distribution of samples 
at 50-time points for the time values taken for Tmin. We found that the 
Tmin of the 72 samples is mainly concentrated at time points 19–23, 
with the largest number of samples taken at the 20th time point.

Eventually, five experimental groups were formed based on nine 
selected TOIs, namely Tmin, T1 + Tmin + T50, T1 + Ta + Tmin +  
Tb + T50, T1 + Ta + Tc + Tmin + Td + Tb + T50, and T1 + Te +  
Ta + Tc + Tmin + Td + Tb + Tf + T50. The DSC-PWI sequences for 
these five groups were labeled as 1PWI, 3PWI, 5PWI, 7PWI, and 
9PWI, respectively. We will mainly focus on extracting the cerebral 
blood flow features associated with changes in the cerebral blood 
flow states from the DSC-PWI sequences at these selected time 
points and explore the associations of these features with the 
prediction of short-term prognosis of AIS. In addition, to investigate 
whether features from all scanned time points are essential, we also 
extracted features for all 50 moments of DSC-PWI sequences 
(50PWI) for prognostic prediction.

3.3 Feature extraction and selection

3.3.1 Radiomics features extraction of DSC-PWI 
sequences at critical time points and perfusion 
parameter maps

We used the Pyradiomics toolkit on Python 3.7 to extract 
radiomics features from ROIs (27). The extracted feature classes 
were divided into six classes: (1) 18 First-order statistics features 
(First-order); (2) 24 Gray Level Co-occurrence Matrix features 
(GLCM); (3) 16 Gray Level Run Length Matrix features (GLRLM); 

(4) 16 Gray Level Size Zone Matrix features (GLSZM); (5) 5 
Neighboring Gray Tone Difference Matrix features (NGTDM); 
and (6) 14 Gray Level Dependence Matrix features (GLDM). 
Table  2 provides the specific feature terms associated with 
each class.

To capture the feature information of the image in different 
frequency domains, we used six filters to transform the image type, 
supplementing the six classes of feature information extracted from 
the original image. These filters included Laplacian of Gaussian (Log) 
with the sigma values {1.0, 2.0, 3.0, 4.0, 5.0}, as well as square, square 
root, logarithmic, exponential, and eight combinations of wavelet 
transform in three dimensions generated by high-pass and low-pass 
filters (LLH, LHL, LHH, HLL, HLH, HHL, HHH, LLL). So, for each 
image, we  extracted 1,674 grouped features calculated as 
(18 × (18 + 24 + 16 + 16 + 5 + 14) = 1,674). Since the perfusion 
parameters CBV, CBF, MTT, and Tmax were generated by post-
processing the DSC-PWI sequences, we refer to the features obtained 
from the six DSC-PWI sequences as the source features and denote 
them as 1PWI_F, 3PWI_F, 5PWI_F, 7PWI_F, 9PWI_F, and 
50PWI_F. Features derived from the CBV, CBF, MTT, and Tmax are 
parametric features labeled as CBV_F, CBF_F, MTT_F, and Tmax_F, 
respectively. In addition, the radiomics feature is named according to 
its source image, filter type, feature class, and the specific feature name 
connected by underscores, such as “CBV_ logarithm_firstorder_
Kurtosis,” which denotes the Kurtosis radiomics feature in the first_
order class extracted from the CBV that passed through the 
logarithm filter.

3.3.2 Radiomics features selection and 
combination

Since radiomics features extracted from images are diverse and 
have different scales, these different scale features have been assigned 
different weights in the feature selection and classification process, 
thus affecting the outcomes (28, 29). Research has also shown that the 
model constructed with normalized features has better prediction 
performance than the model built without normalized features (30). 

FIGURE 4

(A) Mean-time intensity curve of brain tissue at 50-time points of the DSC-PWI sequence. (B) The number of samples at 50-time points for the time 
value taken by Tmin, where Tmin is the time with the smallest mean intensity among the 50 times of the DSC-PWI sequence.
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Therefore, in this study, after extracting radiomics features from the 
DSC-PWI sequences and perfusion parameters, we first applied mean 
normalization on the features to achieve the compression of all feature 
terms in the interval [−1, 1].

Then, since we  extracted features from multiple DSC-PWI 
sequences with the same anatomical structure, redundant 
information and increased noise can arise. To address this, 
we followed the approach of many studies by using a combination of 
T-test and Least Absolute Shrinkage and Selection Operator (Lasso) 
for feature selection (31–33). The T-test is used to select and retain 
the significant features with p < 0.05 that can significantly differentiate 
between the two categories, achieving an initial dimensionality 
reduction of the features. The goal was to minimize the influence of 
redundant features on the Lasso algorithm, thereby reducing the risk 
of unstable selection results and also lowering computational 
complexity and the risk of overfitting for Lasso select features. The 
Lasso algorithm, commonly employed to identify relevant features 
for robust classification models (34). However, in high-dimensional 
datasets where the number of features far exceeds the number of 
samples, traditional Lasso regression may fail to effectively identify 
the truly important features, leading to false positive features. To 
overcome this, we adopted a threshold Lasso algorithm (35), which 
adds an extra thresholding step after Lasso’s L1 regularization. The 
purpose is to set a threshold after Lasso regression has provided the 
coefficient estimates, further removing features with small coefficients 
that contribute little to the prediction, thus improving the model’s 
accuracy and stability. We retained features with weight coefficients 
greater than 0.02, which are more predictive for the target task 
category. This method helps by “thresholding” non-significant 
coefficients to zero, effectively removing unnecessary features and 
reducing noise interference.

Specifically, we first extracted all six categories of radiomics 
features from the entire dataset, then normalized the data and 
divided it into a training set and a validation set. Next, we applied 

the T-test and Lasso algorithm sequentially to the features in the 
training set to select the relevant features, which were then used 
to construct the prognostic model. Thus, we  constructed six 
source feature models with six source features (1PWI_F, 3PWI_F, 
5PWI_F, 7PWI_F, 9PWI_F, and 50PWI_F) and four parametric 
feature models with four perfusion parameter features (CBV_F, 
CBF_F, MTT_F, and Tmax_F). Finally, selected relevant feature 
terms were identified in all radiomics of the validation set and 
used in the constructed prognostic model for outcome prediction 
of the validation set data.

Since different perfusion parameter maps characterize different 
hemodynamic information, so relying on a single parameter alone 
would lead to incomplete information. To address this, we combined 
the relevant features obtained from the four sets of parameter maps 
and noted the perfusion parameter combination feature as 
PerfusionF. In addition, the complementary nature of critical time-
point DSC-PWI images, which provide visual image information 
about the cerebrovascular perfusion situation and anatomical 
structures, alongside the perfusion parameter maps, which provide 
detailed, quantitative hemodynamic information. Thus, we combined 
the obtained source features and PerfusionF to construct a thoroughly 
combined feature (CombinedF) model that can accurately predict 
good and poor prognosis in AIS patients. This CombinedF model is 
also the primary recommendation in our study.

3.4 Prognosis prediction model 
construction

The dataset split and model training process is shown in Figure 5. 
A total of 72 cases were collected in this study, which were categorized 
into 39 cases with good prognosis and 33 cases with poor prognosis 
based on the mRS score. Prior to model training, we used the train_
test_split() function to divide the dataset into a training group (n = 50) 

TABLE 2 A summary of the high-throughput radiomics features extracted.

Feature classes Feature names

First_order
10Percentile, 90Percentile, Energy, Entropy, Interquartile Range, Kurtosis, Maximum, Mean Absolute Deviation, Mean, Median, Minimum, 

Range, Robust Mean Absolute Deviation, Root Mean Squared, Skewness, Total Energy, Uniformity, Variance

GLCM

Autocorrelation, Joint Average, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Correlation, Difference Average, Difference 

Entropy, Difference Variance, Joint Energy, Joint Entropy, Informational Measure of Correlation 1, Informational Measure of Correlation 2, 

Inverse Difference Moment, Maximal Correlation Coefficient, Inverse Difference Moment Normalized, Inverse Difference, Inverse Difference 

Normalized, Inverse Variance, Maximum Probability, Sum Average, Sum Entropy, Sum of Squares

GLRLM

Short Run Emphasis, Long Run Emphasis, Gray Level Non-Uniformity, Gray Level Non-Uniformity Normalized, Run Length Non-Uniformity, 

Run Length Non-Uniformity Normalized, Run Percentage, Gray Level Variance, Run Variance, Run Entropy, Low Gray Level Run Emphasis, 

High Gray Level Run Emphasis, Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis, Long Run Low Gray Level 

Emphasis, Long Run High Gray Level Emphasis

GLSZM

Small Area Emphasis, Large Area Emphasis, Gray Level Non-Uniformity, Gray Level Non-Uniformity Normalized, Size-Zone Non-Uniformity, 

Size-Zone Non-Uniformity Normalized, Zone Percentage, Gray Level Variance, Zone Variance, Zone Entropy, Low Gray Level Zone Emphasis, 

High Gray Level Zone Emphasis, Small Area Low Gray Level Emphasis, Small Area High Gray Level Emphasis, Large Area Low Gray Level 

Emphasis, Large Area High Gray Level Emphasis

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength

GLDM

Small Dependence Emphasis, Large Dependence Emphasis, Gray Level Non-Uniformity, Dependence Non-Uniformity, Dependence Non-

Uniformity Normalized, Gray Level Variance, Dependence Variance, Dependence Entropy, Low Gray Level Emphasis, High Gray Level 

Emphasis, Small Dependence Low Gray Level Emphasis, Small Dependence High Gray Level Emphasis, Large Dependence Low Gray Level 

Emphasis, Large Dependence High Gray Level Emphasis
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and a validation group (n = 22) with a 7:3 ratio. Additionally, the 
StratifiedKFold (n_splits = K) function has been employed, where 
K = 5, to perform a five-fold cross-validation for evaluating the 
training model. Finally, the trained model was tested on an 
independent validation set to obtain the final classification results.

Considering that the performance of the same features can 
differ across various models, to select models that are more 
sensitive to the radiomics features of this study and more effective 
for the classification task, we constructed the prognostic models by 
using 10 ML models with different classification principles, 
precisely: Support Vector Machines (SVM), K-nearest Neighbor 
(KNN), Multi-layer perceptual neural networks (MLP), Random 
forest (RF), Decision Tree (DT), Gradient Boosting Decision Tree 
(GBDT), Adaptive boosting (Ada), Logistic Regression (LR), 
Gaussian NB (NB), and Discriminant Analysis (DA).

All the predictive models were trained in the same training 
cohort and tested in the same validation cohort. The classification 
performance of the prediction models was evaluated by five 
classification metrics, including Accuracy (Acc), Precision (Pre), 
Recall, F1-score (F1), and Area Under the Curve (AUC). The 
Area Under the Curve (AUC) is derived from the Receiver 
Operating Characteristic (ROC) curve and serves as the primary 
metric for assessing the predictive performance in this study. 
Moreover, the model’s stability is quantified by the coefficient of 
variation of the AUC values from the training set, referred to as 
the Relative Standard Deviation (RSD) (36). Equation 1 presents 
the RSD formula, where a lower RSD indicates a more 
stable model.

 
100%

AUC
AUCSRSD = ×

 
(1)

where SAUC denotes the standard deviation of the AUC value and 
AUC denotes the mean of five-fold cross-validated AUC value.

3.5 Comparative experimental design

3.5.1 Comparative experiments based on six sets 
of source features

DSC-PWI enables real-time monitoring of the perfusion status of 
brain tissue by rapidly acquiring multiple sequences of images 
regarding changes in the contrast agent. We identify three crucial time 
points by analyzing the mean time-intensity curve in Figure 4A. The 
curve’s starting point indicates the basal signal intensity without the 
contrast agent; the lowest point of the curve suggests the peak of the 
contrast agent concentration, which reflects the maximum 
concentration of the contrast agent within the blood flow channel. The 
endpoint indicates the intensity of the contrast agent remaining after 
the contrast agent is washed out of the blood vessel and partially 
absorbed within the tissue. This endpoint reflects the vascular 
clearance of the blood flow and the cellular metabolism ability within 
the tissue. Consequently, the prediction model based on DSC-PWI 
sequence features of these three key time points is a recommended 
method in this study. Moreover, different time points were selected for 
comparison experiments to validate the advantages of these three 
critical times, as illustrated in Figure 6A.

3.5.2 Comparative experiments based on four 
sets of single-parameter features and one set of 
parameters combined feature

CBV indicates the cerebral blood volume of a certain amount 
of brain tissue, which can reflect the expansion and contraction 
of blood vessels. CBF measures the volume of blood passing 
through a given tissue per unit of time, indicating local vascular 
resistance. MTT is the average duration for a contrast agent to 
move through brain tissue, while Tmax denotes the time to peak 
contrast agent concentration. Prolonged MTT and Tmax both can 
reflect delayed blood flow or vascular obstruction. These four 
perfusion parameters contain different information and have 

FIGURE 5

The data partitioning process and model training.
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important clinical implications in diagnosing and treating 
ischemic stroke. To explore the most relevant parameters among 
these four parameters to AIS prognosis, four single-parameter 
prediction models were developed for comparison to determine 
the predictive ability of different perfusion parameters in AIS 
prognosis. In addition, since the four parameters may contain 
complementary information relevant to AIS prognostic prediction, 
we also combined the four single-parameter features. We assessed 
their predictive capability against that of the individual 
parameters, as illustrated in Figure 6B.

4 Results

4.1 Selected radiomics features

We applied the T-test and Lasso algorithm to select relevant 
features, finally identifying 9, 15, 15, 18, 13, and 14 features from 
the six groups of source features (1PWI_F, 3PWI_F, 5PWI_F, 
7PWI_F, 9PWI_F, and 50PWI_F) and 11, 7, 5, and 10 relevant 
features from four groups of perfusion parameter features (CBV_F, 
CBF_F, MTT_F, and Tmax_F), respectively. We then compared the 
performance of the predictive models constructed from the six 
groups of source features and selected the best-performing set, 
combined with the perfusion parameter combined feature 
(PerfusionF) to create a fully combined feature set (CombinedF) 
consisting of 48 radiomics features. Figure 7 depicts the number of 
features across different feature classes, revealing that GLDM 
features were excluded from all sequences, and only one NGTDM 
feature, “logarithm_ngtdm_Contrast,” was selected in the CBF.

4.2 Performance of CombinedF prediction 
model

In this study, radiomics features of DSC-PWI sequences at three 
key time points were combined with radiomics features of perfusion 
parameters generated by their post-processing. This combined feature 
(CombinedF) set was used to train 10 ML models, followed by testing 
the classification performance of these models on a validation cohort 
for predicting AIS prognostic outcomes. The results are summarized 
in Table 3, indicating the SVM-based model has the best predictive 
ability, with AUC, Acc, Pre, Recall, and F1 of 0.915, 0.818, 0.778, 0.778, 
and 0.778, respectively, and the RSD of the model is <6%, underscoring 
its robustness. In addition, the DA model performed well with an 
AUC, Acc, Pre, Recall, and F1 of 0.846, 0.818, 0.692, 1.000, and 0.818, 
respectively, and the RSD < 9%. We found that on RF, DT, GBDT, and 
Ada models, the RSD of the training process is >10%, and the 
developed prediction models are not stable enough. Among the 10 
models tested, SVM and DA models outperformed the others, which 
shows that the performance of the constructed prediction models may 
differ depending on the classifiers chosen.

Furthermore, to investigate whether the clinical baseline data of 
enrolled patients had a potential impact on the model, we analyzed 
the statistical differences between these baseline variables and the two 
prognostic groups (good and bad prognostic). The analyzed variables 
included sex, age, hypertension, diabetes, atrial fibrillation, and onset 
time. Among them, sex, hypertension, diabetes, and atrial fibrillation 
were categorical variables, for which we performed chi-square tests to 
assess statistical differences between the two prognostic groups. Age 
and onset time were continuous variables, for which we conducted 
independent sample t-tests to evaluate statistical differences. The 

FIGURE 6

The overall experimental framework in this study consists of (A) comparative experimental groups based on six sets of source features and 
(B) comparative experimental groups based on four sets of parametric features and parameter combined features.
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results of our analysis are presented in Table 4. Except for diabetes, no 
other baseline clinical variables showed significant differences. Given 
the small sample size, the statistical significance of diabetes may 
be  due to random factors. Therefore, its potential impact on the 
predictive model can be disregarded.

4.3 Performance of comparative 
experimental groups

4.3.1 Performance of six sets of source features
Six groups of source features (1PWI_F, 3PWI_F, 5PWI_F, 

7PWI_F, 9PWI_F, and 50PWI_F) at different time points were used 
to construct prediction models, and the performance of models was 
assessed using six evaluation metrics. Table 5 shows the top three 
models (MLP, LR, and DA) and the Mean–Variance for all 10 ML 
models. Performance ranking for the models using these feature 
groups is as follows: 3PWI > 9PWI > 5PWI > 50PWI > 7PWI > 1PWI, 
among which the 3PWI feature group performs the best on the MLP 
model, with the AUC, Acc, Pre, Recall, and F1 of 0.863, 0.818, 0.778, 
0.778, and 0.778, respectively, and the RSD < 10%. It could be noted 
that the prediction results of the model developed by the 50PWI 
feature group are not the best, but the model constructed by it shows 
better stability overall. This stability may be brought about by the large 
amount of computational data. In the future, adding more cases will 
eliminate this discrepancy.

4.3.2 Performance of four sets of 
single-parameter features and one set of 
parameters combined feature

Four groups of single-parameter features (CBV_F, CBF_F, 
MTT_F, and Tmax_F) obtained with different perfusion parameters 
were used to develop prediction models, and their performance was 
evaluated across six metrics. Table 6 shows the scores of the best three 
models (MLP, NB, and DA) and the Mean–Variance of the 10 ML 
models. The results indicate that the MTT feature group performs 
significantly better than the other three. The order of the four groups 
is MTT > CBV > CBF > Tmax, in which the MTT feature group 

performs the best on the DA model, with the best AUC, Acc, Pre, 
Recall, and F1 of 0.821, 0.727, 0.714, 0.556, and 0.625, respectively, in 
which the prediction model constructed by CBV feature group 
showed more stable performance.

Considering the existence of complementary prognostic 
information contained in different single parameters, we developed 
a PerfusionF model by integrating features selected from four 
single-parameter features. The prediction performance of the 
PerfusionF model is detailed in Table 7. To compare the results 
between single-parameter features and the combined features, the 
results of the six metrics of the single-parameter features on the 10 
ML models are illustrated in Figure  8. Analyzing Table  7 and 
Figure  8, we  find that the PerfusionF model achieved the best 
performance on the SVM model. It surpassed the single-parameter 
features with AUC, Acc, Pre, Recall, and F1 of 0.889, 0.864, 0.800, 
0.889, and 0.842. This represents an improvement over the CBV of 
18.8, 13.7, 16.4, 11.1, and 14.2%. The improvement over the CBF is 
19.7, 22.8, 26.2, 11.1, and 20.6%, respectively. Then, over the MTT, 
it is 12.0, 13.7, 13.3, 22.2, and 17.5%, respectively. Lastly, the 
improvement over the Tmax is 28.2, 31.9, 35.6, 44.5, and 39.8%, 
respectively. However, in some cases, the performance of the 
combined parametric features was lower than the single-parameter 
features on certain models. This inconsistency may be because of 
the inconsistent sensitivity of the different models to the features, 
resulting in a large difference in the final classification performance.

According to Tables 3, 7, the AUC achieved by the CombinedF 
group across all models is higher than that of the PerfusionF group, 
except for the NB model. Conversely, the RSD achieved by the 
CombinedF group across other models is lower than that of the 
PerfusionF group, except for the RF and Ada models. For the 
remaining four metrics (Acc, Pre, Recall, and F1), the CombinedF 
group generally outperformed the PerfusionF group with some 
exceptions in specific models. The Mean–Variance values in the last 
column support this, with the CombinedF group achieving Acc, Pre, 
Recall, and F1 scores of 0.686 ± 0.118, 0.630 ± 0.145, 0.645 ± 0.155, 
and 0.628 ± 0.123, respectively, outperforming the PerfusionF group’s 
scores of 0.609 ± 0.123, 0.524 ± 0.143, 0.556 ± 0.182, and 
0.533 ± 0.155. This suggests that the prediction performance of 

FIGURE 7

The number of features selected across different feature categories: (A) The relevant features selected by Lasso in the 10 feature groups, organized by 
feature category, and (B) the features within the CombinedF group, categorized by feature type.
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perfusion parameter features with the addition of the source features 
is significantly improved.

Figure 8 illustrates the results of the six metrics for the source 
features across 10 models. The results highlight that models developed 
with the 3PWI and MTT feature groups achieved the best predictive 
performance. The 3PWI feature group attained the highest AUC of 
0.863, outperforming all the single-parameter features. This AUC 
shows an improvement of 16.2, 17.1, 4.2, and 20.9% over the best 
AUCs for CBV, CBF, MTT, and Tmax, respectively. The AUC values 
of 3PWI were better than the CBV, CBF, and Tmax groups except on 
the DT model. The AUC values of 3PWI were superior to the MTT 
group except on the KNN, DT, and NB models. The other four indices 
(Acc, Pre, Recall, and F1) had similar patterns. It concluded that the 
radiomics features of DSC-PWI sequences at the three key time points 
might be  superior to those of individual perfusion parameters in 
predicting AIS prognosis.

5 Discussion

Radiomics technology is a powerful tool for extracting high-
throughput quantitative feature information from images, which can 
extract complex information that is difficult to recognize and quantify 
by the human eye (37). Using this information, potential prognostic 
indicators can be identified to construct a prediction model for AIS 

prognostic outcomes, which can be realized to accurately predict a 
patient’s prognosis. A prognostic prediction model ultimately helps 
doctors’ understanding of patients’ prognostic risks and provides an 
objective basis for assisted decision-making to develop personalized 
patient treatment plans. In some studies, the prediction of prognostic 
outcomes has been realized by analyzing medical images (CT, DWI, 
SWI, PWI, CTP, and others) through radiomics techniques (38–40). 
Research in Tang et al. (41) has focused on predicting outcomes for AIS 
by extracting radiomics features based on images post-processed from 
perfusion sequences. However, there is a lack of studies directly 
processing the perfusion sequences using radiomics techniques. 
Another study Guo et al. (17) focused on time-dependent information 
in the perfusion sequences and analyzed the sequences for all scan 
times. Still, this approach has led to issues with feature redundancy and 
excessive computational demands. In this study, we focused on several 
key time points within DSC-PWI sequences and constructed predictive 
models using features obtained by radiomics techniques. The final 
results showed that the radiomics features at three key time points 
(3PWI) were the most effective for AIS prognostic prediction. In 
addition, we  explored the performance of radiomics features of 
perfusion parameter maps in predicting AIS outcomes, including single 
perfusion parameters (CBV, CBF, MTT, and Tmax) and combined 
perfusion parameters (PerfusionF). The results showed that PerfusionF 
had an AUC score of 0.889, superior to the single perfusion parameter. 
In contrast, MTT had the best predictive performance among the four 
perfusion parameters, with an AUC score of 0.821. Additionally, by 
combining 3PWI_F and PerfusionF, we  developed a CombinedF 
prediction model that attained an AUC score of 0.915, improving its 
prediction accuracy. This research confirms that the DSC-PWI sequence 
contains valuable prognostic-related information and suggests that 
analyzing only the perfusion parameters obtained by post-processing 
may lose some essential prognosis-related information.

5.1 The DSC-PWI sequences at three key 
time points provide greater predictive 
value

DSC-PWI imaging injects a magnetic contrast agent intravenously, 
altering the blood’s sensitivity to the magnetic field. This causes a 

TABLE 3 Performance of CombinedF prediction model.

Classifier Train_RSD↓ Test_AUC↑ Test_Acc↑ Test_Pre↑ Test_Recall↑ Test_F1↑

CombinedF 

model

SVM 0.055 0.915 0.818 0.778 0.778 0.778

KNN 0.056 0.714 0.773 0.750 0.667 0.706

MLP 0.023 0.726 0.818 0.857 0.667 0.750

RF 0.194 0.731 0.682 0.667 0.444 0.533

DT 0.123 0.564 0.545 0.462 0.667 0.545

GBDT 0.235 0.556 0.500 0.417 0.556 0.476

Ada 0.125 0.684 0.591 0.500 0.556 0.526

LR 0.031 0.684 0.682 0.625 0.556 0.588

NB 0.038 0.662 0.636 0.556 0.556 0.556

DA 0.082 0.846 0.818 0.692 1.000 0.818

Mean ± Std 0.096 ± 0.072 0.708 ± 0.110 0.686 ± 0.118 0.630 ± 0.145 0.645 ± 0.155 0.628 ± 0.123

TABLE 4 Results of the statistical difference analysis between the clinical 
baseline data and the two prognostic groups.

Clinical 
datas

Good 
prognosis 
(n = 39)

Bad 
prognosis 

(n = 33)

p-value

Sex 7 (Female) 9 (Female) 0.343

Hypertension 30 24 0.682

Diabetes 7 15 0.032*

Atrial fibrillation 14 11 0.820

Age 69.69 ± 9.06 73.24 ± 11.22 0.157

Onset time 5.58 ± 4.96 4.80 ± 2.76 0.373

*p-value < 0.05.
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TABLE 5 Performance of prediction models constructed by six source feature groups.

Feature 
Group

Classifier Train_RSD↓ Test_AUC↑ Test_Acc↑ Test_Pre↑ Test_Recall↑ Test_F1↑

1PWI_F

MLP 0.280 0.590 0.545 0.444 0.444 0.444

LR 0.259 0.709 0.682 0.600 0.667 0.632

DA 0.241 0.744 0.727 0.667 0.667 0.667

Mean ± Std 0.245 ± 0.040 0.649 ± 0.078 0.609 ± 0.081 0.523 ± 0.088 0.589 ± 0.118 0.551 ± 0.093

3PWI_F

MLP 0.096 0.863 0.818 0.778 0.778 0.778

LR 0.137 0.829 0.727 0.667 0.667 0.667

DA 0.057 0.821 0.773 0.667 0.889 0.762

Mean ± Std 0.166 ± 0.098 0.762 ± 0.134 0.714 ± 0.134 0.646 ± 0.133 0.756 ± 0.102 0.691 ± 0.107

5PWI_F

MLP 0.141 0.692 0.591 0.500 0.667 0.571

LR 0.110 0.761 0.773 0.700 0.778 0.737

DA 0.123 0.786 0.773 0.750 0.667 0.706

Mean ± Std 0.149 ± 0.066 0.713 ± 0.074 0.673 ± 0.085 0.589 ± 0.103 0.667 ± 0.139 0.622 ± 0.112

7PWI_F

MLP 0.135 0.795 0.727 0.636 0.778 0.700

LR 0.137 0.701 0.682 0.571 0.889 0.696

DA 0.046 0.744 0.727 0.615 0.889 0.727

Mean ± Std 0.138 ± 0.036 0.701 ± 0.121 0.645 ± 0.113 0.544 ± 0.135 0.622 ± 0.241 0.574 ± 0.178

9PWI_F

MLP 0.096 0.701 0.682 0.600 0.667 0.632

LR 0.131 0.641 0.727 0.714 0.556 0.625

DA 0.122 0.692 0.727 0.667 0.667 0.667

Mean ± Std 0.126 ± 0.028 0.741 ± 0.077 0.718 ± 0.064 0.662 ± 0.073 0.667 ± 0.128 0.656 ± 0.077

50PWI_F

MLP 0.049 0.632 0.500 0.400 0.444 0.421

LR 0.049 0.675 0.636 0.545 0.667 0.600

DA 0.033 0.709 0.591 0.500 0.667 0.571

Mean ± Std 0.100 ± 0.100 0.709 ± 0.043 0.627 ± 0.060 0.532 ± 0.061 0.689 ± 0.115 0.599 ± 0.079

TABLE 6 Performance of predictive models constructed by four single-parameter feature groups.

Feature 
group

Classifier Train_RSD↓ Test_AUC↑ Test_Acc↑ Test_Pre↑ Test_Recall↑ Test_F1↑

CBV_F

MLP 0.091 0.624 0.591 0.500 0.667 0.571

NB 0.125 0.598 0.636 0.556 0.556 0.556

DA 0.062 0.624 0.636 0.545 0.667 0.600

Mean ± Std 0.143 ± 0.081 0.598 ± 0.062 0.586 ± 0.066 0.49 ± 0.075 0.533 ± 0.147 0.507 ± 0.105

CBF_F

MLP 0.222 0.667 0.727 0.667 0.667 0.667

NB 0.210 0.615 0.636 0.556 0.556 0.556

DA 0.173 0.607 0.545 0.455 0.556 0.500

Mean ± Std 0.225 ± 0.033 0.622 ± 0.035 0.623 ± 0.071 0.537 ± 0.080 0.611 ± 0.095 0.570 ± 0.078

MTT_F

MLP 0.144 0.795 0.727 0.636 0.778 0.700

NB 0.142 0.812 0.727 0.800 0.444 0.571

DA 0.171 0.821 0.727 0.714 0.556 0.625

Mean ± Std 0.162 ± 0.032 0.775 ± 0.042 0.704 ± 0.039 0.649 ± 0.083 0.689 ± 0.137 0.653 ± 0.039

Tmax_F

MLP 0.146 0.615 0.545 0.444 0.444 0.444

NB 0.166 0.573 0.636 0.556 0.556 0.556

DA 0.132 0.650 0.682 0.625 0.556 0.588

Mean ± Std 0.153 ± 0.053 0.572 ± 0.079 0.577 ± 0.107 0.486 ± 0.144 0.433 ± 0.123 0.457 ± 0.130

https://doi.org/10.3389/fneur.2025.1528812
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yang et al. 10.3389/fneur.2025.1528812

Frontiers in Neurology 13 frontiersin.org

change in the intensity of the magnetic resonance signal, which in turn 
modifies the grayscale of the voxels in the resulting images. In AIS, 
perfusion is severely affected in areas of insufficient blood flow due to 
cerebral vascular obstruction, characterized by reduced blood flow 
and delayed reperfusion. In DSC-PWI sequences, these regions 
typically display a lower intensity with reduced magnitude and slower 
response than normal tissue (26). The DSC-PWI sequence provides 
valuable information about blood flow status and is closely linked to 
AIS prognosis. However, DSC-PWI images usually contain dozens of 
time series, each with multiple slices, making feature extraction 
computationally intensive. Moreover, dozens of DSC-PWI sequences 
from the same patient contain consistent anatomical information; 
whether all sequences are necessary for analysis remains an important 
problem for further investigation. Therefore, multiple critical 
moments occur when the contrast agent enters and exits these regions; 
our study explores sequences with one critical time (1PWI), sequences 
with three critical times (3PWI), sequences with five critical times 
(5PWI), sequences with seven critical times (7PWI), sequences with 
nine critical times (9PWI), and all sequences with 50 critical times 
(50PWI) in assessing their impact on radiomics features for predicting 
AIS prognosis. The final experiment revealed that the average AUC 
scores of the six groups across the 10 ML models were ranked as 
follows: 3PWI > 9PWI > 5PWI > 50PWI > 7PWI > 1PWI, and the 
best AUC score was obtained by 3PWI on MLP as 0.863, which is a 
9.4% improvement over the best AUC score obtained by 50PWI.

The results indicate that the three selected time points—baseline 
time, peak enhancement time, and perfusion washout time—provide 
the highest predictive value for AIS prognosis, whereas incorporating 
additional time points may be counterproductive. In terms of feature 
extraction and selection, using only three time points significantly 
reduces computational complexity, by an order of magnitude 
compared to utilizing all 50 time points. Moreover, all DSC-PWI 
sequences from the same patient share identical anatomical structures. 
Repeatedly extracting the same features across multiple time points 
introduces redundant information. During feature selection, 
redundant features may be  retained along with other correlated 
features, even if their contribution to prediction is negligible. This not 
only reduces the efficiency of feature selection algorithms but also 
degrades the overall performance of the final model. This is because 
strong correlations may exist among redundant features, potentially 

leading to collinearity issues. Collinearity can make the coefficient 
estimates in regression models unstable, resulting in inaccurate 
predictions (42). Additionally, each sequence contains some level of 
noise, and incorporating more time-series features may amplify this 
noise. As a result, the likelihood of retaining noisy features during 
selection increases, ultimately degrading the performance of the final 
model. In current literature (43–45), these three time periods of the 
perfusion curve are highlighted, and several important parameters 
(Tmax and others) are also derived from the values of these three time 
periods. The baseline time indicates the moment before the contrast 
agent arrives and can be used as a benchmark. The peak enhancement 
time indicates when the contrast agent is actively circulating, which 
can provide more information about cerebral vascular circulation, and 
the perfusion washout time indicates that the contrast agent has 
passed through and is partially absorbed by the tissue, providing 
valuable information about brain tissue metabolism. Therefore, these 
three key time points may capture more dynamic changes that are 
closely related to disease prognosis. The substantial reduction in the 
initial number of features at these critical time points allows feature 
selection to focus more effectively on a smaller set of high-quality 
features. This not only improves the efficiency of model training but 
also reduces the risk of overfitting. Therefore, analyzing all the 
sequences is unnecessary, increasing the workload and possibly 
decreasing prediction performance.

Recent studies have found that perfusion parameters visualize the 
ischemic condition of brain tissues and reflect the degree of blood–
brain barrier (BBB) damage to a certain extent, making them valuable 
for diagnosis and prognosis in AIS (46). This study explored the 
prognostic predictive performance of four perfusion parameters 
(CBV, CBF, MTT, and Tmax) in AIS. The final results were as 
MTT > CBV > CBF > Tmax, in which the AUC value of MTT was 
higher than that of the other three parameters across 10 ML models. 
Its optimal AUC reached 0.821 (DA), with a mean AUC of 0.775, 
surpassing CBF, CBV, and Tmax by 15.3, 17.7, and 20.3%, respectively. 
In this study, MTT is considered to play a more significant role in 
predicting the prognosis of AIS among the four perfusion parameters. 
However, this may be due to MTT’s higher sensitivity to the ischemic 
penumbra (ROI). Further research is needed to validate whether MTT 
is indeed the optimal predictive parameter. Additionally, it is observed 
that the predictive performance of the models based on the 3PWI 

TABLE 7 Performance of PerfusionF prediction model.

Classifier Train_RSD↓ Test_AUC↑ Test_Acc↑ Test_Pre↑ Test_Recall↑ Test_F1↑

PerfusionF 

model

SVM 0.084 0.889 0.864 0.800 0.889 0.842

KNN 0.082 0.611 0.682 0.600 0.667 0.632

MLP 0.044 0.590 0.591 0.500 0.556 0.526

RF 0.059 0.573 0.636 0.600 0.333 0.429

DT 0.123 0.380 0.409 0.250 0.222 0.235

GBDT 0.299 0.436 0.591 0.500 0.556 0.526

Ada 0.047 0.641 0.636 0.545 0.667 0.600

LR 0.048 0.641 0.591 0.500 0.556 0.526

NB 0.141 0.675 0.636 0.556 0.556 0.556

DA 0.282 0.462 0.455 0.385 0.556 0.455

Mean ± Std 0.121 ± 0.095 0.590 ± 0.144 0.609 ± 0.123 0.524 ± 0.143 0.556 ± 0.182 0.533 ± 0.155
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FIGURE 8

Scores for source and parameter features across six evaluation metrics are shown, with darker colors indicating more robust performance. Panels 
(A–E) use color to represent scores above 0.5, where darker shades signify higher scores. Panel (F) applies color to scores below 0.2 and red to those 
below 0.1, with darker hues highlighting better scores.
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generally surpassed the four individual perfusion parameters. For 
example, on MLP, the optimal AUC of the 3PWI group was still 6.8% 
higher than that of the MTT group which was the best of the four 
parameters. Except for the DT model, the 3PWI group outperformed 
the CBV, CBF, and Tmax groups. These findings suggest that we cannot 
ignore the rich information of the DSC-PWI sequence itself, and even 
in AIS prognostic prediction, utilizing the source features of the 
DSC-PWI sequence may be superior to the post-processed perfusion 
parameter features.

5.2 The feature combination strategy can 
optimize prognostic prediction 
performance

Considering that the four perfusion parameters provide 
different targeted blood flow and tissue information—such as the 
CBV indicating the ischemic core size, CBF reflecting neuronal 
activity in ischemic tissue, MTT providing an indirect measure of 
cerebral perfusion, and Tmax indicating the residual function of the 
penumbra. This research combined four parametric features to 
obtain the PerfusionF experimental group. The PerfusionF group 
achieved an AUC of 0.889 on SVM, significantly better than the 
four single-parameter features. It indicates that effective integration 
of relevant information enhances and helps to assess the prognostic 
results better. Meanwhile, considering the anatomical information 
in the DSC-PWI sequence, which complements the perfusion 
parameters, this study continued to combine the perfusion 
parameter features with the 3PWI features to obtain the CombinedF 
experimental group. This approach achieved the best AUC of 0.915 
using SVM, outperforming all other experimental groups, and is the 
recommended method in this study. These findings further suggest 
that the DSC-PWI sequence contains valuable prognosis 
information related to AIS, emphasizing the need to analyze 
perfusion parameters and anatomical data. Furthermore, combining 
multifaceted information can make the information more 
comprehensive, ultimately improving the accuracy of predicting the 
prognostic outcome of AIS.

5.3 Predictive performance is influenced by 
the selected model

Machine learning (ML) employs computer algorithms and 
mathematical models to learn patterns from large amounts of data and 
make predictions in unknown data. The ML application has 
penetrated many aspects of disease diagnosis, image analysis, 
treatment decision-making, and disease prediction (47–50). However, 
different ML models exhibit varying levels of sensitivity to features. 
For example, linear models such as Logistic Regression (LR) are more 
sensitive to linear relationships among features. In contrast, models 
such as Random Forest (RF) and Decision Tree (DT) are more capable 
of capturing nonlinear relationships between features. Our research 
also supports this observation. For example, the DT model achieved 
AUC by the 3PWI experimental group is only 0.393, lower than all 
other source feature groups and single-parameter feature groups. 
Conversely, across other ML models, the 3PWI_F experimental group 
performed significantly better than other experimental groups, 

achieving the highest AUC with the MLP model. It indicates that the 
ML model strongly influences the prediction results, and it is crucial 
to choose an appropriate ML model.

5.4 Limitations and future implications

This study has some limitations that require further 
optimization work. First, the dataset used was limited and from a 
single medical center, which includes patients with different 
treatment strategies but does not account for the latest treatments. 
This could affect the prognosis of patients. Thus, validating our 
methodology using a broader and more diverse dataset remains 
essential before applying it to clinical trials for future work. Second, 
there was a significant imbalance in the proportion of men and 
women in the dataset. Although it has been demonstrated 
previously that gender has a minimal effect on the prognosis of 
stroke patients after intravenous thrombolysis (51), expanding the 
dataset could minimize this effect in the future. Finally, exploring 
the optimal number of key time points, we only considered 1, 3, 5, 
7, 9, and 50 time points. It concluded that radiomics features at 
three key time points yielded the best prognostic predictions for 
AIS. However, further investigation is needed to determine whether 
increasing the number of time points beyond three would result in 
superior outcomes.

Exploring the prognostic value of DSC-PWI sequences at 
different time points, starting from the perfusion curve, offers 
Implications for future research. First, this approach provides 
clinicians and translational researchers with a new perspective to 
uncover potential pathologies. Second, our results show that 
DSC-PWI sequences at three key time points provide the best 
prognostic performance. These time points reflect different stages 
of the pathological process and allow for more accurate assessment 
of cerebral blood flow changes. In future studies, beyond these three 
key time points, additional time points or new perfusion parameters 
could be explored to evaluate their clinical significance in various 
pathological conditions. Lastly, in clinical practice, future research 
could focus on optimizing scanning strategies based on the 
performance of these key time points. Reducing scans at lower-
value time points could save patients’ time and improve diagnostic 
efficiency. In conclusion, we  hope this study will inspire future 
researchers to continue innovating and develop more efficient tools 
for clinical use, further advancing personalized medicine and 
precision treatment.

6 Conclusion

This study explored the performance of radiomic features derived 
from DSC-PWI sequences at different time points and various perfusion 
parameters in predicting the prognosis of AIS. We  found that the 
prediction performance of the three key time points DSC-PWI (3PWI) 
outperformed traditional perfusion parameters, highlighting the 
significant value of the 3PWI features in prognostic prediction. In 
addition, we observed that the combined four perfusion parameters 
showed a marked improvement over individual perfusion parameters, 
suggesting that the integration of effective information allows for a more 
comprehensive assessment, thereby enhancing predictive performance. 
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Consequently, we combined the 3PWI features with perfusion parameter 
radiomics features to construct the CombinedF prediction model, which 
showed even better performance. The AUC reached 0.915, representing 
a 5.2% improvement over the 3PWI features alone. The proposed 
method achieves accurate prediction of the prognosis of AIS patients. 
Furthermore, it could be an objective tool to guide clinical assessment 
of the prognosis of AIS patients, which has specific application value in 
helping clinicians develop personalized treatment plans.
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