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Development and validation of a
risk prediction model for
activities of daily living
dysfunction in stroke survivors

Fangbo Lin and Nan Liu*

Neurology Department, Fujian Medical University Union Hospital, Fuzhou, China

Objective: Stroke is a leading cause of disability worldwide, imposing a significant

burden on patients, families, and society. To create and verify a prediction model

for activities of daily living (ADL) dysfunction in stroke survivors, pinpoint key

predictors, and analyze the traits of those at risk.

Methods: Data from the China Health and Retirement Longitudinal Study

wave 5 was used in this cross-sectional study. 1,131 stroke survivors were

included and split into training and testing sets. The least absolute shrinkage and

selection operator regression and multivariate logistic regression were applied

for model development. Model performance was evaluated using the area

under the receiver operating characteristic curve(AUC), calibration plots, and

decision curve analysis. SHapley Additive exPlanations values were calculated to

understand predictor importance.

Results: Six variables (age, the 10-item Center for Epidemiologic Studies

Depression Scale score, memory disorder, self-rated health, pain count, and

heavy physical activity) were identified as significant predictors. The model

showed good discriminatory power (training set AUC = 0.804, testing set

AUC = 0.779), accurate calibration, and clinical utility.

Conclusion: A prediction model for ADL dysfunction in stroke survivors was

successfully developed and validated. It can help in formulating personalized

medical plans, potentially enhancing stroke survivors’ ADL ability and quality

of life.
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1 Introduction

Stroke is a leading cause of disability worldwide, imposing a significant burden on

patients, families, and society (1). Despite advancements in acute phase stroke treatment,

a large number of stroke survivors experience limitations in activities of daily living (ADL)

(2), which severely impacts their quality of life. Understanding the factors associated with

ADL dysfunction in stroke survivors and predicting its occurrence at an early stage is

crucial for developing targeted interventions.

Previous studies have investigated various factors related to post-stroke ADL

dysfunction (3, 4), but there is still a lack of a comprehensive and accurate prediction
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model. Identifying individuals at high risk of ADL dysfunction

early can enable timely implementation of rehabilitation strategies

and management plans, potentially improving their functional

outcomes and quality of life (5, 6).

In this study, we aimed to develop and validate a prediction

model for ADL dysfunction in stroke survivors. By analyzing data

from a large scale dataset, we aimed to identify key predictors,

understand the characteristics of stroke survivors at risk of ADL

dysfunction, and provide a basis for personalized medical care and

improved management of this patient population.

2 Methods

2.1 Study design

This study adopted a cross-sectional design, which is

suited for exploring associations between risk factors and

functional outcomes in stroke survivors. Cross-sectional studies

are advantageous for identifying potential predictors of post-stroke

disability, providing a basis for future longitudinal investigations.

Data were obtained from wave 5 of the China Health and

Retirement Longitudinal Study (CHARLS). The dataset is publicly

accessible via the official CHARLS website (http://CHARLS.pku.

edu.cn). The study adhered to ethical norms and received approval

from the Biomedical Ethics Committee of Peking University, China

(IRB00001052-11,015) (7). All procedures followed the principles

outlined in the Declaration of Helsinki, and informed consent

was obtained from all participants. In this study, patients and the

public were not involved in the design, conduct, reporting, or

dissemination plans of the research. This study adhered to the

Transparent Reporting of a multivariable prediction model for

Individual Prognosis or Diagnosis (TRIPOD) (8).

2.2 Study population

In the CHARLS database, stroke status was determined

through self-reported responses to the question: “Have you

ever been diagnosed with a stroke by a doctor?” This self-

reported approach may lead to potential misclassification, which

was considered in the study’s limitations. ADL in two main

categories: Basic ADL (BADL), which includes six essential

tasks: dressing, bathing, eating, transferring (getting in and out

of bed), toileting, and controlling urination and defecation.

Instrumental ADL (IADL), which involves more complex activities,

such as managing housework, cooking, shopping, financial

management, andmedication adherence.We used a questionnaire-

based survey method to assess ADL dysfunction. If a stroke

survivor was unable to independently complete any of the

tasks listed under BADL or IADL, they were classified as

having ADL dysfunction. Inclusion criteria: History of stroke;

Ability to cooperate in completing the ADL screening. Exclusion

criteria: No history of stroke or uncertain stroke diagnosis;

Missing key variables; Pre-existing ADL dysfunction before

stroke. Initially, 1,381 individuals with a self-reported history

of stroke were identified. After excluding individuals with

more than 30% missing data, the final analysis included 1,131

stroke survivors.

2.3 Candidate predictor variables

Predictor selection was based on prior literature and clinical

expertise (9–11). Although stroke characteristics (e.g., lesion

location, infarct size) influence prognosis, these variables were

not recorded in CHARLS. Instead, we examined demographic,

behavioral, health, and socioeconomic factors available in the

dataset. Basic factors: age, gender, residence (urban/rural),

education level, marital status, and life satisfaction (five-point

Likert scale). Behavioral factors: sleep duration, smoking, alcohol

consumption, social activity participation (eight categories), and

physical activity levels (light, moderate, heavy). Total energy

expenditure from physical activity was calculated using metabolic

equivalent (MET) scores. Health status and medical conditions:

self-rated health (five levels), hypertension, diabetes, cancer,

cardiac disease, mental disorders, and the 10-item Center

for Epidemiologic Studies Depression Scale (CESD-10). Family

and economic factors: household size, financial support from

children/parents, and number of surviving children.

2.4 Statistical analysis

All statistical analyses were conducted using R software.

Continuous variables were reported as medians and interquartile

ranges, while categorical variables were presented as proportions.

Between-group comparisons were performed using the Wilcoxon

rank-sum test for continuous data and the Chi-square test or

Fisher’s exact test for categorical data. To develop the ADL

dysfunction prediction model, the dataset was randomly split

(6:4) into a training set (n = 678) and a testing set (n = 453).

We applied the least absolute shrinkage and selection operator

(LASSO) regression to identify key predictors while addressing

multicollinearity. Optimal tuning parameters (λ) were selected via

ten-fold cross-validation. Selected variables were incorporated into

a multivariate logistic regression model, with predictors retained

at P < 0.05. Model performance was assessed using the area

under the receiver operating characteristic (ROC) curve (AUC) for

discrimination, calibration plots for agreement between predicted

and observed outcomes, and decision curve analysis (DCA) for

clinical utility. SHapley Additive exPlanations (SHAP) values were

computed to interpret predictor importance.

3 Results

3.1 Flow chart

The study flow chart is presented in Figure 1.

3.2 Baseline characteristics

A total of 1,131 stroke survivors were included in this study.

The demographic and clinical characteristics of the participants

are summarized in Table 1. The cohort consisted of 473 male

participants (41.8%) and 658 female participants (58.2%), with

an average age of 67 years. Among these stroke survivors,

57.3% experienced difficulties with ADL. Several factors showed
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FIGURE 1

Flow chart of the study.

significant differences (p < 0.05) between stroke survivors with

normal and impaired ADL function, including age, gender,

education level, life satisfaction, CESD-10 score, and health status

factors (e.g., hypertension, lung disease, arthritis). Additionally,

factors such as social activity, sleep duration, pain count, and

physical activity levels were also significantly associated with

ADL dysfunction.

3.3 Prediction model development

LASSO regression was applied to identify the best predictors for

ADL dysfunction, with predictors selected based on 10-fold cross-

validation. The 11 significant variables identified included gender,

age, hip fracture, CESD-10 score, memory disorder, pain areas,

and levels of physical activity (Figure 2). These variables were then

used in a multivariate logistic regression model, which selected the

following significant predictors (P < 0.05): age, CESD-10 score,

memory disorder, self-rated health, pain count, and heavy physical

activity. The resulting predictive model was visualized through a

nomogram, which allows for the quantitative assessment of ADL

dysfunction risk in stroke survivors (Figure 3).

3.4 Prediction model validation

The predictive model’s performance was assessed using the

AUC. In the training set, the AUC value was 0.804 (95% CI:

0.772–0.837), and in the testing set, it was 0.779 (95% CI: 0.736–

0.821), indicating good discriminatory power (Figures 4A, B). The

nomogram’s calibration curves (Figures 4C, D) showed alignment

between predicted and observed probabilities of ADL dysfunction,

confirming the model’s accuracy and reliability. Clinical validity

was assessed using DCA, shown in Figures 4E, F. The DCA

demonstrated that the prediction model provided net benefits

compared to the two extreme scenarios, suggesting its clinical

utility in predicting ADL dysfunction.

3.5 Explanation of model characteristic
variables

SHAP values were calculated for six key variables in the

model. The global importance plot and swarm plot (Figures 5A, B)

demonstrated the predictive importance of these variables across

the dataset. To further understand their impact at the individual
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TABLE 1 Participant characteristics.

Subject ADL
functionnormal

ADL
dysfunction

p value

N 483 648

Family size 2.00 (2.00–3.00) 2.00 (2.00–3.00) 0.487

Health child 2.00 (2.00–3.00) 3.00 (2.00–4.00) 0.028

Children’s

economic

support

2500.00 (500.00–

6500.00)

2515.00

(687.50–7000.00)

0.229

Parent’s

economic

support

100.00 (0.00–2000.00) 100.00

(0.00–1200.00)

0.667

CESD-10 7.00 (3.50–12.00) 14.00 (9.00–19.00) <0.001

Life

satisfaction

3.00 (3.00–4.00) 3.00 (3.00–4.00) <0.001

Count of

painful areas

1.00 (0.00–4.00) 3.00 (1.00–7.25) <0.001

Sleep duration 6.00 (5.00–7.50) 5.00 (4.00–7.00) <0.001

Total

categories of

social activities

1.00 (0.00–1.00) 0.00 (0.00–1.00) <0.001

Age 67.00 (60.00-71.00) 69.00 (62.75-74.00) <0.001

Education

level

2.00 (1.00–3.00) 1.00 (1.00–3.00) <0.001

Total

metabolic

output from

physical

activity

3814.00 (1485.00–

7068.00)

1732.50

(462.00–4764.00)

<0.001

Episodic

memory

(0–10)

4.00 (3.00–5.50) 3.50 (2.00–5.00) <0.001

Self-rated

health

3.00 (2.00–3.00) 2.00 (1.00–3.00) <0.001

Gender

0 195 (40.37%) 363 (56.02%) <0.001

1 288 (59.63%) 285 (43.98%)

Marry

0 91 (18.84%) 142 (21.91%) 0.206

1 392 (81.16%) 506 (78.09%)

Residence

0 200 (41.41%) 240 (37.04%) 0.136

1 283 (58.59%) 408 (62.96%)

Hip fracture

0 483 (100.00%) 630 (97.22%) <0.001

1 0 (0.00%) 18 (2.78%)

Hypertension

0 166 (34.37%) 169 (26.08%) 0.003

1 317 (65.63%) 479 (73.92%)

(Continued)

TABLE 1 (Continued)

Subject ADL
functionnormal

ADL
dysfunction

p value

Diabetes

0 360 (74.53%) 456 (70.37%) 0.122

1 123 (25.47%) 192 (29.63%)

Cancer

0 471 (97.52%) 629 (97.07%) 0.648

1 12 (2.48%) 19 (2.93%)

Lung disease

0 410 (84.89%) 491 (75.77%) <0.001

1 73 (15.11%) 157 (24.23%)

Cardiac disease

0 318 (65.84%) 335 (51.70%) <0.001

1 165 (34.16%) 313 (48.30%)

Mental disorder

0 461 (95.45%) 590 (91.05%) 0.004

1 22 (4.55%) 58 (8.95%)

Arthritis

0 251 (51.97%) 260 (40.12%) <0.001

1 232 (48.03%) 388 (59.88%)

Dyslipidemia

0 261 (54.04%) 308 (47.53%) 0.030

1 222 (45.96%) 340 (52.47%)

Liver disease

0 434 (89.86%) 551 (85.03%) 0.017

1 49 (10.14%) 97 (14.97%)

Kidney disease

0 406 (84.06%) 485 (74.85%) <0.001

1 77 (15.94%) 163 (25.15%)

Digestive disease

0 309 (63.98%) 382 (58.95%) 0.086

1 174 (36.02%) 266 (41.05%)

Asthma

0 452 (93.58%) 569 (87.81%) 0.001

1 31 (6.42%) 79 (12.19%)

Memory disorder

0 432 (89.44%) 506 (78.09%) <0.001

1 51 (10.56%) 142 (21.91%)

Intense exercise

0 319 (66.05%) 506 (78.09%) <0.001

1 164 (33.95%) 142 (21.91%)

(Continued)
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TABLE 1 (Continued)

Subject ADL
functionnormal

ADL
dysfunction

p value

Moderate exercise

0 233 (48.24%) 402 (62.04%) <0.001

1 250 (51.76%) 246 (37.96%)

Light exercise

0 114 (23.60%) 156 (24.07%) 0.854

1 369 (76.40%) 492 (75.93%)

Alcohol consumption

0 318 (65.84%) 505 (77.93%) <0.001

1 165 (34.16%) 143 (22.07%)

Smoking

0 239 (49.48%) 365 (56.33%) 0.022

1 244 (50.52%) 283 (43.67%)

level, waterfall and force plots (Figures 5C, D) were used to visualize

the contribution of each variable to the model’s predictions in

selected samples, highlighting the practical significance of these

variables in specific cases.

4 Discussion

The medical community has made significant progress in

ensuring timely and effective stroke treatment during the acute

phase. However, the high disability rate following a stroke remains

a critical concern (12). Despite initial treatment, many stroke

survivors continue to face challenges with ADL once the acute

phase has passed (13). In our analysis of stroke survivors in

CHARLS Wave 5, we found that 57.3% of participants exhibited

ADL dysfunction. Compared to those with normal ADL function,

stroke survivors with ADL dysfunction were generally older,

reported shorter sleep durations, experienced higher levels of

depressive symptoms, and suffered from poorer physical health.

They were also more likely to have multiple chronic conditions,

experience bodily pain, and engage in unhealthy habits such as

smoking and alcohol consumption. Furthermore, these survivors

had lower participation in social activities and physical exercise.

Older stroke survivors are particularly vulnerable to ADL

dysfunction (14). Age-related declines in physical, cognitive, and

sensory functions can impair one’s ability to perform daily tasks

independently (15). Research has shown that SRH is closely

associated with ADL functioning, with those reporting poorer

SRH (e.g., “fair” or “poor”) more likely to experience ADL

impairments (16–19). Chronic pain, whether acute or long-term,

also plays a significant role in ADL dysfunction, as it can

severely hinder daily activities (20, 21). Additionally, chronic pain

may exacerbate psychological distress, including depression and

anxiety, which can further impair ADL (22). Depression itself, a

common mental health issue, contributes to reduced functional

capacity and increases the risk of ADL dysfunction (23). Moreover,

memory disorders, such as Alzheimer’s disease or Parkinson’s

FIGURE 2

The LASSO plot.

disease, typically cause gradual cognitive decline, further impairing

ADL (24, 25). Conversely, engaging in heavy physical activity

has been shown to reduce the likelihood of chronic conditions

and can enhance cognitive functioning, which may help prevent

age-related cognitive decline (26–29). Therefore, regular physical

exercise appears to be a beneficial strategy to improve ADL in

stroke survivors. This indicates that heavy physical activities have

potential benefits for ADL.

Based on our analysis, we identified six characteristic variables

that are commonly observed in stroke survivors. These include

age, SRH, heavy physical activity, depression, pain, and memory

disorders. Among these variables, age, memory disorders, pain,

and depression are known to exacerbate ADL dysfunction, making

them significant risk factors for its development. Conversely, ADL

dysfunction itself can also contribute to the onset or worsening of

limb joint pain and depressive mood in stroke patients, thereby

creating a cycle of increasing ADL dysfunction (30). While most

stroke survivors experience some degree of ADL dysfunction after

the stroke, the severity and progression of this dysfunction can

vary (31). For some individuals, improper self-management or

the lack of targeted rehabilitation can trigger or intensify ADL

dysfunction (32). To address this, the model we developed is

designed to identify, at an early stage, the factors closely associated
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FIGURE 3

Nomogram to predict the probability of ADL dysfunction in stroke survivors.

FIGURE 4

Assessment of the predictive accuracy of the nomogram: (A) ROC for the training set; (B) ROC for the testing set. Assessment of the predictive

accuracy of the nomogram: (C) Calibration plot for the training set; (D) Calibration plot for the testing set. DCA curves of the nomogram: (E) The

training set; (F) The testing set.

with the onset of ADL dysfunction in this group. Early intervention

in these factors is crucial. For example, while direct intervention

on age and self-rated health may be challenging, strengthening

physical training and improving the management of pain and

depression could help prevent or delay the progression of ADL

dysfunction. These interventions may also lead to improvements

in ADL function, ultimately enhancing the prognosis and quality

of life for stroke survivors.

However, our study has several limitations. The CHARLS

dataset lacks detailed information on important predictors such as

walking pace, grip strength, waist circumference, body mass index

(BMI), and certain biochemical markers, which were not captured

in Wave 5. Additionally, data on stroke-specific factors such as

lesion type, location, size, onset time, and treatment methods are

not available in the CHARLS database. Moreover, as the data is

specific to our country, the external validity of our findings may be

limited, and the models may not be fully applicable to populations

in other countries. Internal validation methods were used in this

study, but further validation in diverse populations is needed to

enhance the generalizability of our predictive models.
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FIGURE 5

(A) Global importance plot; (B) Swarm plot; (C) Waterfall plots; (D) Force plots.

5 Conclusions

In summary, we developed and validated a prediction model

for ADL dysfunction in stroke survivors. The model includes

crucial factors like age, SRH, heavy physical activity, depression,

pain, and memory disorders. It provides insights into the group’s

characteristics. Although the study has limitations, the model

can guide personalized medical strategies. By implementing these,

we can potentially enhance stroke survivors’ ADL ability and,

consequently, improve their quality of life.
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