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Freezing of Gait (FOG) is a disabling motor symptom that a�ects a majority

of individuals with advanced Parkinson’s disease, severely limiting mobility,

independence, and quality of life. Automatic methods for detecting FOG using

the freeze index (FI) have been widely proposed to systematically monitor FOG

in real life and guide therapy optimizations. However, methods to estimate the FI

have relied on a broad range of measurement technologies and computational

methodologies, often lacking mathematical rigor. The inconsistency across

studies has made it di�cult to directly compare results or draw definitive

conclusions. This lack of standardization has severely hindered the acceptance

of FI by regulatory agencies as a reproducible, robust, e�ective and safe measure

on which to base further developments. In this study, we formalize the definition

of the FI and propose a rigorous, explicit estimation algorithm, which may

serve as a standard for future applications. This standardization provides a

consistent and reliable benchmark. We also provide an overview of existing FI

estimation methods, discuss their limitations, and compare each one of them

with the proposed standard. Our method demonstrates improved performance

compared to existing approacheswhile e�ectivelymitigating the risk of divergent

outcomes, which could otherwise lead to unforeseen and potentially hazardous

consequences in real-world applications. Our algorithm is made available as

open-source Python code, promoting accessibility and reproducibility.

KEYWORDS

Parkinson’s disease, freezing of gait, freeze index, gait analysis, medical device

regulation, telemonitoring

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder affecting an estimated 8.5

million people worldwide.1 Over the past 25 years, the prevalence of PD has doubled,

with an estimated 329,000 deaths attributed to the disease in 2019 alone. PD is primarily

characterized by the progressive degeneration of dopaminergic neurons in subtantia

1 As reported by the World Health Organization in 2023. Accessible online at https://www.who.int/

news-room/fact-sheets/detail/parkinson-disease, accessed on 21.08.2024.
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nigra, resulting in reduced dopamine levels. This dopamine

deficiency leads to hallmark motor impairments such as tremor,

rigidity, bradykinesia, and postural instability along with gait

disturbances including shuffling steps, stooped posture, difficulties

with gait initiation (1, 2).

Over half of advanced-stage PD patients also experience

freezing of gait (FOG), which are episodes lasting up to few

seconds where the patient is unable to move, despite the

intention to do so (3). Although FOG predominantly manifests

in advanced stages, it also affects about 26% of the patients

in early stages (4). The combination of frequency and severity

of FOG events is closely linked with the state of the disease,

making FOG a promising biomarker for early diagnosis and

intervention planning (5). However, the unpredictability of FOG

episodes poses challenges for clinicians in accurately assessing their

nature and frequency during daily life. Automated FOG detection

in real-world settings could help clinicians evaluate and refine

treatment strategies, better pinpoint the underlying mechanisms,

and ultimately reduce FOG episodes and improve quality of life of

PD patients.

Today, one of the most used methods for detecting FOG is

the freeze index (FI), first introduced in 2008 by Moore et al. (4).

While several machine learning based methods for the detection of

FOG have been proposed in the literature (5–11), culminating in a

contest to further promote the research in this direction (12), the

FI still provides an interpretable alternative, due to its definition

based on first-principles. This method originates from the spectral

analysis of gait signals recorded from pressure insoles (13). As

FOG episodes are characterized by trembling legs, the FI tracks

the relative amount of high frequency components in the sensor

signals, with its value increasing whenever the dominant signal

energy gets shifted toward higher frequencies. The FI is not a

direct measure of FOG, as it only relates the relative amount

of freeze-frequencies content in sensor signals. Therefore, it can

result in false positives by non-FOG events living in the same

frequency band as FOG, when a threshold is applied to it in

order to obtain a FOG classifier. Albeit limited (6, 14), the FI

represents an interpretable biomarker linked to FOG, which makes

it interesting in a regulated, clinical setting. It should be seen as

one more datum in the monitoring of a complex disease such

as PD.

Since its inception in 2008, the FI has been used extensively in

subsequent studies to detect FOG events using body worn inertial

sensors (15–19). However, despite its well-accepted use in research

protocols, its implementation has shown significant differences

across studies, many of which suffer from a lack of rigorous

mathematical foundation or omit key technical details. This

lack of standardization, makes accurate replication challenging.

Furthermore, this heterogeneity leads to complications in the use of

the FI across institutions, and hinders its widespread adoption for

large multi-centric clinical studies. From a regulatory standpoint,

the risk of divergent outcomes resulting from these inconsistencies

makes it impossible to refer to the FI for any certifiedmedical device

(MD). Currently, the variability between methods is unacceptable

for regulatory approval. This hinders the use of the FI for FOG

(remote) monitoring in PD patients further, as the FI computed FI

values depend on the used definition, and consequently so do any

inferences about FOG from the FI itself.

To address these shortcomings, here we establish a solid

theoretical and practical framework for FI estimation that allows

for consistent and reproducible measurements, finally making the

FI an established, matured metric. Despite its limitations, such as

voluntary stops and turns (14, 20), we are convinced by the value of

the FI for monitoring FOG and PD among other measurements,

such as gait assessments and cognitive tests. However, this work

is focused on establishing robust FI estimation, but makes no

claims about the FI’s predictive validity for FOG events. We aim

to promote its future use as a digital biomarker for PD progression

and intervention planning. In this research, we make four primary

contributions:

1. We provide an overview of existing FI estimation methods

followed by quantitative comparisons that highlight the degree

of divergence between these approaches.

2. We present a formal mathematical definition of the FI and

provide a rigorous implementation method that is efficient,

reproducible and easy to implement. This formalization lays

the foundation for the use of the FI as part of approved gait

monitoring systems.

3. We conduct a comprehensive comparative analysis between

our proposed standard and other implementations found

in literature. The proposed FI estimation method provides

estimates that outperform previous definitions on Gaussian

signals and are comparable on real-world data.

4. We enhance accessibility and reproducibility by providing open-

source Python code implementing our FI estimation method

and reviewed methods. This opens new avenues for the FI

to be implemented as part of gait-analysis metrics embedded

in medical devices, further extending the possibilities for

telemonitoring of FOG in PD patients.

2 Methods

In the context of this work we investigate the definitions of the

FI found in (4, 15, 16, 18). Henceforth, we shall refer to these as:

Moore for the definition found in (4), Bachlin for the definition

found in (15), Zach for the definition found in (18), and Cockx for

the definition found in (16).

2.1 Existing descriptions: a brief history of
the FI

In 2003, the idea of spectral analysis of gait signals—in

particular insole forces—was introduced in (13). In this paper

the authors draw the attention to the larger power in the 3–6Hz

frequency band during freezing compared to the 0–3Hz band

during locomotion. This concept was then extended in (4), which

introduces the Moore FI in 2008, where the freeze band is extended

to the range 3–8Hz. Unfortunately, the authors only provide a

qualitative description of the FI, lacking a formal mathematical

formulation and thus leaving room for interpretation. This makes

it prone to subjective evaluation, which is not desirable for any

objectivemeasure. The provided “verbal” description of themethod

leaves some questions unanswered, e.g. which spectral estimation
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method is to be used and what preprocessing steps are to be

applied. Moore also introduces threshold values to discriminate

between FOG and non-FOG events based on the FI value. Both

a personalized value based on the first two statistical moments of

the FI during standing and a global threshold are introduced. To

be able to apply the global threshold though, the authors rely on

a normalization of the FI. The procedure there described can be

formally defined as: nM :R
+ → R, x 7→ nM(x) = ln(100 · x),

where ln denotes the natural logarithm. We refer to nM as the

Moore normalization.

By analyzing Moore’s definition, it becomes clear that the

concept of the FI comes with a number of hyperparameters, namely

the signal sampling frequency, the time horizon (window width),

the choice of the proxy signal (i.e. the signal from which the FI is

estimated), the window preprocessing methods, the power spectral

density (PSD) estimation method, and the normalization function.

In addition to these, the threshold value can be considered as a

further parameter, if one wants to use the FI to classify FOG events

in a binary fashion. Many of these aspects are not investigated any

further in the literature.

In the following years, the FI was used in further research,

spawning multiple varying implementations. In 2009, the Daphnet

dataset was created and inspected using the Bachlin FI, which

features a different time horizon, sampling frequency, and

normalization function. In 2013, the authors of the original FI

definition published another paper on the subject (17) using a

different configuration compared to the one of their original

Moore definition, in particular a different locomotion frequency

band is used, and different time horizons. By 2015, the FI is

referred to as a “validated algorithm” by Zach, and is used by

the authors to evaluate FOG events from accelerometer data,

but the FI is computed using the authors’ own choices for time

horizon and proxy signal, while leaving the preprocessing steps,

the spectral estimation method, and the normalization function

unspecified. In 2023, the FI was put to the test compared to heart-

rate measurements (heart-rate z-score as proxy) using Cockx’s

definition, once more using different time horizon, sampling

frequency, proxy signal, and preprocessing steps.

2.2 Limitations of the existing definitions

There does not seem to be an agreement in the existing

literature on the FI, let alone an investigation on the effects of the

hyperparameters which limits the reproducibility of the results and

the adoption of the FI as a standardized digital biomarker. The FI

has been described in words, appears to be used as a concept, but

lacks a formal definition: it appears that the literature could not yet

agree on a single definition of the FI, nor an algorithm to estimate

it. The evolution through time in terms of scientific literature and

the variety of hyperparameters used for the estimation of the FI

is summarized in Table 1. It appears further, that standard good

practices of signal analysis, such as detrending of windows and

tapering (21), are not rigorously applied. In Bachlin the proxy

window is detrended by its average and in Cockx Hann windowing

is used for tapering, but no source was found applying these

methods in the correct and complete sequence.2 Additionally,

only acceleration signals have been considered, despite the original

analysis being carried out on vertical ground reaction forces (13).

There seems not to be any agreement on the location of the

accelerometers and on the best signal (direction) to be used,

suggesting that the choice of the proxy signal might not be critical.

A comparison of various proxy choices is included in this paper.

The FI has not been unambiguously defined yet—in the

remainder of this paper, a formal FI computation method is

introduced, and its performance is compared to the plurality

of definitions present in the literature, whose original meaning

was replicated to the best of the authors’ intentions. It is the

authors’ opinion that the existing literature falls short on the actual

definition of the FI from a mathematical, algorithmical and a

signal-processing perspective. To summarize the inconsistencies,

the presented FI implementations (4, 15–18) have shown:

• No agreement on the time window size T (values range from

2 to 10 s);

• No agreement on the necessary preprocessing steps (average

subtraction in Bachlin and Hann tapering in Cockx are seen,

but neither seem complete nor fully satisfying good practices);

• No questioning of the quality of the PSD estimates used [the

square magnitude of the FFT is used most often, but it is

known that spectral estimation is no trivial feat (22)];

• No discussion on the frequency resolution requirements in the

frequency domain: various sampling frequencies and window

sizes have been employed for the time-frequency analysis.

• No agreement nor analysis of the effects of the definition of the

locomotion (0–3Hz and 0.5–3Hz have been used) and freeze

(3–6Hz, 3–8Hz, and 3.5–8Hz have been used) frequency

bands;

• No agreement on the sensor placement (shank, thigh, lower

back);

• No agreement on the proxy signal [vertical acceleration,

forward acceleration, after the original work was done on

(vertical) ground reaction forces (13)];

• No investigation on the use of other (inertial) signals, such

as angular velocities, which would naturally be unbiased by

gravity;

• No agreement on the scaling of the FI (Moore scaling seems

to dominate, but no scaling is mentioned in Bachlin, for

example);

• No agreement on thresholds for discriminating FOG from

non-FOG (a global threshold of 2.3 is used in Moore and

1.47 is brought forward in Zach, however these attempts do

not fully resolve the issue, as differences and historical trends

indicate a lack of universal threshold);

• No cross validation of the thresholds (neither the personalized

nor the global values appear to have been determined using all

2 In Bachlin’s method no tapering is applied, hence leaving open the

possibility for edge e�ects to arise during the FFT evaluation. In Cockx’

method, the Hann window is applied to a non-zero-mean signal, which can

cause undesired frequency leakage, in particular at the lower end of the

spectrum.
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TABLE 1 The history of the computation of the FI.

ID Moore Bachlin Moore13 Zach Cockx

Reference (4) (15) (17) (18) (16)

Year 2008 2009 2013 2015 2023

Motion band [Hz] 0.5–3 0.5–3 0–3 0.5–3 0.5–3

Freeze band [Hz] 3–8 3–8 3–8 3–8 3.5–8†

Window T [s] 6.0 4.0 7.5, 10 2.0 3.0

Step size [s] Not specified 0.5 0.2 0.1 1/256

Samp. freq. [Hz] 100 64 100 100 256

Proxy signal Shank vert. acc. Shank vert. acc. Shank acc. Lumbar fwd acc. Shin vert acc.

Thigh acc.

Lumbar acc.

Preprocessing Not specified Mean µ(x) subtraction Not specified Not specified Hann window w

PSD Not specified | FFT(x− µ(x))|2 Not specified Not specified | FFT(x · w)|2

Normalization Moore nM None Not specified Not specified Moore nM

Personal ths. µ(FIstanding)+ 0.1 · σ (FIstanding) 1.5 | 3.0* Not specified µ(FIwalking)+ 2 · σ (FIwalking) Not specified

Global ths. 2.3 Not specified 3.0 1.47 Not specified

For the sources where various combinations have been experimented with, only the best predictor configuration options are listed. acc., acceleration; fwd, forward; samp. freq., sampling

frequency; ths., threshold; vert., vertical. *These values were found in the original MATLAB code of (15). †This is the range reported in the paper (16), but in the annexed Matlab code the range

3–8Hz is used instead, as of 18.09.2024: https://github.com/helenacockx/FI-HR_duringFOG.

data for “training” and maximize some performance metric,

but no “testing” appears to be done on unseen data).

The reigning disagreement in literature means that the FI

cannot be considered a digital biomarker for FOG until consensus

on the evaluation of the FI is reached or as long as the differences

in the methods have not been quantified. Our contribution in

this sense is twofold. First, we argue that a formal definition of

the FI, based on good signal processing practices and rigorous

formulations, alongside a comparison of the proposed definition

and implementation with the existing definitions is a void in

literature that ought to be filled. The standardization of the FI

enables its use in MDs and its use as an established digital

biomarker for FOG. Second, we provide a quantitative comparison

of the existing definitions of the FI. These efforts are meant to

establish solid foundations for the future use of the FI as a digital

biomarker and the study of its relation to FOG, not only based

on thresholding.

2.3 Formalization

We introduce a formal definition for the FI, starting

from continuous-time, and moving then to computable, robust

estimations for discrete-time signals using multitaper spectral

estimation. The formalism is limited to the computation of the

FI itself, and does not cover its use as FOG classifier. This latter

aspect is to be investigated in a clinical trial based on the formalism

introduced herein.

It shall also be noticed that the introduced formalism does

not aim at minimizing the FI’s intrinsic limitations, such as its

sensitivity to non-FOG motions sharing the same frequency band

such as turns and voluntary stops. We justify this choice by valuing

the FI’s simplicity and interpretability—given additional (sensor)

information it should be possible to discriminate confounding

events upstream. For example, gyroscopic signals could be used

to classify turns and distinguish them from false positive FOG

event detections based on the FI. All of this is beyond the scope

of this work.

2.3.1 Continuous time
Let x(t) be real-valued, continuous-time signal. Let w(t,T) be a

window signal of width T centered at 0—if not specified further, let

w(t,T) be the rectangular window

w(t,T) =

{

1 if |t| ≤ T/2,

0 otherwise.

Let PSD(f ; x,w, t,T) be the power spectral density at frequency

f of the signal x(t) windowed with w(τ − t,T), i.e.

PSD(f ; x,w, t,T) = |X(f ;w, t,T)|2,

with X(f ;w, t,T) being the Fourier transform of x(t) windowed

with w(τ − t,T)

X(f ;w, t,T) =

∫ +∞

−∞

x(τ ) · w(τ − t,T) · e−j2π f τ dτ .

Further, let ffreeze(ft) = [ft , 8] Hz and floco(ft) = [0.5, ft] Hz

denote the freezing frequency band and the locomotion frequency
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band respectively, and ft denote the locomotion-freeze threshold

frequency. We then formally define the freeze index at time t to be

FI(t) = ln

(

100

∫

ffreeze
PSD(f ; x,w, t,T) df

∫

floco
PSD(f ; x,w, t,T) df

)

. (1)

It shall be noted that this formal definition deviates from the

original outlined in (4) as the square of the ratio is not taken. The

rationale behind this choice is that, as the Moore normalization is

part of the definition, the squaring of the fraction would only lead

to a scaling by the factor of two in the end value. More on this can

be found in Section 2.3.3.

2.3.2 Discrete time
It shall be noted that in practice, the definition of the FI

introduced in Equation 1 can only be estimated. This is due to

the discrete nature of sampled signals, for which the Fourier

transform is replaced by estimation methods such the fast Fourier

transform (FFT) (23) or Welch’s method for PSD estimation (24),

and integrals are approximated with numerical methods, such as

trapezoidal integration. This is particularly relevant for a clinical

applications, as this context focuses more on the estimation (as an

indicator of a clinically relevant outcome) than its formal definition.

In the remainder of this paper we will focus on the methods to

estimate the FI and on the comparisons of these methods.

2.3.3 Multitaper FI estimation algorithm
We propose an FI estimation algorithm based on the short-time

Fourier transform (STFT) and multitaper spectral estimation (25),

see for example (22) for a review on the subject. An attempt is

made toward providing a rigorous computation scheme and at the

same time avoid unnecessary operations. Open source Python code

leveraging the SciPy library (26) is available at https://github.com/

magnesag/freeze-index.

We formalize the estimation of the FI by the following

algorithm. Let T be the time window in seconds, and fs the

sampling frequency in Hertz. Let x(t) = {x[k]} be a continuous-

time, real-valued signal with N samples, taken at time t =

k/fs with k = 0, 1, 2, ...,N − 1. Let the Fourier transform X of x(t)

be evaluated by the FFT [X = fft(x(t)), see (23)], as part

of the STFT spectrogram() function call. Let [z] denote the

rounding operation, i.e. [z] = ⌊z + 0.5⌋. Let W = (w1, · · · ,wL)

be the first L Slepian windows (27) of appropriate size and let

DPSS() be a method to generate such windows. Furthermore, let

trapz(y, x) be the numerical integration of y along x using

the trapezoidal rule. Let floco(ft) = [0.5, ft] Hz and ffreeze(ft) =

[ft , 8]Hz be the locomotion and freeze intervals as a function of

the threshold frequency ft respectively. Let MAF(x,M) denote the

moving average filter of width M being applied to signal x. The

proposed FI estimation method is described in Algorithm 1. In

Figure 1, we illustrate the estimation problem at hand as well as the

idea behind multitaper spectral estimation.

The proposed Algorithm 1 features the following

properties/steps:

1. Detrending of the window using linear-dedrifting.

function multitaper-FI(x, fs, T, L, B, M, ft)

n← [T · fs]+ 1 ⊲ Time-window width

nFFT ← 2⌊log2(n)+3⌋ ⊲ Zero-padding

W← {DPSS(n,B,i)|i ∈ {1, . . .,L}} ⊲ Collection of

tapers

Initialize S[f, t] ⊲ 2D array

for all w ∈ W do

S ← S + spectrogram(x, w, n_fft,

detr=‘linear’)

end for

ploco ← trapz(S[f,:], f_loco(f_t)) ⊲ 1D array

pfreeze ← trapz(S[f,:], f_freeze((f_t))) ⊲ 1D

array

FI ← ln
(

100 · pfreeze/ploco
)

⊲ 1D array

FI ← MAF(FI, M) ⊲ Further smoothing

return FI

end function

Algorithm 1. Multitaper FI estimation algorithm.

2. Zero-padding for increased frequency resolution and efficient

FFT evaluation.

3. Multi-tapering PSD evaluation with orthogonal (Slepian)

tapers (22, 27).

4. Numerical integration of the PSD via trapezoidal method.

5. Moore scaling of the FI.

6. Moving average filtering of the estimated FI signal.

It shall be noted that none of the existing FI implementations

features this complete set of steps. Opposed to the existing FI

implementations, the algorithm does not perform:

1. Scaling of the FFT, as it is unnecessary due to the ratio being

computed.

2. Division by L in the averaging of the tapered spectra, as the

computation of the ratio makes this operation redundant too.

3. Squaring of the ratio, as it only represents a scaling of the

FI by a factor 2 in the log-scale after application of the

Moore normalization step (log(x2) = 2 log(x)). This is deemed

unnecessary as:

(a) The methods found in literature all define their own

thresholds for distinguishing between walking and

freezing (4, 15, 18);

(b) Personalized thresholds might even be needed for better

performance.

Hence, the actual (absolute) value of the FI is not as important

as its relative change within the time series.

2.4 Comparing definitions

2.4.1 Performance evaluated on theoretical
results

We compare the FI definitions for signals with well-defined

PSDs for which a theoretical FI value can be computed explicitly.

Gaussian white noise n(t) ∼ N (µ, σ ) is such a signal. Gaussian

white noise is characterized by a constant PSD (28), hence for the
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FIGURE 1

FI estimation problem and multitaper estimation algorithm conceptual visualization. (a) Given the gait (proxy) signal x(t), the FI is computed for each

time t∗ over the sliding time window of duration T. Since FOG manifests in higher frequency bands (ffreeze) than regular locomotion (floco), the FI for

said window is defined as the ratio of the freeze band area (green area on the right) to the locomotion band area (yellow area on the left). (b) The

multitaper method is used for estimating the power spectral density (PSD) of each sliding window, as it provides better estimates than other

methods (22).

FI definition introduced in Equation 1 we obtain for ft = 3Hz

FIn,theory = ln

(

100
8− ft

ft − 0.5

)

= ln(200) ≈ 5.30. (2)

We repeat this exercise on all existing FI definitions to find the

theoretical FI values for white noise. These are found to be 5.99

for Moore and Zach, 2.00 for Bachlin, and 5.78 for Cockx. In the

ideal case, the FI computed on white noise should be constant at

all times, as its PSD is time invariant, i.e. all time-domain slices are

per definition independent and feature the same spectrum. Since

white noise is a mathematical construct, we evaluate the theoretical

performance by the following two metrics:

1. The variability of the FI, measured by the standard deviation

of the FI signal evaluated on a simulated white noise

approximation signal.

2. The root mean squared error (RMSE) of the FI signal from the

theoretical value.

We generate the white noise signal using Numpy’s

np.random.randn() (29). To minimize the undesired

effects of randomness we:
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• Evaluate all methods on the same input signals;

• Repeat the evaluation with M = 10 randomly generated

signals.

We then report the average and standard deviation of the metrics

for the M trials. The process is repeated for sampling frequencies

fs 64Hz, 100Hz, and 256Hz which are the sampling frequencies

found in (4, 15, 16, 18). For a fair comparison with the existing

definitions, the moving average filter in the proposed multitaper

implementation is deactivated for this evaluation.

2.4.2 Sample data comparison
While it is clear that the existing methods were not rigorously

introduced and lack standardization, it is also true that any new

method should at least be comparable to the existing consensus.

We compare the various FI definitions on data from the Daphnet

dataset (15). We focus on the FI solely, and not on its quality as

a FOG classifier, as this would require a thorough discussion and

analysis on the choice of threshold on a generalizable dataset while

potentially also controlling for the FI’s intrinsic limitations, which is

outside the scope of this work. It shall be noted that the used dataset

is limited to only ten participants in a semi-controlled environment,

thus generalizability in terms of the use of the FI as measure for

FOG cannot be achieved. Albeit limited for FOG detection, the

used dataset provides a benchmark for the estimation methods in

terms of FI, while keeping all sources in the public domain, easing

reproducibility and cross-verification. Arguably, generalizability of

the FI itself should be dataset agnostic, as it is a purely signal

processing process, without direct clinical output. We compare the

FI estimation methods on the real-world data using the similarity

analysis described in details in Section 2.4.3.

While not all FI definitions have been used on data sampled at

64Hz, it is argued that sound estimation methods should be robust

against sampling frequency choice. Conversely, one can argue that a

method’s sensitivity to sampling frequency is an indicator of poorer

quality. Hence, we proceed with our analysis using the public

dataset without further adjustments.

2.4.3 Similarity analysis
Mostly due to differences in step size of the windows (i.e.,

number of samples by which the window is slid), FIs computed

on the same input will generally not feature the same number of

samples when two different definitions are used for the evaluation.

Hence, the FI signals of the different methods cannot be compared

on a point by point basis. Therefore, the FI signals are resampled to

the same number of samples using linear interpolation to compute

distances of the FI signals across different methods.

Furthermore, as different scalings are used in the various

definitions, we only report comparison results for standardized FI

signals. That is, every FI time series is scaled to have zero mean and

unit standard deviation.

Resampled, standardized FI signals are then compared using

three metrics: the Pearson correlation coefficient ρ, the coefficient

of determination R2, and the mean absolute distance MAD. For

the evaluation of the metrics, the functions provided by Numpy

corrcoef() (29) and Scikit-learn metrics.r2_score(),

metrics.mean_absolute_error() (30) are employed.

Notice that we use mean absolute distance rather than error as the

latter implies the fundamental correctness of one of the signals, but

this cannot be determined in the context of this work.

We compare each of presented FI implementation, to all others

by a pair-wise comparison, that is quantified by the aforementioned

metrics. For example, if we have five definitions of the FIi, i =

1, . . . , 5, we compute ten sets of score metrics, i.e. one for each pair

of FI definitions {(FIi, FIj)|i = 1, . . . , 5 ∧ j > i}.

As we are ultimately interested in comparing FI definitions

in relation to all other definitions, we further use a leave-one-out

meta-comparison. To do this, we group all scores belonging to the

test definition in one set A and all scores not belonging to the

test definition in another set B. We then evaluate the similarity

between A and B to gauge how comparable the tested definition

is in relation to all other considered definitions. We use a modified

intersection over union (IOU) to assess similarity between sets. Let

the range rX of a set X = {x|x ∈ R} be further defined as

rX =

[

min
x∈X

x, max
x∈X

x

]

.

Let A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} be two sets

of metrics to be compared, withm, n ≥ 2.We then define the union

∪(A,B) ofA and B as

∪(A,B) = max
X∈{A,B}

{max rX } − min
X∈{A,B}

{min rX } ,

and the intersection ∩(A,B) ofA and B as

∩(A,B) = max

{

min
X∈{A,B}

{max rX } − max
X∈{A,B}

{min rX } , 0

}

.

We then define the IOU ofA and B as

IOU (A,B) =
∩(A,B)

∪(A,B)
.

An IOU of 0 indicates no overlap between the sets, while an

IOU of 1 indicates perfect overlap of the ranges of the sets. A

graphical visualization of this variant of the IOU is depicted in

Figure 2.

3 Results

Whenever real-world data is used, we show the differences

between the definitions using data from the Daphnet set (15). In

particular, when a single recording is used for demo purposes,

the first recording of subject two (S02R01.txt) is used, as this

is well-suited dataset.3 When not specified further, the shank’s y-

acceleration is used as a proxy, which is the “vertical” acceleration.

3 As well-suited, we mean that the recording includes FOG phases that

are neither too many nor too frequent. Such recordings are S02R01.txt,

S03R02.txt, S06R01.txt.
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FIGURE 2

IOU variant depiction. As the elements of A and B can assume

virtually any value in R, the classical definition of IOU where one

checks for exact matches is deemed not fitting in this context due

to the fact that the elements of the sets A and B are real numbers

and not integers. Hence, we work with the ranges rA and rB
spanned by A and B respectively. This allows us to compare sets

with di�ering number of elements and whose elements may

assume any value in principle.

3.1 Hyperparameters tuning

The proposed multitaper FI estimation method, presented in

Algorithm 1 features a number of hyperparameters that require

tuning, namely the time horizon (windowing time) T, the number

of tapers L, the Slepian standardized half-bandwidth B,4 the

locomotion-freezing threshold frequency ft , and the MAF kernel

sizeM.

The parameter default values used for all analyses except the

hyperparameter sweep are T = 5.0 s, L = 4, B = 2.5, ft = 3Hz, as

they are considered a good compromise between smoothness and

responsiveness of the FI. To investigate if and to what extent each

hyperparameterT, L, B, ft affects the resulting FI, we compute the FI

for a range of parameter values, while keeping the other parameters

constant. The sweeping ranges for the parameters are T ∈ [2, 10] s,

L ∈ [1, 8], B ∈ [0.5, 10], and ft ∈ [2, 4]Hz.

It shall be noted that for the parametric sweep, we do not

compare the standardized FI, as we are interested in showing

the absolute changes in FI estimation. Standardization of the FI

removes some of the differences under investigation.

We find that the locomotion-freezing frequency threshold ft
has the biggest effect on the FI. This hints toward an intrinsic

robustness of the multitaper method with respect to its other

hyperparameters {T, L,B}, which is a desired feature of the

algorithm, and calls for a deeper investigation on the importance of

the locomotion/freezing bands definition. It shall be noted that the

results shown in Figure 3 are potentially valid only for the specific

recording or even time window, as intuitively the locomotion band

could be linked to one’s walking cadence.

4 This is the same parameter NW in the SciPy function

scipy.signal.windows.dpss(). See https://docs.scipy.org/doc/scipy/

reference/generated/scipy.signal.windows.dpss.html for more information

– website accessed on 2024.09.11. We refer to B as the bandwidth in the

remainder of the paper.

3.2 Comparison to existing definitions

3.2.1 Performance evaluation
As shown in Table 2, the multitaper FI is the top performer

among all definitions yielding the smallest variability 0.41 ± 0.05

and smallest RMSE 0.42 ± 0.05 when evaluated on white noise

signals. The multitaper FI also returns the most consistent values

among all definitions across all considered sampling frequencies,

further strengthening the case for its use in clinical applications.

3.2.2 Similarity analysis
Figure 4 depicts the comparison metrics and their IOUs. By

comparing the literature FI definitions to the multitaper definition

presented herein, we find that the introduced multitaper FI is

comparable to the ones found in the literature. The IOU of

the computed scores for the multitaper method are found to be

approximately 0.53, 0.48, and 0.50 for MAD, ρ, and R2 respectively.

By inspecting Figure 4b, it is apparent how the Zach method is the

most different—this is shown by how the IOUs are clustered in

the figure. Hence, we argue that the multitaper method is not an

outlier among the implementations, and that its good practices and

formalism make it the best candidate for a standard computation

method of the FI.

3.3 Comparison of di�erent proxy choices

The test dataset (15) features lumbar, thigh, and shank

accelerations in three directions x, y, z which are denoted as

lumbar-X, lumbar-Y, lumbar-Z, thigh-X, thigh-Y, thigh-Z, shank-

X, shank-Y, and shank-Z here. Two additional proxies for each

sensor location are considered, namely the acceleration magnitude

a =
√

a2x + a2y + a2z , and the acceleration sum s = ax + ay + az .

The effect of proxy choice on the FI for the test dataset is shown in

Figure 5 in terms of leave-one-out IOUs. The full similarity matrix

can be found in the Supplementary material. The IOU distribution

shows how the proxy choice appears to have a minor effect on

the FI estimation. We justify this statement by observing that the

IOUs indicate how the FI computed with one proxy compares to

all others in relation to how all others relate to each other, and the

fact that there is no obvious pattern in the distributions of the IOUs.

For all considered proxy choices, the maximum computed MAD is

found to be 0.91 (lumbar-magnitude compared to lumbar-X), and

the minima is 0.09 (lumbar-Y compared to lumbar-magnitude). In

terms of IOU clustering, one can identify two groups of proxies:

the y–direction signals, which are the ones biased the most by

gravity, and the magnitude signals seem to form a group in terms

of IOU (see Figure 4b). This is most likely due to the fact that the

magnitude proxy is dominated by the y–direction signals, which

in turn means that whenever one of these is left out for testing,

the other contributes to span a similar range in the comparison

set. It is somewhat surprising that the dedrifting preprocessing step

does not compensate for this completely. Then again, by looking at

group II in Figure 5, it is apparent that choosing a different proxy

has a limited effect. Hence, the proxy choice and the method choice

have similar effects on the evaluation of the FI. This justifies both
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FIGURE 3

E�ects of parameter sweep on FI estimation. The e�ects of the time horizon T, the number of tapers L, the bandwidth B, and the locomotion-freeze

threshold frequency ft are shown in (a–d) respectively. The gray areas indicate the FOG regions as labeled by the experts. While T, L, and B appear to

have a modest impact on the FI, with just small changes in the smoothness/responsiveness relation (hinting toward robustness of the proposed

method), ft appears to have a significant e�ect. For ft → 2.0Hz [darker curves in (d)] it can be observed that the FI appears to feature more

distinguishable peaks in the actual FOG region, while staying flatter outside it.

the change from the original ground reaction forces (13) analysis to

inertial signals, and the potential for other signals to be used to the

same end, such as gyroscope measurements.

4 Discussion

Existing definitions of the freeze index (FI) exhibit considerable

heterogeneity and frequently lack adherence to rigorous signal

processing standards, limiting FI’s robustness and reproducibility

as a digital biomarker for freezing of gait. This inconsistency has

restricted its deployment as part of remote monitoring applications

for patients. Further, it is unsuitable for certified medical devices

due to the absence of an established, standardized definition.

To address these challenges, we introduced a robust formalism

for FI computation based on multitaper power spectral density

estimation, establishing a new benchmark for consistency and

applicability across clinical and technological domains. To be able

to expand on the FI and use it in a clinical framework, consensus on

its definition is a prerequisite and establishing this is our primary

contribution. Its clinical interpretation in real-world settings in

relation to FOG events has to be evaluated in a clinical study.

The study should focus on identifying the relationship of the FI

and FOG, within the limits of the newly introduced definition

of the FI. The study should also collect additional data to aid in

the discrimination of confounding events such as voluntary stops

and turns.

The introduced algorithm outperforms the existing definitions

in terms of both error and consistency when evaluated against

closed-form solutions for flat-spectrum signals as predicted by

the underlying mathematical theory, and yields comparable results

when evaluated on real-world data. The latter was demonstrated

through similarity-analysis based on the IOU when comparing

how our multitaper method compares to the existing FI estimation

methods in relation to how the existing methods compare to each

other when evaluated on sample data. For real-world data, the

Zach method stands out as the most different from the others

(smallest IOU values), and this is to be explained by its small

time-horizon in combination with the differing sampling frequency

between the original application (18) and the test dataset (15),

as from an implementation point of view, Moore and Zach are

otherwise identical. The Zach method was originally applied to

signals sampled at 256Hz, hence having 512 samples at disposal for

the spectral evaluation, but the data from the Daphnet is sampled

at 64Hz, leading thus to only 128 samples being available for the

FFT evaluation – this is a clear reduction of frequency resolution.

Combining this fact with the absence of tapering and zero-padding

as preprocessing steps yields to the Zach method differing the most

from the others. This situation further underlines the need for a

clear definition of how the FI is to be estimated, in addition to

requiring the FI to be robust against sampling frequency changes.

While the differences between the methods have been found to

be comparable across all implementations, one aspect which has

not been investigated in depth yet is the definition of the frequency

bands. In particular, the locomotion band has been defined as both

0–3Hz (17) and 0.5–3Hz (4), while the freezing band has been

reported to be all of 3–6Hz (13), 3–8Hz (4), and 3.5–8Hz (16).

As hinted by our parametric sweep over the locomotor-freezing
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threshold, it may be that the introduced multitaper FI estimation

algorithm shows improved performance for frequency bands

specific to the underlying data, e.g. basing the threshold on the

subject’s cadence. A clinical study addressing this issue should be

carried out in order to answer this question definitively.

When applying the methods found in literature, special

care needs to be taken when deviating from the original

TABLE 2 Performance evaluation results across di�erent FI definitions on

Gaussian white noise.

Sampling
frequency [Hz]

Estimation
method

STD RMSE

64 Moore 0.62± 0.06 0.64± 0.06

Bachlin 1.00± 0.10 1.12± 0.13

Cockx 1.32± 0.08 1.36± 0.10

Zach 1.19± 0.07 1.21± 0.08

Multitaper (ours) 0.41 ± 0.03 0.42 ± 0.03

100 Moore 0.64± 0.11 0.65± 0.11

Bachlin 0.95± 0.19 1.03± 0.22

Cockx 1.21± 0.10 1.22± 0.10

Zach 1.14± 0.05 1.15± 0.05

Multitaper (ours) 0.41 ± 0.04 0.42 ± 0.04

256 Moore 0.62± 0.13 0.64± 0.13

Bachlin 0.96± 0.23 1.03± 0.28

Cockx 1.24± 0.16 1.26± 0.17

Zach 1.15± 0.12 1.17± 0.13

Multitaper (ours) 0.41 ± 0.05 0.42 ± 0.05

The proposedmultitaper FI shows the best performance across all tested sampling frequencies

for both the variability (STD) and the RMSE. Themultitaper FI also shows themost consistent

results across all sampling frequencies. The shown values are the mean ± the standard

deviation of the metric over theM = 10 simulations.

implementation, as best signal processing practices are not fully

applied. In particular, the lack of appropriate preprocessing steps

(detrending, tapering, and zero-padding) means that artifacts

or performance drops can appear when using the algorithm

at different sampling frequencies—this is not acceptable for a

standardized metric. The multitaper method with its complete

FIGURE 5

Proxy sweep IOU evaluation. IOU scattering for MAD and ρ when

one proxy’s similarity is compared to the similarity among all other

proxies (leave-one-out strategy). The label indicates the test set, i.e.,

which proxy has been left out. The IOU values indicate how similar

the FI for the given proxy is compared to the FI for all other proxies,

relative to how similar the FI for all other proxies are compared to

each other. Two groups can be separated, highlighted with the

boxes I (magnitudes and y–direction signals) and II (others).

FIGURE 4

Similarity metrics for the pairwise comparison of FI estimation methods. The upper-right half of the similarity matrix reports the MAD scores, while

the bottom-left half the Pearson correlation coe�cient ρ, and the coe�cient of determination R2 are displayed. Clearly, the Zach method di�ers

from the others, this is visible from both the similarity matrix (darker row and column in correspondence of Zach’s method) and in the IOU scatter

plot (the ranges spanned by the Zach metrics have no overlap with the ranges spanned by the others). (a) Similarity matrix for the FI when the various

implementations are used for estimation. (b) IOUs distribution visualization for IOUs computes with leave-one-out strategy.
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preprocessing suite, is robust in this regard as demonstrated by our

analysis on Gaussian signals.

The results from the real-world data need to be considered

within their limitations. In particular, it shall be noted that the

used dataset was limited to few subjects (N = 10), in a semi-

controlled environment, which could have affected the participants’

performance (15). The generalization of the results for the real-

world application may be limited by these factors and more

research should be carried out answer this question exhaustively.

When analyzing real-world data, which naturally come with

high variability and unpredictability, a robust FI estimationmethod

is imperative. Existing implementations have been shown to fall

short in this sense, while the multitaper approach complies with the

requirement, although this shall be formally verified in subsequent

clinical trials.

Although not the primary focus of work, our investigation

suggests that thresholding the FI may not be the optimal to

discriminate between FOG and non-FOG episodes. FOG is a

multifaceted phenomenon, and the FI barely looks at a thin

slice of this complex picture—it seems overly optimistic to assign

all responsibility of reliably detecting FOG in any circumstance

onto the FI using simple thresholds. Fusing the unified FI

implementation with other sources of information, in addition to

exploring alternative classification methods, may help overcome

the shortcomings uncovered in recent findings (14). This would

require a proper clinical study to validate. Nonetheless, the

simplicity of the FI is also one of its strengths, as it is interpretable,

and its limitations are known. These aspects make it a good tool to

have at hand for the monitoring of PD.

5 Conclusions

We have formalized the definition of the freeze index (FI) by

introducing an estimation algorithm based on multitaper spectral

estimation. The proposed algorithm performs on par with the

existing definitions on the limited test dataset, while providing a

more rigorous and reproducible foundation,made available as open

source Python code, and outperforming all prior definitions when

computing the performance against theoretical values.

Our study suggests that the multitaper FI method

is robust across various hyperparameters such as proxy

choice, and time horizon. However, to maximize reliability, a

consistent/standardized use of a specific definition of the FI is to

be advised. Automated FOG detection using the FI could empower

clinicians to monitor and adjust treatment strategies, ultimately

enhancing patient quality of life by reducing FOG symptoms. Our

multitaper FI method, with its theoretical rigor, provides a valuable

tool for future FOG research and clinical application.

Further investigation into optimized frequency bands for

FOG detection and exploring the use of alternative sensors (e.g.

gyroscope) remains a promising direction, potentially enabling

more individualized and precise FI applications. Also, the general

performance of the FI in real-world conditions, such as in home

environments, shall be investigated in order to assess its predictive

power for FOG, in particular when it is augmented with additional

data such as information on turns.
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