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Objective: This study systematically reviewed deep learning (DL) applications 
in neurosurgical practice to provide a comprehensive understanding of DL in 
neurosurgery. The review process included a systematic overview of recent 
developments in DL technologies, an examination of the existing literature on 
their applications in neurosurgery, and insights into the future of neurosurgery. 
The study also summarized the most widely used DL algorithms, their specific 
applications in neurosurgical practice, their limitations, and future directions.

Materials and methods: An advanced search using medical subject heading 
terms was conducted in Medline (via PubMed), Scopus, and Embase databases 
restricted to articles published in English. Two independent neurosurgically 
experienced reviewers screened selected articles.

Results: A total of 456 articles were initially retrieved. After screening, 162 
were found eligible and included in the study. Reference lists of all 162 articles 
were checked, and 19 additional articles were found eligible and included in 
the study. The 181 included articles were divided into 6 categories according 
to the subspecialties: general neurosurgery (n = 64), neuro-oncology (n = 49), 
functional neurosurgery (n = 32), vascular neurosurgery (n = 17), neurotrauma 
(n = 9), and spine and peripheral nerve (n = 10). The leading procedures in 
which DL algorithms were most commonly used were deep brain stimulation 
and subthalamic and thalamic nuclei localization (n = 24) in the functional 
neurosurgery group; segmentation, identification, classification, and diagnosis 
of brain tumors (n = 29) in the neuro-oncology group; and neuronavigation 
and image-guided neurosurgery (n = 13) in the general neurosurgery group. 
Apart from various video and image datasets, computed tomography, magnetic 
resonance imaging, and ultrasonography were the most frequently used 
datasets to train DL algorithms in all groups overall (n = 79). Although there 
were few studies involving DL applications in neurosurgery in 2016, research 
interest began to increase in 2019 and has continued to grow in the 2020s.

Conclusion: DL algorithms can enhance neurosurgical practice by improving 
surgical workflows, real-time monitoring, diagnostic accuracy, outcome 
prediction, volumetric assessment, and neurosurgical education. However, 
their integration into neurosurgical practice involves challenges and limitations. 
Future studies should focus on refining DL models with a wide variety of datasets, 
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developing effective implementation techniques, and assessing their affect on 
time and cost efficiency.

KEYWORDS

artificial intelligence, convolutional neural network, deep learning, machine learning, 
neurological surgery, neurosurgery

1 Introduction

Deep learning (DL), a subset of machine learning (ML), is an 
artificial intelligence (AI) method based on artificial neural networks 
that includes multiple layers of data processing to produce higher-level 
features. Artificial neural networks can combine various inputs to 
create a single input (1). Such technology holds substantial potential 
for improved pattern recognition and problem-solving in different 
medical disciplines, including neurosurgery. With the recent 
advancements in AI technologies, DL algorithms have begun to 
be integrated into neurosurgical practice in various ways.

For instance, DL technologies can improve surgical workflow 
analysis through real-time monitoring and video segmentation (2–7). 
DL can also potentially provide diagnostic support to surgeons by 
monitoring for adverse events or complications due to 
pathophysiological events during procedures (8). DL technologies may 
enhance the safety of neurosurgical procedures and provide a sense of 
reassurance to clinicians and patients by potentially diminishing 
intraoperative adverse events (9–11). On a related note, DL algorithms 
could allow for surgical instrument and motion tracking, allowing for 
more precise feedback intraoperatively and in teaching applications (12).

DL could also strengthen the ability to visualize and recognize 
complex anatomical structures by improving the accuracy of detection 
methods, including magnetic resonance imaging (MRI) and 
neuronavigation, and by identifying hemorrhages, spinal pathologies, 
and neuro-oncological conditions (13–17). Moreover, DL methods 
can be used to identify and classify intracranial lesions and perform 
volumetric assessments (18).

In this study, we  elucidate prominent applications of DL 
algorithms in neurosurgery and provide evidence and examples of 
their current use within the field by conducting a systematic review of 
the existing literature. We  also address future directions and 
limitations of these technologies. Because not all studies can 
be  specifically expounded upon in such a review, we  used 
representative articles to illustrate specific concepts and applications.

2 Materials and methods

A systematic search was conducted in PubMed, Embase, and 
Scopus databases on 8 November 2024 using the following keywords: 

(Neurosurgical Procedure) OR (neurosurgery) OR (neurologic 
surgery) OR (neurological surgery) OR (Procedure, Neurosurgical) OR 
(Procedures, Neurosurgical) OR (Surgical Procedures, Neurologic) OR 
(Neurologic Surgical Procedure) OR (Neurologic Surgical Procedures) 
OR (Procedure, Neurologic Surgical) OR (Procedures, Neurologic 
Surgical) OR (Surgical Procedure, Neurologic) AND ((Deep learning) 
OR (Learning, Deep) OR (Hierarchical Learning) OR (Learning, 
Hierarchical)).

These medical subject heading terms were linked with Boolean 
operators “AND” and “OR” to maximize the extent of coverage. An 
advanced search was conducted in PubMed using these medical subject 
heading terms. Then, the search was expanded by including Scopus and 
Embase database searches using the exact keywords. No time restrictions 
were applied. Our search words and articles were filtered by title or 
abstract. Duplications were excluded, and 2 independent neurosurgically 
experienced reviewers (A.G. and J.H.) screened the articles and 
examined all the full texts. A strict selection process was employed 
according to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA) guidelines (19). Most publications included 
in the study were original research papers focused on DL applications 
in neurosurgical practice. Review articles, editorials, letters, and errata 
were excluded. Articles not published in English and articles for which 
the full text was unavailable were excluded. Studies that did not use DL 
algorithms and studies that used DL algorithms but did not apply them 
to neurosurgical practice were excluded. Finally, the reference lists of 
these articles were checked by 3 independent reviewers (J.H., A.S.G., 
K.Y.). Ultimately, all reviewers (J.H., A.S.G., K.Y., A.G.R., P.P.) agreed on 
the articles included in our study.

3 Results

Initially, 456 articles were retrieved. Eighty-seven duplicated 
papers were excluded. Twenty-two articles for which the full text was 
unavailable, 2 articles whose texts were unavailable in English, and 6 
retracted articles were removed. Ninety-four articles determined to 
be letters, reviews, editorials, and errata were removed. Eighty-three 
articles that did not meet the inclusion criteria were excluded. The 
reference lists of the selected articles were screened by 3 independent 
reviewers (J.H., A.S.G., K.Y.), and 19 articles were found that were 
within the scope of our review and were included in the study. Upon 
completion of the screening, 181 articles were found eligible for the 
study and included (2, 3, 7, 9–11, 13–18, 20–188). The selection 
process is depicted in the PRISMA flowchart in Figure 1.

Included articles were divided into 6 groups according to the 
subspecialty: spinal surgery and peripheral nerve (n = 10) (Table 1) 
(14, 20–26, 168, 182), neurotrauma (n = 9) (Table  2) (27–35), 
vascular neurosurgery (n = 17) (Table 3) (9, 10, 13, 36–45, 166, 169, 
179, 186), functional neurosurgery (n = 32) (Table 4) (46–76, 187), 
neuro-oncology (n = 49) (Table  5) (2, 3, 7, 15, 16, 18, 77–114, 

Abbreviations: AI, artificial intelligence; CBCT, cone-beam computed tomography; 

CLE, confocal laser endomicroscopy; CNN, convolutional neural network; CT, 

computed tomography; CV, computer vision; DBS, deep brain stimulation; DL, 

deep learning; IGS, image-guided surgery; ML, machine learning; MRI, magnetic 

resonance imaging; RNN, recurrent neural network; SAH, subarachnoid 

hemorrhage; TBI, traumatic brain injury; WHO, World Health Organization; 2D, 

2-dimensional; 3D, 3-dimensional.
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175–178, 188), and general neurosurgery (n = 64) (Table 6) (11, 17, 
115–165, 167, 170–174, 180, 181, 183–185).

Although DL applications have been widely used in different 
subspecialties of neurosurgery, our findings indicate that there are 
leading subspecialties that are at the forefront of this technological 
advancement. General neurosurgery (n = 64), functional neurosurgery 
(n = 32), and neuro-oncology (n = 49) are the leading subspecialties, 
as shown in Figure 2.

The procedures that most commonly used DL algorithms were 
deep brain stimulation (DBS) and subthalamic and anterior thalamic 
nuclei localization (n = 24) in the functional neurosurgery group 
(Table 4); segmentation, identification, classification, and diagnosis 
of various brain tumors (n = 29) in the neuro-oncology group 
(Table  5), and neuronavigation and image-guided neurosurgery 
(n = 13) in general neurosurgery group (Table  6). Computerized 
tomography (CT), MRI, and ultrasonography images (n = 79) were 
found to be the most widely used datasets in all groups to train DL 
architectures, followed by surgical videos and various types of image 
datasets, including radiography, digital subtraction angiography, 
surgical microscopy, and neuroendoscopy images (n = 51).

To the best of our knowledge, interest in applying DL algorithms 
in neurosurgery began in the 2010s, when the first studies were 

published. Although very few articles were published on this topic in 
2016, more studies were published beginning in 2019, and this trend 
has continued to grow. The publication numbers during 2024 nearly 
matched those for 2023 (Figure 2).

4 Discussion

4.1 DL

ML is an AI method that enables computers to process data and 
learn valuable patterns, facilitating better user decision-making. DL is 
a subset of ML that focuses on mimicking the complex neuron 
structures found in the human brain by using multiple layers of latent 
units to compose a neural network. It is widely recognized as an 
effective tool for data analysis due to its ability to understand the 
intricate nature of data.

There are various types of DL neural network models designed to 
simulate different real-world scenarios: multilayer perceptron, 
convolutional neural network (CNN) (189), recurrent neural network 
(RNN) (190), graph neural network (191), generative adversarial 
network (192), transformer (193), and diffusion model (194, 195), 

FIGURE 1

Flow diagram documenting the study selection process. Used with permission from Barrow Neurological Institute, Phoenix, Arizona.
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among others. Many variant neural network models, such as long short-
term memory (196) and denoising diffusion probabilistic model (195), 
have been developed to address specific limitations and meet the 
challenge of significantly changing real-world use cases. Some variations, 
such as the vision transformer, are designed as fusions of different neural 
network modules to leverage their superior performance (197). 
Motivated by this flexibility in neural network architecture design, 
researchers can better facilitate their specific purposes.

In recent years, with the continuing advancements in the fields of AI 
and medicine, various architectural designs of DL have started to be used 
in neurosurgery (Table 7) (37, 38, 41, 73, 74, 81–83, 88, 115, 116, 123, 
125, 137). This study focuses on the applications of the most widely used 
deep neural architecture designs within the neurosurgical practice.

4.2 DL applications in neurosurgical 
practice

Over the past several years, the development of AI, specifically DL 
techniques, has shown considerable potential in neurosurgery (198). 

Various DL architectural designs are used in neurosurgical practice for 
purposes that include operative video analysis, predicting outcomes, 
microsurgical skill assessments, diagnostic support, volumetric 
assessment, and neurosurgical education. This section will examine the 
most commonly used applications of DL in neurosurgical training.

4.2.1 Operative video and image analysis
DL CNNs can analyze surgical videos through computer 

vision (CV) (199). This approach analyzes operative video to 
define surgical workflows by establishing start and end points for 
various stages of a procedure and annotating clinically relevant 
details, such as anatomical landmarks and instrument detection, 
aiding in assessment, real-time monitoring, and surgical 
coaching (2–6).

Many CV pipelines share common elements, beginning with 
creating a dataset composed of individual surgical images (frames) 
annotated with overlays that highlight tools, anatomical structures, or 
the stage of the operation. These data are often generated manually 
and require expert evaluation. CV models are trained on this ground-
truth data and tested on new images or videos. The successful 

TABLE 1 Studies that applied deep learning algorithms in spinal and peripheral nerve surgery.

Study (year) Data used Procedure or goal

Yu et al. (2020) (20) CT and 3D reconstructed images Percutaneous endoscopic spinal surgery

Zhong et al. (2020) (26) Peripheral nerve micro-CT images Obtaining contours of fascicular groups from micro-CT images of the 

peripheral nerve

Agaronnik et al. (2022) (22) Neuromonitoring documentation Intraoperative neuromonitoring in spine surgery

Kim et al. (2022) (24) Radiographic datasets Spinal surgery

Bakaev et al. (2023) (23) Radiographic datasets Spinal imaging

Ghauri et al. (2023) (14) Kaggle dataset of 967 spinal radiographs Classification of certain degenerative spinal conditions

Massalimova et al. (2023) (21) Multiple vibroacoustic sensors, such as a contact 

microphone, a free-field microphone, a tri-axial 

accelerometer, a uni-axial accelerometer, and an optical 

tracking system

Spinal pedicle drilling

Jawed et al. (2024) (168) Surgical video datasets Microdiscectomy surgical video annotation

Martino Cinnera et al. (2024) (25) Demographics and clinical characteristics Lumbar stenosis

Mehandzhiyski et al. (2024) (182) Radiographic datasets and common medical information 

from patients with single-level herniation

Creation of a predictive score for lumbar disc reherniation after 

microdiscectomy without fusion

3D, 3-dimensional; CT, computed tomography.

TABLE 2 Studies that applied deep learning algorithms in neurotrauma.

Study (year) Data used Procedure or goal

Matzkin et al. (2020) (35) Postoperative CT Decompressive craniectomy after TBI

Adil et al. (2022) (30) TBI patient data Prediction of TBI outcomes in the low-resource setting

Koschmieder et al. (2022) (34) Magnetic resonance imaging datasets Detection of cerebral microbleeds in TBI patients

Agrawal et al. (2023) (29) Head CT Automated intracranial hemorrhage detection in TBI

Biswas et al. (2023) (31) Patient referral data Predicting chronic subdural hematoma referral outcomes

Gençtürk et al. (2023) (33) CQ500 dataset Subdural hemorrhage

Jiang et al. (2023) (28) Noncontrast CT TBI detection

Agrawal et al. (2024) (27) CT datasets Midline shift detection in TBI

Vargas et al. (2024) (32) CT datasets Chronic subdural hematoma

CT, computed tomography; TBI, traumatic brain injury.
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implementation of CV models relies heavily on the quality, quantity, 
and accuracy of these annotated video sets (167).

Neurosurgeons often use exoscopes, microscope-exoscope hybrid 
systems, and endoscopes, all equipped with cameras to capture 
surgical video. Neurosurgical procedures are frequently recorded, 
resulting in surgeons accumulating hundreds of hours of surgical 
video. Surgeons use this video for educational purposes, cropping it 
to highlight important parts of the surgery and discuss critical aspects. 
To date, CV has primarily been applied to neurosurgery with 2 main 
focuses: workflow analysis and video segmentation.

Operative workflow analysis deconstructs operations into distinct 
steps and phases. Each operative video is labeled with timestamps 
corresponding to these steps and stages. These labeled data and the 
video are fed into DL models, enabling automatic recognition and 
analysis of these components. This process allows for standardized 
skill assessment, automated operative note generation, and the 
development of enhanced educational tools. This type of work in 
neurosurgery has been primarily limited to endoscopic procedures (2, 
169). Khan et al. (2) conducted a study using ML to develop and 
validate an automated workflow analysis model for endoscopic 
transsphenoidal pituitary surgery, achieving high accuracy in 
recognizing surgical phases and steps (Figure 3). Pangal et al. analyzed 
the phases of endonasal endoscopic surgery using a validated 
cadaveric simulator of internal carotid artery injury (169).

In neurosurgery, CV has been increasingly applied to annotate or 
segment instruments and anatomical landmarks within operative 

videos (7). For instance, Jawed et al. developed a video annotation 
methodology for microdiscectomy, creating a standardized workflow 
to facilitate the annotation of surgical videos (168). Their method 
involved labeling surgical tools, anatomy, and phases in 
microdiscectomy videos. Similarly, Staartjes et al. conducted a proof-
of-concept study evaluating machine vision algorithms for identifying 
anatomic structures in endoscopic endonasal approaches using only 
the endoscopic camera (170). The DL algorithm, trained on videos 
from 23 patients, significantly improved nasal structure detection 
compared to a baseline model, which is established using the average 
positions of the training ground truth labels within a semi-quantitative 
3-tiered system.

Our ongoing work analyzing operative videos of middle cerebral 
artery aneurysm surgery to categorize, discriminate, and label surgical 
maneuvers or events with an ML methodology, however, suggests that 
the accuracy outcome depends on the information load presented to 
the analytical system (unpublished data). We have found that highly 
detailed, unique annotation and labeling are less accurate in 
identifying surgical maneuvers and events than more general labeling, 
suggesting that ML analytics has limits. This finding is intuitive and 
reflects the unique nature of each individual surgical procedure; the 
specific pathology, structure, site, and surgical maneuvers are different 
for each middle cerebral artery aneurysm.

In another study, Pangal et al. evaluated video-based metrics to 
predict task success and blood loss during endonasal endoscopic 
surgery in a cadaveric simulator (169). They manually annotated 

TABLE 3 Studies that applied deep learning algorithms in vascular neurosurgery.

Study (year) Data used Procedure or goal

Hoffmann et al. (2016) (44) Postoperative CT Intraoperative analysis of cortical perfusions

Danilov et al. (2020) (40) CT datasets Classification of intracranial hemorrhage subtypes

Nishi et al. (2021) (39) Noncontrast CT CT diagnosis of nontraumatic SAH by nonspecialists

Pangal et al. (2021) (169) Surgical video datasets Prediction of blood loss and vascular injury control of the ICA

Voter et al. (2021) (38) Head CT Detection of intracranial hemorrhage

Kugener (2022) (10) Image and video datasets Detection of blood loss and aid in bleeding control in ICA hemorrhage

Su et al. (2022) (9) MR CLEAN registry, MR CLEAN-NOIV 

trial, and the HERMES collaboration datasets

To detect intracranial vessel perforation in DSA during endovascular thrombectomy

Venugopal et al. (2022) (41) Real-time intraoperative blood vessel 

segmentation of brain vasculature with a 3D 

reconstruction algorithm and virtual-

fixture-based strategy to control Micron

To prevent intraoperative vascular damage

Wang et al. (2022) (36) CTA dataset Diagnosis of cerebral aneurysm

Wang et al. (2022) (43) Sections specimens Diagnosis of cerebral cavernous malformations

Angkurawaranon et al. (2023) (37) CT datasets Detection and classification of intracerebral hemorrhage

Balu et al. (2023) (45) Video dataset Surgeon performance assessment in a cadaveric carotid artery injury control simulation

Tong et al. (2023) (13) CT Intraparenchymal and intraventricular hemorrhage for catheter puncture path planning

Xu et al. (2023) (42) DSA sequences Classification of stages of moyamoya disease

García-García et al. (2024) (166) Noncontrast CT Blood segmentation for spontaneous aneurysmal SAH

Kiewitz et al. (2024) (186) Cranial CT Automated multiclass segmentation of structures and pathologies relevant for 

aneurysmal SAH outcome prediction

Won et al. (2024) (179) MRI dataset (susceptibility-weighted imaging) Detection and anatomical localization of cerebral microbleeds

CT, computed tomography; CTA, computed tomography angiography; DSA, digital subtraction angiography; HERMES, Highly Effective Reperfusion Evaluated in Multiple Endovascular 
Stroke Trials; ICA, internal carotid artery; MR CLEAN, Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic stroke in the Netherlands; MRI, magnetic 
resonance imaging; SAH, subarachnoid hemorrhage.
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videos of 73 surgeons’ trials, focusing on instruments and anatomical 
landmarks. The study found that these metrics, derived from expert 
analysis, predicted performance more accurately than training level or 
experience, with a regression model effectively predicting blood loss.

Furthermore, in a recent study by Park et al. (17), computer 
algorithms including structural similarity, mean squared error, and 
DL were used to analyze the distortion, color, sharpness, and depth 

of field of the images collected from an advanced hybrid operating 
exoscope-microscope platform to improve the quality of the images 
for neurosurgical procedures. Operating microscopes are becoming 
sophisticated imaging platforms, incorporating fluorescence 
imaging, robotics, exoscopic vision, and now various proprietary 
functions for the enhancement of images to better define and 
visualize anatomy. These functions themselves operate on the basis 

TABLE 4 Studies that applied deep learning algorithms in functional neurosurgery.

Study (year) Data used Procedure or goal

Souriau et al. (2018) (66) Data collected from 8 intracortical channels from 

different cortical regions

DBS

Bermudez et al. (2019) (64) Simulation coordinates with 3D patches extracted and 

associated with an efficacy score

DBS

Onofrey et al. (2019) (70) Clinical epilepsy imaging data Segmentation of the brain surface in postsurgical CT of epilepsy patients 

following surgical implantation of electrodes

Yokota et al. (2019) (75) T1 and T2 MRI Real-time estimation of electric fields induced by transcranial magnetic 

stimulation

Baxter et al. (2020) (63) T1- and T2-weighted MRI datasets Localization of subthalamic nucleus in MRI

Liu et al. (2020) (62) Whole-brain MRI and cropped volume Anterior thalamus targeting for DBS

Martineau et al. (2020) (76) Local field potentials Action decoding based on subthalamic local field potentials

Peralta et al. (2020) (65) Microelectrode recordings Localization of subthalamic nucleus

Cui et al. (2021) (61) Contrast-enhanced T1-weighted MRI DBS

Edwards et al. (2021) (74) MRI Automated landmark localization for neuronavigation

Jiang et al. (2021) (60) Video interviews Classification of major depressive disorder and response to DBS

Uneri et al. (2021) (73) Fluoroscopy images Neuroelectrode placement

Baker et al. (2022) (54) Intraoperative kinematic recordings DBS

Baxter et al. (2022) (56) T1- and T2-weighted MRI datasets Localization of subthalamic nucleus in MRI

Chen et al. (2022) (59) Preoperative images and intraoperative sparse data Estimating shift at brain surface in DBS

Gao et al. (2022) (57) Historical data DBS

Hosny et al. (2022) (55) Local field potentials DBS

Liu et al. (2022) (58) MRI datasets DBS

Zhang et al. (2022) (53) MRI datasets DBS

Chen et al. (2023) (48) Prior-enhanced multiobject MRI segmentation DBS

Chen et al. (2023) (51) Finite-element biomechanical brain model DBS

Joseph et al. (2023) (50) MRI datasets DBS

Makaram et al. (2023) (68) Interictal intracranial EEG data Epileptogenic zone and guided neurosurgery

Rui-Qiang et al. (2023) (52) MRI datasets DBS

Zheng et al. (2023) (49) Anatomical information from publicly available high-

quality datasets

DBS

Al-Jaberi et al. (2024) (46) CT datasets Applicability of image fusion of highly resolved flat detector CT to CT for 

electrode placement in DBS

Caredda et al. (2024) (71) Segmentation of brain cortex Functional brain mapping

Courtney et al. (2024) (69) MRI datasets Imaging in epilepsy surgery

Eid et al. (2024) (47) EEG datasets DBS

Ho et al. (2024) (187) Cranial MRI Segmentation of the subthalamic nucleus on clinical MRI thus minimize 

variability in subthalamic nucleus targeting and eliminate human biases

Li et al. (2024) (72) Preoperative MRI Image-guided open cranial surgery

Maged et al. (2024) (67) Image datasets Subthalamic nucleus localization in DBS

CT, computed tomography; DBS, deep brain stimulation; EEG, electroencephalography; MRI, magnetic resonance imaging.
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TABLE 5 Studies that applied deep learning algorithms in neuro-oncology.

Study (year) Data used Procedure or goal

Izadyyazdanabadi et al. (2017) (176) Image datasets Discrimination of diagnostic CLE images among thousands of nondiagnostic images to 

support the diagnosis of brain tumors

Izadyyazdanabadi et al. (2018) (177) Image datasets Creation of a CNN model for the automatic selection of diagnostic CLE images to aid in 

the rapid diagnosis of brain tumors

Li et al. (2018) (109) Probe-based CLE data Context-aware decision support in neurosurgical oncology based on an efficient 

classification of endomicroscopic data

Chang et al. (2019) (18) Preoperative and postoperative MRI 

datasets

Evaluation of glioma burden (fully automated volumetric measurement)

Fabelo et al. (2019) (79) Hyperspectral images of in vivo human 

brain tissue

In vivo identification of glioblastoma tumor using hyperspectral images of the human 

brain

Izadyyazdanabadi et al. (2019) (175) Image datasets Improvement in the quality of CLE images to support the diagnosis of brain tumors

Carton et al. (2020) (78) Intraoperative ultrasound images Automatic segmentation of brain tumor in intraoperative ultrasound images

Colecchia et al. (2020) (111) Clinical data Brain tumor segmentation

Ermiş et al. (2020) (110) MRI datasets Fully automated brain resection cavity delineation for radiation target volume definition 

in glioblastoma

Franco et al. (2020) (112) MRI and magnetic resonance 

spectroscopy

Spectroscopic prediction of brain tumors

Rahmat et al. (2020) (92) Multiple MRI sequences Multiscale segmentation in glioblastoma treatment

Chen et al. (2021) (108) MRI datasets (contrast-enhanced 

images of the 3-dimensional MPRAGE 

sequences)

Automatic meningioma segmentation and grading prediction

Di Ieva et al. (2021) (93) Brain tumor images, histological 

specimens, connectomics data

Segmenting brain tumors, predicting genetic subtypes, and extent of resection

Lee et al. (2021) (91) MRI datasets Imaging analysis of vestibular schwannoma after radiosurgery

Shen et al. (2021) (106) Tissue samples and fluorescence images Real-time intraoperative glioma diagnosis

Wu et al. (2021) (105) Stereotactic radiosurgery dataset Segmentation of various brain lesions for radiosurgery

Zeineldin et al. (2021) (107) Public dataset of high-grade glioma 

patients

Brain tumor segmentation

Danilov et al. (2022) (89) Preoperative MRI Subtyping gliomas

Danilov et al. (2022) (90) MRI datasets MRI-guided typing of brain gliomas

Fang et al. (2022) (88) Fine-grained texts of clinical records Extraction of clinical named entity for pituitary adenomas

Khan et al. (2022) (2) Surgical video datasets Performance of surgical workflow analysis of endoscopic pituitary adenoma surgery

Madhogarhia et al. (2022) (77) Multiparametric MRI Pediatric brain tumor automatic segmentation

Reinecke et al. (2022) (15) Stimulated Raman histology images of 

intraoperative tissue samples

Intraoperative tumor detection

Wu et al. (2022) (87) Intraoperative images Resolution enhancement and classification of tumors

Zeineldin et al. (2022) (104) Interventional ultrasound data Brain tumor automatic segmentation

Fischer et al. (2023) (7) Surgical video datasets Annotation of endoscopic pituitary tumor removal surgical videos

Kang et al. (2023) (178) MRI MRI segmentation and volumetric assessment of intracranial meningiomas

Li et al. (2023) (99) Motion of patient skull and surgical 

drill from stereo microscopic videos

Anatomy and skull base surgery

Luckett et al. (2023) (83) Multimodal imaging Glioblastoma survival prediction

Pirhadi et al. (2023) (100) Image datasets Ultrasound-guided brain tumor resection

Prathaban et al. (2023) (97) Brain tissue histology Detection of tumor infiltration in diffuse gliomas

Puustinen et al. (2023) (84) Hyperspectral imaging Brain tumor surgery

Salari et al. (2023) (101) RESECT dataset MRI intraoperative ultrasound in brain tumor surgery
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of DL algorithms to enhance image sharpness and color and provide 
the operator with visual environments that allow improvements in 
capturing the depth of the operative field. Furthermore, while 
improving image quality, exoscopes do not significantly distort the 
images (17). These systems can provide high-definition images and 
help improve the recognition of structures during surgery.

4.2.2 Outcome prediction
Neurosurgery involves high-risk procedures, making the use of 

AI for predicting outcomes a potentially important tool for improving 
surgical planning, patient counseling, and postoperative care. 
Outcome prediction in neurosurgery has dramatically benefited from 
advances in DL. These models can predict functional recovery and 
overall quality of life by analyzing preoperative imaging and 
intraoperative data, aiding in surgical planning and patient expectation 
management (25). DL models, such as CNNs and RNNs, are 
particularly effective in analyzing large datasets that may not yield 
meaningful patterns through traditional statistical methods. These 
datasets can include imaging, clinical records, and operative notes, 
allowing for more accurate outcome predictions.

The adaptability of DL makes it a valuable tool for personalizing 
neurosurgical care and improving long-term outcomes. For example, 
Jumah et al. (200) explored surgical phase recognition using AI and 
DL to improve outcome prediction in neurosurgery. Surgical phase 
recognition analyzes visual and kinematic data from surgeries to 
identify different phases of a procedure in real time. This capability 
enhances decision-making by providing surgeons with critical insights 
and alerts during high-risk phases, thereby reducing complications 
and improving surgical precision. This innovative approach 
contributes significantly to outcome prediction in neurosurgery. 

Additionally, Danilov et al. (136) used RNNs to predict the duration 
of postoperative hospital stays based on unstructured operative 
reports. This model demonstrated the potential of using narrative 
medical texts for making meaningful predictions, further illustrating 
the usefulness of DL in neurosurgery.

Wang et  al. (85) developed a DL model to predict short-term 
postoperative facial nerve function in patients with acoustic neuroma. 
The study integrated clinical and radiomic features from multisequence 
MRI scans to enhance prediction accuracy. The CNN model achieved an 
area under the curve of 0.89, demonstrating superior predictive 
performance compared to traditional models in which various subtypes 
of ML are used (e.g., Nomogram, Light Gradient Boosting Machine). 
This predictive capability aids in surgical decision-making and patient 
counseling, allowing surgeons to anticipate facial nerve functional 
outcomes and tailor surgical approaches to minimize nerve damage.

In the context of traumatic brain injury (TBI), DL models used to 
enhance TBI triage have shown promise in predicting outcomes at 
hospital discharge, especially in low-resource settings where decision-
making support is needed (30). These models offer a significant 
advantage in patient care and resource allocation, highlighting the 
growing role of AI in neurosurgical practice.

Furthermore, several studies have also demonstrated the potential 
of DL in predicting adverse outcomes, such as postoperative 
complications or prolonged hospital stays. Biswas et al. (31) introduced 
the ANCHOR model, an artificial neural network designed to predict 
referral outcomes for patients with chronic subdural hematoma. 
Validated using data from 1713 patient referrals at a tertiary 
neurosurgical center, the ANCHOR model demonstrated high 
accuracy (92.3%), sensitivity (83.0%), and specificity (96.2%) in 
predicting which referrals would be  accepted for neurosurgical 

TABLE 5 (Continued)

Study (year) Data used Procedure or goal

Salari et al. (2023) (102) RESECT dataset Multimodal anatomical landmark detection; MRI intraoperative ultrasound in brain 

tumor surgery

Srikanthan et al. (2023) (103) Tissue burns Glioblastoma detection using mass spectrometry

Touati and Kadouri (2023) (113) Brain tumor dataset (BraTS2018) Generation of reliable MRI contrasts with enhanced tumors

Wang and Ye (2023) (114) Datasets of BraTS2018 and BraTS2019 Multimodality glioma MRI

Wang et al. (2023) (85) MRI datasets Short-term postoperative facial nerve function in acoustic neuroma patients

Zanier et al. (2023) (86) MRI datasets Volumetric assessment of variable grade gliomas

Zhu et al. (2023) (98) SEER database Surgical options for patients with low-grade glioma

Bianconi et al. (2023) (188) Pre-and postoperative MRI datasets To train an algorithm for GBM segmentation on a clinical MRI dataset and to obtain 

reliable results

Castiglioni et al. (2024) (80) MRI datasets Pediatric craniopharyngioma diagnosis

Cekic et al. (2024) (96) MRI and surgical microscope images Brain tumor surgery

Da Mutten et al. (2024) (82) MRI datasets Pituitary adenoma volumetric assessment

Hsu et al. (2024) (95) Ex vivo specimens Brain tumor grading

Khan et al. (2024) (3) Surgical video datasets Artificial intelligence–assisted coaching for endoscopic pituitary adenoma surgery

Wang et al. (2024) (94) Image datasets Differentiation of central nervous system tumors

Zeineldin et al. (2024) (16) Neuronavigation Brain tumor segmentation, patient registration, and explainable output prediction in 

brain tumor surgery

Zhu et al. (2024) (81) SEER 18 database Glioblastoma survival prediction and surgery recommendation

BraTS, Brain Tumor Segmentation; CLE, confocal laser endomicroscopy; CNN, convolutional neural network; GBM, glioblastoma multiforme; MPRAGE, magnetization-prepared rapid 
gradient-echo; MRI, magnetic resonance imaging; RESECT, Retrospective Evaluation of Cerebral Tumors; SEER, Surveillance, Epidemiology, and End Results.
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TABLE 6 Studies that applied deep learning algorithms in general neurosurgery.

Study (year) Data used Procedure or goal

Moccia et al. (2018) (139) Microscopy images Improvement of safety in neurosurgery with an active handheld instrument

Danilov et al. (2019) (138) Operative reports Postoperative hospital stay prediction in neurosurgery

Nitsch et al. (2019) (142) Intraoperative USG images Image-guided neurosurgery

Shi et al. (2019) (141) MRI Automatic segmentation of brainstem

Canalini et al. (2020) (134) Resection cavities in USG volumes Comparison of USG images obtained at different phases of the tumor resection

Danilov et al. (2020) (136) Word-embedded reports of primary surgical 

cases

Prediction of postoperative hospital stay in neurosurgery based on operative reports

Drakopoulos et al. (2020) (137) Preoperative and intraoperative MRI Neuronavigation

Farnia et al. (2020) (135) Generated synthetic database of vessels Intraoperative photoacoustic imaging

Li et al. (2020) (143) Complete skulls from the public head CT 

collection CQ500

Skull defect restoration and cranial implant generation for cranioplasty

Lucena et al. (2020) (145) Multishell diffusion MRI and paired 

synthetic single-shell diffusion MRI

MRI tractography to help locate critical white matter tracts

Matzkin et al. (2020) (144) CT and simulated virtual craniectomy Cranial implant design via virtual craniectomy

Davids et al. (2021) (131) Surgical videos Microsurgery

Han et al. (2021) (133) MRI and CT Representation of surgical tool motion and objective assessment of microsurgical 

skills

Li et al. (2021) (150) High-resolution healthy skulls Skull defect restoration and cranial implant generation for cranioplasty

Mahapatra et al. (2021) (146) Recorded USG images Automatic detection of cotton balls during brain surgery

Pangal et al. (2021) (167) Video datasets Annotation of neurosurgical intraoperative videos

Quon et al. (2021) (149) Manual ventricle segmentation and volume 

calculation values

Automatic cerebral ventricle segmentation and volume calculation

Ramesh et al. (2021) (132) Intraoperative neurosurgical videos Tool detection and characterization

Staartjes et al. (2021) (170) Image datasets Identification of anatomic structures during endoscopic endonasal approach

Zeineldin et al. (2021) (147) MRI and interventional USG images Brain shift estimation

Zeineldin et al. (2021) (148) Preoperative MRI and interventional USG 

images

Brain shift compensation

Abramson et al. (2022) (125) USG datasets Foreign body objects detection in neurosurgical procedures

Feng et al. (2022) (157) Image datasets Patient head pose estimation

Gaur et al. (2022) (152) Preoperative MRI volumes Image-guided neurosurgery

Han et al. (2022) (126) MRI and CT Minimally invasive intracranial neurosurgery

Han et al. (2022) (127) Simulated dataset (simulated cone-beam CT 

and simulated deformations)

MRI cone-beam CT image registration for neurosurgical guidance

Korycinski et al. (2022) (154) MRI Neural fiber prediction

Lam et al. (2022) (130) Individual admissions data Neurosurgery inpatient outcome prediction for discharge planning

Li et al. (2022) (155) 2D image scene dataset, 3D point cloud 

scene

2D and 3D working scene in neurosurgery

McKinley et al. (2022) (151) Mueller polarimetric images of fixed human 

brain sections

White matter fiber tract visualization

Pangal et al. (2022) (11) Surgical videos Prediction of outcome of surgical hemorrhage

Philipp et al. (2022) (156) Image datasets Surgical instrument activity in neurosurgery

Su et al. (2022) (128) RGB-D camera Image-guided neurosurgery

Yilmaz et al. (2022) (124) Neurosurgeon and student performance data 

in 156 virtually simulated tumor resection 

tasks

Simulated tumor resection task

Zhang et al. (2022) (153) Cone-beam CT Image-guided neurosurgery

Zufiria et al. (2022) (129) Interventional MRI MRI-guided neurosurgery

(Continued)
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intervention. By integrating clinical features such as patient age, 
hematoma size, and medical history, the model supports clinical 
decision-making and potentially reduces adverse events by ensuring 
appropriate surgical referrals.

Pangal et  al. (11) explored the SOCALNet model to predict 
surgical outcomes during hemorrhage events in neurosurgery. This 
neural network analyzes surgical videos to estimate the likelihood of 
achieving hemostasis, outperforming expert surgeons in accuracy. 

This model is valuable for real-time decision support, enhancing 
patient safety and surgical outcomes.

Survival prediction in neurosurgery has also been enhanced by 
DL approaches that integrate multimodal data, including imaging and 
genomic information. By accurately predicting survival probabilities, 
these models support clinicians in making informed decisions 
regarding treatment strategies and patient counseling (83). Di Ieva 
et al. (93) applied a DL model to predict outcomes in brain tumor 

TABLE 6 (Continued)

Study (year) Data used Procedure or goal

Baghdadi et al. (2023) (118) Sensorized bipolar forceps, SmartForceps 

System use data

Neurosurgical performance analysis

Chiou et al. (2023) (121) Augmented reality surgical navigation 

system

Surgical navigation

Danilov et al. (2023) (120) Neurosurgical operative reports Classification of neurosurgical operative reports

Eskandari et al. (2023) (159) Preoperative T1-weighted MRI volumes, 

preresection intraoperative USG volumes of 

the BITE database

Image-guided neurosurgery

Gonzalez-Romo et al. (2023) (174) Video datasets Identification of gross and fine hand movements during microvascular anastomosis 

simulation

Haber et al. (2023) (161) Head CT Detection of idiopathic normal pressure hydrocephalus

Sarwin et al. (2023) (158) Video datasets Minimally invasive neurosurgery navigation

Shimamoto et al. (2023) (123) Preoperative and intraoperative MRI Brain shift prediction and neurosurgical navigation

Xu et al. (2023) (119) Force data obtained from a novel sensorized 

surgical glove

Microsurgery

Yoon et al. (2023) (160) Noncontrast head CT Interpretation of urgent head CT

Zhang et al. (2023) (122) Intraoperative cone-beam CT Image-guided neurosurgery

Bi et al. (2024) (165) MRI Neuronavigation

Bobeff et al. (2024) (185) Cranial CT Automation of segmentation of intracranial compartments and analysis of 

cerebrospinal fluid distribution

de Boer et al. (2024) (162) MRI Brain, skin, tumor, and ventricle segmentation

Matasyoh et al. (2024) (164) Neuroendoscopic images Facilitating authentic and interactive learning experiences in neuroendoscopy

Moriconi et al. (2024) (163) Polarization states intensity images Provision of visual feedback on white matter fiber bundle orientation

On et al. (2024) (172) Video datasets Measurement of surgical motion during a cadaveric mastoidectomy procedure

On et al. (2024) (173) Video datasets Detection of hand motion during microvascular anastomosis simulation

Park et al. (2024) (17) Image datasets Improvement of the quality of images collected from exoscopes and surgical 

microscopes (sharpness, distortion) and measurement of the depth of the surgical field

Payman et al. (2024) (180) Image datasets Identification of skull-base foramina to enhance anatomical education and 

intraoperative structure visualization

Rahmani et al. (2024) (116) MRI datasets Neuronavigation

Rhomberg et al. (2024) (115) Skull radiographs or scout CT Proper identification of shunt valves on radiographs

Sastry et al. (2024) (117) MRI and USG datasets Neurosurgical inpatient admissions

Sugiyama et al. (2024) (171) Video datasets Video analysis of instrument motion in microvascular anastomosis training

Tan et al. (2024) (140) Preoperative paired CT and contrast-

enhanced MRI

Generation of synthetic high-resolution CT from MRI through a conditional 

generative adversarial network

Wodzinski et al. (2024) (181) Large-scale 3D volumetric data Easier and faster modeling of cranial implants

Zanier et al. (2024) (183) Surgical video datasets Enhancement of intraoperative orientation

Zanier et al. (2024) (184) Cranial CT Exploration of the feasibility of generating synthetic CT imaging from radiographs

2D, 2-dimensional; 3D, 3-dimensional; BITE, Brain Images of Tumors for Evaluation; CT, computed tomography; MRI, magnetic resonance imaging; RGB-D, red-green-blue depth; USG, 
ultrasonography.
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management, focusing on survival prediction. The integration of 
imaging and genomic data enhances the prediction of patient survival, 
enabling better surgical planning and prognosis.

DL models enhance decision-making, optimize resource 
allocation, and improve patient outcomes by leveraging complex data 
from imaging, clinical records, and surgical videos. As neurosurgery 
continues to embrace AI, integrating DL technologies will be crucial 
in personalizing treatment strategies, minimizing risks, and ultimately 
elevating the standard of care in this high-stakes discipline.

4.2.3 Movement analysis and microsurgical skill 
analysis via hand and instrument tracking

The application of DL in hand motion and instrument tracking in 
neurosurgery is an innovative and transformative topic. DL is capable 
of tracking both relevant and redundant surgical motions in real time 
and serves as an educational and forecasting tool for training the next 
generation of neurosurgeons. On the other hand, DL algorithms have 
also been used to track patient motor movements during functional 
neurosurgery procedures. In a study by Baker et al. (54), a DL-based 
CV algorithm was used for markerless tracking to evaluate the motor 
behaviors of patients undergoing DBS surgery. Intraoperative 
kinematic data were extracted using the Phyton-based CV suite 
DeepLabCut from the surgical videos of 5 patients who underwent 
DBS electrode implantation surgery, with comparison to manual data 
acquisition. The automated DL-based model showed 80% accuracy. 
Furthermore, a support vector machine model was also used in this 
study to classify patient movements. Classification by a support vector 
machine had 85.7% accuracy, including for 2 common upper limb 

movements: 92.3% accuracy for arm chain pulls, and 76.2% accuracy 
for hand clenches. This study emphasized the application of DL-based 
algorithms in DBS surgery to accurately detect and classify the 
movements of the patients undergoing surgery. Although the accuracy 
of a support vector machine for a specific type of movement was 
found to be low, the results are promising for future studies (54).

Koskinen et al. (12) investigated the use of a CV model to properly 
train an algorithm to accurately detect the movement of microsurgical 
instruments correlated with eye tracking. A DL approach using 
YOLOv5-1 composed of Cross Stage Partial Network allowed analysis of 
6 specific metrics of path length, velocity, acceleration, jerk, curvature, 
and the intertool tip distance in 4 categories of surgical movements of 
dissection (to use a microscissor for vessel dissection), enhancement of 
the visual scene (to move objects away from the visual field to expose the 
dissection area), exploration with the tools (to find a new dissection 
plane), and intervention (to clean the bleeding from the field of focus). 
This novel DL application for an intracranial vessel dissection task was a 
successful proof-of-concept that demonstrated surgical movement 
tracking without sensors attached to hands or digits (12).

DL is widely used as a tool for educators and academicians, and its 
role in neurosurgical education is also prevalent. In a DL-based analysis 
of the surgical performance of surgeons of varying degrees of expertise, 
Davids et al. (131) analyzed videos of 19 surgeons by using a CNN and 
evaluated the skill levels using the area under the curve and accuracy. 
Novice surgeons showed a significantly higher median dissector 
velocity and a more considerable intertool tip distance, both of which 
served as discernment points between the experts and the beginners.

Microvascular anastomosis is another procedure used in 
neurosurgery that is highly dependent on the precision and accuracy of 
the surgeon’s intraoperative moves. Sugiyama et al. (171) employed a 
similar approach to Davids et al. (131) in using a YOLOv2 training 
system to train with microvascular anastomosis videos of surgeons of 
various experience levels ranging from novice to expert. Although 
experts could complete the tasks faster than the novice, nondominant 
hand results were observable only in certain phases of the simulated 
practice surgeries. This study introduced a DL-based video analysis 
algorithm (171).

Xu et al. (119) also studied the skill levels of surgeons performing 
microsurgery, developing a novel sensorized surgical glove by applying 
a piezoresistive sensor on the thumb of the glove. Additionally, this 
study used force-based data, meaning that the interaction between the 
surgical tools served as the basis for analyzing surgeon skillfulness. 
Similar to the studies mentioned above, this study also encompassed 
surgeons of varying degrees of expertise and compared various DL 
models, including long short-term memory and gate recurrent unit 
for movement detection. The study asserted that force data can yield 
discrimination between experts and novices, which means this 
concept could be used as an educational tool (119).

In a recent study conducted by Gonzalez-Romo et al. (174), a 
novel hand-digit motion detector incorporating an open-source ML 
model (https://ai.google.dev/edge/mediapipe/solutions/vision/hand_
landmarker; MediaPipe, Google, Inc.) was developed using the 
Python programming language (Python Software Foundation, https://
www.python.org/) to track operators’ hands during a microvascular 
anastomosis simulation (201). The model tracked hand and digit 
motion with 21 hand landmarks without physical sensors attached to 
the operators’ hands. Hand motion during the microanastomosis 
simulation was recorded with a neurosurgical operating microscope 

FIGURE 2

Number of publications focused on applying various deep learning 
(DL) algorithms in neurosurgical procedures by year and 
subspecialty. This bar chart shows that applications of DL algorithms 
in neurosurgery were little studied in 2016. Such studies began to 
gain popularity in 2019, and the trend has continued to grow. By 
November 2024, the publication numbers had nearly matched those 
for 2023. Although these algorithms have been applied across 
almost all neurosurgery subspecialties, general neurosurgery, neuro-
oncology, and functional neurosurgery are the leading subspecialties 
in using DL algorithms. Used with permission from Barrow 
Neurological Institute, Phoenix, Arizona.
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and an external camera. Six expert neurosurgeons performed the 
simulation, with interesting elucidation and comparison of their 
technical commonalities and variances using time series analysis. The 
hand-tracking system employed in this study is a promising example 
of tracking motion during surgical procedures in a sensorless manner 
(174). On et al. (172) used the same DL-based sensorless motion 
detection system (MediaPipe) to track operators’ hand motions during 
a cadaveric mastoidectomy. The procedures were recorded using an 
external camera, and the video output was processed to assess surgical 
performance and provide feedback.

Research on DL technology applicable to various neurosurgical 
educational settings is continuously growing, with the development of 
various scalable open-source solutions aimed at the goal of molding the 
next generation of competent neurosurgeons. The paradigm shift in 
neurosurgery, whereby real-time piecewise intraoperative motion can 
be evaluated, may ultimately improve postsurgical patient outcomes and 
optimize neurosurgeons’ efficiency in carrying out preplanned tasks and 
improvising to overcome unexpected surgical situations (172–174).

4.2.4 Diagnostic support
Due to various factors, fast and accurate diagnosis in neurosurgery 

can be  challenging (202, 203). Thus, DL algorithms have been 
employed to provide diagnostic support. This support includes 
segmenting urgent intracranial pathologies on CT to help with fast 
decision-making, identifying and classifying intracranial tumors and 
spinal pathologies for accurate treatment planning, and enhancing 
neuronavigation systems to achieve better surgical outcomes.

4.3 Specialized applications

4.3.1 Applications in intracranial hemorrhages
Intracranial hemorrhages (ICH) are among the most challenging 

pathologies for neurosurgeons, particularly in emergency settings 
(204–206). Selecting the optimal treatment modality for ICH can 
be  controversial; however, timing is crucial for choosing the 
appropriate treatment. DL algorithms could be used to segment ICHs 
on CT, aiding in selecting the most effective surgical strategy.

In a study by Tong et  al. (13), the authors developed a 
3-dimensional (3D) U-Net embedded DL model to segment 
intraparenchymal and intraventricular hemorrhages on CT (13). This 
study aimed to improve understanding of the boundaries, volume, and 

centroid deviation of each type of hematoma. By achieving this, the 
authors hoped to aid clinicians in selecting the most accurate catheter 
puncture path for treatment (13).

Previously, the diagnostic accuracy of ICHs using DL models was 
tested in a retrospective study by Voter et al. (38). This study used a 
US Food and Drug Administration–approved DL model, Aidoc, to 
assess the diagnostic accuracy of ICHs using 3,605 noncontrast CT of 
adults (Figure  4). This study showed a decreased sensitivity and 
positive predictive value of the model compared to their expectations 
and previous studies, with specific patient features such as previous 
neurosurgery, hemorrhage type, and number of hemorrhages further 
reducing diagnostic accuracy. The authors raised concerns regarding 
the generalizability of these DL models. They additionally stressed the 
need to include patients with a prior history of a neurosurgical 
procedure when training these models and a more stringent 
standardization of study parameters in future studies (38).

The recognition of subarachnoid hemorrhages (SAHs) using DL 
has also been investigated. Nishi et al. recognized the difficulty in 
diagnosing patients with SAH (39). An AI system using a deep neural 
network architecture segmented noncontrast CT images from 757 
patients with 3D U-net. Of these 757 patients, 419 had SAH confirmed 
by 2 neurosurgical specialists. Of these 419 cases, 392 were used to 
train the DL model, and 27 were used for validation. Image 
interpretation was conducted on 331 cases, which included 135 SAH 
cases and 196 non-SAH cases. The AI system demonstrated a high 
accuracy in diagnosing SAH, almost comparable to that of the 
neurosurgical specialists. Importantly, the system was useful in aiding 
in the diagnosis of SAH when used by physicians who were not 
specialists in neurosurgery, reflecting its potential use as a screening 
tool in settings such as the emergency room (39).

4.3.2 Applications in neuro-oncology
Proper identification and classification of intracranial tumors are 

crucial for determining early management but might not always 
be successful on initial imaging (207, 208). Thus, auxiliary methods to 
improve this process are essential. DL algorithms have been widely 
employed in adult and pediatric neuro-oncology to accurately identify 
and classify intracranial tumors (175, 176, 209). These algorithms 
facilitate rapid diagnostic estimation and support the determination of 
the most appropriate treatment strategy (210). For this purpose and to 
thereby enhance their effectiveness, DL algorithms can be trained with 
MRI datasets to accurately predict tumor classification, or they can 

TABLE 7 Brief description of the most widely used neural network models in neurosurgical studies.

Technique Description Example studies

Multilayer perceptron A feedforward artificial neural network consisting of multiple layers of fully connected neurons; it has a 

well-recognized capability of distinguishing data that is not linearly separable

(81, 83, 137)

Convolutional neural 

network

A regularized feed-forward neural network based on the shared-weight architecture of the convolution 

kernels (filters); widely used to learn the spatial relationship (or visual patterns) among adjacent pixels 

within an image

(37, 38, 41, 73, 74, 82, 115, 123, 125)

Long short-term 

memory

An advanced recurrent neural network is composed of a cell, an input gate, an output gate, and a forget gate; 

its insensitivity to gap length gives it an advantage over conventional recurrent neural network models in 

modeling the temporal transitions of sequential data

(88)

Generative 

adversarial network

A prominent framework for approaching generative artificial intelligence consists of 2 neural networks that 

contest each other, where the generator is trained to fool the discriminator, and the discriminator is trained 

to reject the poor output

(116)
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be applied to overcome the limitations of advanced real-time, cellular-
scale imaging technologies, such as confocal laser endomicroscopy 
(CLE) and Raman scattering microscopy. As neurosurgery rapidly 
advances into an era in which such imaging technologies are 
increasingly employed intraoperatively, DL algorithms serve as a 
critical tool for improving diagnostic workflows, accelerating treatment 
selection, and ultimately optimizing patient outcomes.

4.3.2.1 Confocal laser endomicroscopy
CLE, a real-time in  vivo intraoperative fluorescence-based 

cellular-resolution imaging technique used in brain tumor surgery, 
has the potential to revolutionize the surgical workflow in that it 
essentially provides a digital optical biopsy without requiring tissue 
extraction (176, 177, 209). Although promising, CLE devices are 
hand-held, extremely movement sensitive, and have a small field of 
view, making them prone to motion artifacts; they also provide images 
in grayscale only. To address the colorization limitation, 
Izadyyazdanabadi et al. (175) studied image style transfer, which is a 
neural network method used to integrate or rationalize the content of 
2 distinct images in an attempt to transform the fluorescence-based 
grayscale CLE image into a familiar histology-standard hematoxylin 
and eosin–like image (Figure  5). Evaluation of the images by 
neurosurgeons and neuropathologists found that the transformed 

images had fewer artifacts and more prominent critical structures 
when compared to the original grayscale fluorescence-based images. 
This study emphasized an important application of DL technologies 
in neuro-oncology that enhances the diagnostic quality of 
intraoperative imaging techniques for better precision, which is 
particularly crucial for malignant and invasive brain tumors (175).

Because CLE imaging is sensitive to motion artifacts, it produces 
many images with nondiagnostic findings or limited surgical 
information (176). To address this discriminatory challenge, 
Izadyyazdanabadi et al. developed and used a DL method to detect 
diagnostic images among many nondiagnostic ones (176). AlexNet, a 
DL architecture, was trained with CLE image datasets collected from 
CLE-aided brain tumor surgeries, with all images verified by a 
pathologist. The mean accuracy of the model in detecting the 
diagnostic images was 91%; sensitivity and specificity were each also 
91%. The results of this study showed that image detection and 
discrimination techniques based on a CNN have the potential to 
quickly and reliably identify informative or actionable CLE images. 
Incorporation of such techniques into the CLE operating system has 
the potential to aid the surgeon or pathologist in making an informed 
surgical decision on the fly when imaging with CLE.

Moreover, in another study (177), different CNN algorithms were 
trained using the CLE images of patients with different intracranial 

FIGURE 3

Use of deep learning (DL) algorithms in surgical workflow analysis. The workflow diagram adapted from Khan et al. (2) illustrates the phase and step 
recognition process in surgical videos using artificial intelligence. The process begins with a video input that undergoes labeling into phases and steps. 
A convolutional neural network (CNN) extracts features from the labeled video frames, whereas a recurrent neural network (RNN) ensures temporal 
consistency across the video sequence. The combined CNN and RNN architecture enables accurate classification of surgical phases, recognition of 
specific steps, and comprehensive workflow analysis. The final output provides detailed insight into phase recognition, step recognition, and overall 
surgical workflow. Used with permission from Khan DZ, Luengo I, Barbarisi S, et al. Automated operative workflow analysis of endoscopic pituitary 
surgery using machine learning: development and preclinical evaluation (IDEAL stage 0). J Neurosurg. 2022;137 (1):51–58. 
doi: 10.3171/2021.6.JNS21923.
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neoplasms to detect diagnostic images automatically. Accuracies of 
distinct CNN models were compared, and the study found that a 
combination of deep fine-tuning and creating an ensemble of models 
reached the maximum accuracy (0.788 for an arithmetic ensemble 
and 0.818 for a geometric ensemble). Using DL algorithms in 
intraoperative imaging techniques such as CLE has yielded promising 
results that may be a focus of future research.

4.3.2.2 Raman scattering microscopy
Other intraoperative imaging has used DL image identification 

results, such as Raman scattering microscopy, which allows the 
generation of digitally stained histological images. Reinecke et al., 
using the residual CNN ResNet50v2, correctly identified tissue as 
tumor, nontumor, or low-quality tissue imaged with stimulated 
Raman histological images of intraoperative tissue samples (15). This 
study reported that the Raman histology-based residual network was 
90.2% accurate in correctly classifying the different tissues compared 
to the classification conducted by neuropathologists, thereby aiding in 
surgical and clinical decision-making (15).

4.3.2.3 Predicting tumor classification using MRI
Danilov et al. focused on predicting tumor classification by using 

contrast-enhanced T1 axial MRI images of World Health 

Organization (WHO)–grade verified glial tumors from 1,280 patients 
to train a DL model to accurately classify each tumor according to the 
WHO grading system (89). Two methods were used to achieve this 
goal: a 3D classification method in which the whole-brain MRI was 
used to predict tumor type and a 2-dimensional (2D) classification 
method using individual slices of each MRI scan. For model training, 
the processing of the 3D set was performed by the Dense-Net 
architecture, whereas the processing of the 2D model was performed 
by the Resnet200e architecture. The authors of this study concluded 
that the accuracy of their DL model in separating glial tumors based 
on the WHO grading system was similar to the results of other 
studies found in the literature (89).

4.3.2.4 Use in pediatric neuro-oncology
Accurate classification of intracranial tumors is highly 

important because treatment strategies may vary accordingly, 
particularly in the pediatric age group. In this context, the use of 
DL for radiological diagnostic support has also been demonstrated 
in pediatric neuro-oncology to classify sellar and parasellar 
tumors accurately. In a study by Castiglioni et al., the ability of a 
DL model to determine the presence or absence of 
craniopharyngiomas on MRI of pediatric patients was assessed 
(80). To achieve this goal, the authors developed a CNN. They 

FIGURE 4

Deep learning (DL) in diagnostic support in neurosurgery. Voter et al. (38) focused on the application of a US Food and Drug Administration–approved 
DL, Aidoc, to determine its ability to recognize intracranial hemorrhages on noncontrast computed tomography (CT) accurately. Noncontrast CT (left) 
and the key images (right) in which the Aidoc identified the pathology (white arrows). (A) True positive finding in which the intracranial hemorrhage was 
not identified by the neuroradiologist. (B) Image of a meningioma that was incorrectly identified as an intracranial hemorrhage by Aidoc. (C) Cortical 
laminar necrosis incorrectly identified as an intracranial hemorrhage by Aidoc. (D) An artifact misidentified by the Aidoc. (E) Failure mode with the 
absence of a clear pathology. Used with permission from Voter AF, Meram E, Garrett JW, Yu JJ. Diagnostic Accuracy and Failure Mode Analysis of a 
Deep Learning Algorithm for the Detection of Intracranial Hemorrhage. J Am Coll Radiol. 2021 Aug;18 (8):1143–1,152. Doi:10.1016/j.jacr.2021.03.005. 
Epub 2021 Apr 3. PMID: 33819478; PMCID: PMC8349782.
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trained this model with sagittal MRI slices of the sellar-suprasellar 
regions of 3 groups: controls, craniopharyngiomas, and 
differentials (80).

The use of DL algorithms in neuro-oncology is crucial in 
enhancing early diagnostic capabilities for adult and pediatric patients. 
In this context, DL algorithms can be trained conventionally using 
MRI or employed to address the limitations of intraoperative methods 
such as CLE and Raman scattering microscopy, thereby enhancing 
their effectiveness.

4.3.3 Applications in neuronavigation and 
neuroimaging modalities

4.3.3.1 Neuronavigation
Neuronavigation systems aim to track surgical tools to ensure 

their real-time locations are precisely aligned with the patient’s 

anatomy. Various DL algorithms can also enhance these systems to 
increase accuracy and improve surgical outcomes. For example, 
NeuroIGN is a navigation system that integrates trained DL algorithms 
to recognize and segment brain tumors from MRI while including 
explainable AI techniques (Figure 6) (16). This study’s authors tested 
this system’s utility and accuracy to complete specific tasks such as 
registration and tracking, tumor segmentation, and real-time 
ultrasound imaging capabilities. They also evaluated how user-
friendly this system was when used by individuals who had received 
only a short presentation on its use and were novices in using the 
NeuroIGN system (16). When evaluating the accuracy of the 
segmentation model, the authors observed that the system 
demonstrated good accuracy, making it an ideal candidate for image-
guided neurosurgery (16).

Neuronavigation during surgery is typically limited by brain shift 
following the incision and opening of the dura, which reduces the 

FIGURE 5

Deep learning (DL)–based image style transfer method to improve the diagnostic quality of confocal laser endomicroscopy (CLE) images. Image style 
transfer is a neural network–based model used in a study by Izadyyazdanabadi et al. (175) to integrate the content and style of 2 distinct images to 
transform fluorescence-based grayscale CLE images into familiar histologic hematoxylin and eosin (H&E)–like images. (A) Representative CLE 
(Optiscan 5.1, Optiscan Pty., Ltd.) and H&E images from human glioma tissues. The difference between original and stylized images of human gliomas 
can be seen on (B), in 4 distinct color scales: intact H&E, red, green, and gray. Used with permission from Izadyyazdanabadi M, Belykh E, Zhao X, 
Moreira LB, Gandhi S, Cavallo C, Eschbacher J, Nakaji P, Preul MC, Yang Y. Fluorescence Image Histology Pattern Transformation Using Image Style 
Transfer. Front Oncol. 2019 Jun 25;9:519. Doi: 10.3389/fonc.2019.00519. PMID: 31293966; PMCID: PMC6603166.
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ability of neurosurgeons to identify their location intracranially 
during procedures. Shimamoto et al. used a CNN to design updated 
MRI to help remediate this issue (123). Preoperative and 
intraoperative MRI data from 248 patients was used, with the 
preoperative images serving as the training data for the CNN and the 
intraoperative images serving as the ground truth. This method 
allowed the model to learn how the brain shifted after the dural 
opening and adjust accordingly based only on preoperative images 
(Figure 7) (123).

Drakopoulos et al. aimed to tackle the issue of image distortion 
due to brain shift with the added obstacle of tissue resection by 
studying the utility of the Adaptive Physics-Based Non-Rigid 
Registration method (137). This study highlighted the limitations of 
neuronavigation systems that use rigid transformation and the need 
for a more accurate method to map patient coordinates once the brain 
has shifted. Preoperative images of 30 glioma patients were segmented 
into brain, tumor, and nonbrain regions, first by removing the skull 
and outer tissue with the Brain Extraction Tool (Oxford Center for 
Functional MRI of the Brain) and then segmenting with the 3D Slicer 
Software. The Adaptive Physics-Based Non-Rigid Registration method 
had superior accuracy in detecting tissue deformation compared to 
other systems for modeling deformation (137).

4.3.3.2 Neuroimaging modalities
Zufiria et  al. proposed a feature-based CNN to improve the 

accuracy of real-time interventional MRI during procedures such as 

electrode placements for DBS (129). This CNN was trained by 
simulating an interventional needle superimposed on 2,560 coronal 
and axial slices of T1 and T2 weighted MRIs from 1,200 patients. Using 
this feature-based reconstruction process to reconstruct interventional 
MRIs, this study aimed to increase real-time understanding of the exact 
locations of brain structures after brain shift in procedures such as 
electrode placements during DBS or biopsy procedures (129).

Zhang et al. focused on enhancing intraoperative cone-beam CT 
(CBCT) quality using a 3D DL reconstruction framework (153). The 
purpose of this study, similar to those mentioned above, was to 
improve the accuracy of neuroimaging following a brain shift. 
Although intraoperative CBCT is a cost and time-efficient imaging 
method, its drawbacks include a reduced soft-tissue contrast 
resolution, limiting its utility in intraoperative use. After training with 
simulated brain lesions from CBCT images, the 3D DL reconstruction 
framework’s efficacy was tested in neurosurgery patients to assess its 
reliability using clinical data (153).

DL methods have also been applied to improve the accurate 
identification and recognition of different shunt valves of cerebrospinal 
fluid shunts using radiographs (115). In a study by Rhomberg et al. 
(115), a CNN was trained using a dataset of 2,070 radiographs and CT 
scout images of shunt valves to recognize and correctly identify the 
model type. This study found that their CNN had a high accuracy in 
correctly identifying standard shunt models. The utility of this system 
stems from the necessity of recognizing different shunt models in 
patients with an unknown medical history (115).

FIGURE 6

Role of deep learning (DL) in neuroimaging. The study by Zeineldin et al. (16) focused on developing a DL algorithm for tumor segmentation that 
includes explainable artificial intelligence techniques. This figure shows each level of the Neuro Image-Guided Neurosurgery (IGN) system, separated 
into hardware, general platform, image-guided surgery (IGS) plugin, and application. The hardware section is made up of 3 platforms: the Public 
software Library for UltraSound (Plus) platform, the Open Image-Guided Therapy Link (OpenIGTLink), and the Image-Guided Surgery Toolkit (IGSTK). 
The general platform level comprises the Slicer and Medical Imaging Interaction Toolkit (MITK). The IGS plugin level comprises the Slicer image-guided 
therapy (SlicerIGT) and the NiftyLink Toolkit (NifTK; NiftyLink). Finally, the application level includes the Neuro IGN system, CustusX, and Intraoperative 
Brain Imaging System Neuronavigation (Ibis Neuornav). The large arrow to the right shows increasing integration from left to right, and the large arrow 
to the left shows increasing generalization from right to left. The small arrows illustrate the dependency direction. Used with permission from 
Zeineldin, R.A., Karar, M.E., Burgert, O. et al. NeuroIGN: Explainable Multimodal Image-Guided System for Precise Brain Tumor Surgery. J Med Syst 48, 
25 (2024). https://doi.org/10.1007/s10916-024-02037-3.
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Recognition of objects intracranially using DL methods has also 
been applied to identify foreign bodies left behind following a 
neurosurgical procedure. Abramson et al. proposed an ultrasound-
based system harnessing the powers of DL to help solve this issue (125). 
This study demonstrated the capabilities of their ultrasound system 
(using the Philips EPIQ 7 ultrasound machine) by first acquiring data 
by capturing images of a cotton ball implanted within porcine brains. 
In addition, the algorithm was tested to recognize a latex glove 
fragment measuring 5 mm in diameter, a stainless steel rod, and an 
Eppendorf tube. Following the success of these tests, cotton balls were 
placed within the resection cavities of 2 patients, with images captured 
by ultrasound used to train a DL detection algorithm (Figure 8). A 
custom version of the VGG16 CNN model demonstrated 99% accuracy 
in detecting foreign bodies within the brain (125).

The use of DL to identify specific abnormalities in neuroimaging 
modalities has also been examined in a study by Jiang et al. (28). This 
study analyzed noncontrast CT of patients with suspected TBI (28). 
This study focused on the ability of physicians with variable levels of 
expertise in neuroradiology or neurosurgery to detect a TBI compared 
with the ability of the DL model of icobrain TBI. Parameters used to 
detect TBIs included the presence of midline shift, hydrocephalus, 
hematomas, and Neuroimaging Radiological Interpretation System 
scores. The DL system’s ability to correctly categorize TBIs was similar 
to that of the attending physicians’ diagnoses. On the other hand, 
trainees had a lower level of agreement with the ground truth when 
compared to attending physicians. Moreover, they also demonstrated 
that, although the trainees had a substantial level of agreement on 
their initial review, using the DL algorithm as a supportive tool 

increased their agreement with the ground truth to an almost perfect 
level on their second review (28).

Although there are some limitations and controversies regarding 
their accuracy (27), DL algorithms can enhance diagnostic support. 
DL can facilitate surgical and clinical decision-making and aid in 
selecting the most appropriate treatment modality on a patient-
specific basis, with particular auxiliary use in controversial cases and 
emergency settings.

4.3.4 Volumetric assessment
Volumetric assessments are among the frequently used methods 

in neurosurgical studies for various purposes (211). However, since 
these assessments may require technical expertise, accurate 
measurements are not always achievable. Therefore, DL algorithms 
have increasingly been used to improve volumetric analyzes.

Measuring tumor burden is essential for evaluating treatment 
responses, particularly in neuro-oncology. Conventional 2D 
techniques are often unsuccessful in accurately measuring the volume 
of intracranial tumors, particularly gliomas, due to their irregular 
borders. Although still in development, DL models can address this 
challenge by providing more precise volumetric measurements for 
intracranial lesions.

An example of an intracranial lesion to which this method has 
been applied is pituitary adenoma (82). A study by Da Mutten et al. 
(82) created an automated volumetry pipeline to segment T1 contrast-
enhanced MRIs of pituitary adenomas both preoperatively and 
postoperatively. This pipeline was developed by training a group of 
CNNs with 2D U-Net as the model architecture using manually 
segmented scans as training material. The model accurately segmented 
and completed a volumetric assessment preoperatively; however, the 
technique had difficulty achieving favorable results when assessing 
postoperative images. The authors hypothesized this may be partly 
due to interrater disagreement in ground truth segmentation of 
residual tumor tissue and image downsampling (82).

Tumor burden and volumetric assessment are often complex and 
limited due to the heterogenic and multifaceted nature of intracranial 
tumors. Chang et al. (18) studied automatic evaluation of the level of 
glioma burden employing the 3D U-Net architecture, specialized for 
detailed segmentation, by leveraging preoperative and postoperative 
MRI. A total of 239 patients were included in this study, which used 
automated processes to carry out tumor volumetric calculations. The 
study acknowledged that brain extraction, a step to discerning 
nonbrain tissue, was a rate-limiting step that created room for error 
during tumor segmentation (18).

A study assessing the feasibility of the application of DL in the 
extent of resection volumetric assessment of brain tumors was 
conducted by Zanier et  al. (86). Single-institutional pre- and 
postoperative MRIs were manually labeled and combined with the 
Brain Tumor Segmentation Challenge 2015 and 2021 data from 1,053 
patients. Use of U-Net architecture allowed the DL system to achieve 
faster and more accurate estimation of intracranial tumor volume (86).

Kang et al. (178) leveraged 12 DL models to automate the MRI 
segmentation process and obtainment of meningioma volumetric 
data. U-Net and nnU-Net–based DL training followed the manual 
segmentation. Although smaller than the Zanier et al. (86) study, the 
Kang et al. (178) study contained 459 subjects’ MRIs. nnU-Net, known 
to be  better at image segmentation than U-Net, superseded the 
meningioma segmentation performance of U-Net, and 2D nnU-Net 

FIGURE 7

Role of deep learning (DL) in enhancing neuronavigation systems. A 
study by Shimamoto et al. (123) focused on the ability of a 
convolutional neural network (CNN) to adjust for and predict brain 
shifts based on preoperative and intraoperative magnetic resonance 
imaging (MRI). This figure illustrates the process of predicting brain 
shift intraoperatively compared to preoperatively in a selected case 
from the study (case 47). (A) Preoperative T2-weighted MRI. 
(B) Intraoperative image of the corresponding T2-weighted MRI. 
(C) The corresponding updated MRI. (D) The overlay of both the 
preoperative and intraoperative MRIs. (E) The updated MRI and the 
intraoperative MRI. The purpose of this image is to show the ability of 
the W-Net DL system to compensate for the brain shift. Reproduced 
from Shimamoto et al., Neurol Med Chir (Tokyo), 2023. Licensed 
under CC BY-NC-ND 4.0.
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was the best performer. This study foresees the clinical applicability of 
this technology to manage specific meningioma cases (178).

The essential nature of accurately measuring tumor volumes 
warrants further research on the intersection between DL and 
volumetric assessment to optimize patient neuro-oncological 
surgical outcomes.

4.4 Challenges, ethical considerations, and 
future directions

The contribution of DL algorithms to reducing human errors and 
accelerating diagnostic processes in clinical practice is undeniable. 
However, their integration into medical and surgical practices faces 
several limitations.

One significant technical limitation is the heterogeneity of image 
datasets used for training DL algorithms (210). For instance, when 
MRI datasets are used to train these algorithms, the similarity of MRI 
signal intensities is crucial. Variations in signal intensity caused by 
differences in scanners can hinder the creation of homogeneous 
datasets, which can affect the reliability of outputs. To address this 
challenge, efforts must focus on standardizing the datasets to ensure 
more reliable and reproducible outputs (212, 213).

Another critical challenge is methodology bias. If the training 
datasets for these algorithms come from only one or a few centers, the 
DL model might unintentionally favor the imaging protocols unique 
to those centers rather than focus on the tumor’s more critical 
pathological features (210, 214). This bias can result in the DL model 
failing to generalize when presented with data from other centers with 
different imaging protocols. Considering the heterogeneity of brain 
tumors, this bias is a significant limitation. To mitigate this issue, 
datasets used for training DL algorithms should be extensive and, if 
possible, sourced from multiple centers with different patient 
populations. Additionally, incorporating imaging sequences with 
varying protocols during model training can enhance the assessment 
and segmentation capabilities of these algorithms (210, 214).

Performance evaluation presents another challenge. In some 
studies, the performance of DL algorithms in image segmentation is 
evaluated against the ground truth. However, the ground truth is 
typically determined through manual segmentation by radiologists or 
neurosurgeons, introducing subjectivity that can cause fluctuations in 
model performance. To address this, multiple manual segmentations 
should be performed, and their averages should be used as a reference 
to reduce human error (188, 210).

On the other hand, using imaging datasets composed 
exclusively of high-quality images to train DL algorithms raises 
the issue of selection bias. Although training with high-quality 
images may improve performance during the training process, 
real-world clinical scenarios often involve suboptimal-quality 
images in clinical settings. For this reason, the datasets used to 
train these algorithms can indirectly affect the clinical 
applicability of the outputs. Therefore, careful attention must 
be paid to the selection of datasets, and the final purpose of the 
algorithm should be thoroughly evaluated (188, 210).

In summary, large datasets with diverse images should 
be used for model training to maximize the effectiveness of DL 
algorithms in clinical practice. Selection and methodology biases 
must be carefully considered and minimized to ensure reliable 
and generalizable outcomes, and DL algorithms should be trained 
on datasets that accurately represent the target patient population. 
It should be  noted that there is no guarantee that using DL 
algorithms in clinical settings will yield more accurate or efficient 
data, reduce process costs, accelerate results, or decrease latency 
for result appearance. Implementing DL processes requires 
substantial computing power and infrastructure. Furthermore, 
the results and outputs of DL algorithms are entirely dependent 
on the quality of the informational inputs.

The increasing use of DL algorithms in medicine and surgery 
presents significant ethical challenges. Standardized guidelines are 
required to evaluate the scientific integrity and clinical applicability of 
studies using DL algorithms. Ensuring reliability and reproducibility 
is crucial for guiding future research. Collaborative teamwork among 

FIGURE 8

Deep learning (DL) in recognition of intracranial objects. The study by Abramson et al. (125) focused on developing an ultrasound-guided DL system 
that could ultimately recognize foreign objects left behind in patients’ surgical resection cavities. This figure illustrates the experimental design of this 
study. On the left, the authors started with testing the ability of the ultrasound DL system to recognize a cotton ball placed in porcine brains. When this 
test had been completed successfully, the researchers tested the ability of this DL system to recognize the presence of cotton balls within a human 
in vivo resection cavity. The ultrasound used in this case was the Philips EPIQ 7 using an eL 18–4 probe. Used with permission from Abramson et al. 
Automatic detection of foreign body objects in neurosurgery using a deep learning approach on intraoperative ultrasound images: from animal models 
to first in-human testing. Copyright of Frontiers in Surgery and made available under the CC BY 2.0 (http://creativecommons.org/licenses/by-nc-
sa/2.0/).
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surgeons, data scientists, and ethicists can play a pivotal role in 
creating robust standards and addressing these challenges (210, 215).

One of the critical issues is the “black-box problem,” which refers 
to the difficulty in understanding the connection between the input 
data used by DL algorithms and the output they generate. This lack of 
interpretability stems from the complexity of the processes within DL 
systems, often comprising numerous hidden layers. Despite this 
complexity, understanding these processes is essential to building 
trust in and refining these models and advancing their clinical 
applications (210, 216).

Patient privacy and data protection are also critical concerns. 
Although these algorithms are trained using extensive datasets, it is 
crucial to ensure the security and privacy of the data as the dataset size 
increases. DL algorithms must be trained with deidentified datasets to 
prevent the possibility of linking imaging data to the individuals they 
belong to. Institutions must prioritize privacy by applying strict 
deidentification protocols and fostering trust with patients through 
transparent communication (210, 217).

Addressing these ethical considerations through standardized 
guidelines, interpretability-focused advancements, and privacy-
focused practices is essential for the responsible integration of DL in 
clinical settings (210, 218, 219).

In light of the challenges associated with the application of DL 
algorithms in clinical and surgical practice, future research should 
focus on several key points. Consolidated models can be developed to 
integrate various AI algorithms across the pre-, intra-, and 
postoperative spectrum to improve reliability. Achieving this will 
require standardized guidelines and effective collaborative 
teamwork (218).

In addition, integrating DL as a broad and widely available 
resource for clinicians will likely require significant monetary 
and infrastructural investment. Training programs will need to 
be  implemented to inform clinicians about the use of these 
technologies and their diagnostic and computational  
limitations.

One avenue of future research could be  to investigate the 
quantitative advantages of using DL in surgical practice from a time-
saving or cost-saving perspective (218). Furthermore, the 
computational errors that these technologies may have could lead to 
technical errors that would directly affect a patient’s well-being. Future 
research should be  directed toward not only how these technical 
errors can be  minimized but also developing safeguards to avoid 
complete reliance on these technologies if errors do arise.

Despite the challenges, integrating DL technologies into 
surgical practice has the potential to significantly improve the 
surgical workflow from both operative and diagnostic perspectives. 
The ability to intraoperatively monitor a patient’s condition for 
adverse events or precisely determine tumor borders via 
neuronavigation could be  invaluable for clinicians. The 
technologies discussed in this paper provide a general outline of 
how DL can be  used. As research into these applications 
progresses, it is crucial for clinicians and patients to understand 
how and when to use these technologies. Simultaneously, the 
development of standardized guidelines and privacy considerations 
should be prioritized as the technical capabilities of DL continue 
to evolve.

Employing DL and other AI algorithms in neurosurgical practice 
requires a collaborative team composed of neurosurgeons, data and 
computer scientists, and bioengineers. Expertise in these fields is 
necessary for using DL algorithms in neurosurgical studies. It is 
advantageous for future research on this topic that the fields of 
computer and data sciences are among the most rapidly evolving fields 
in the scientific community.

5 Conclusion

DL technologies can potentially enhance neurosurgical 
practice in various beneficial ways. These include improving the 
surgical workflow through real-time monitoring and detection of 
adverse events and pathophysiological conditions in a diagnostic 
fashion. Moreover, DL can also potentially aid in training 
novice neurosurgeons by learning from the techniques of 
experienced neurosurgeons.

Future studies should focus on developing mechanisms to 
improve the ease of use and access to these technologies within the 
neurosurgical workflow and training physicians to understand their 
benefits and current limitations. Furthermore, future research should 
be guided toward training DL models using more diverse and robust 
data so that the diagnostic applications of these technologies can 
be expanded further.
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