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Background: Behavioral assessment based on external manifestations of

consciousness fails for patients with cognitive motor dissociation (CMD).

Functional near-infrared spectroscopy (fNIRS) is an emerging neuroimaging

technique that can detect internal brain functional activities. However, the extent

to which fNIRS can help identify CMD patients among those with disorders of

consciousness (DOC) remains unclear.

Objective: To identify CMD patients among DOC patients using fNIRS with a

command-driven hand-open-close motor imagery task.

Methods: fNIRS was used to measure the hemodynamic responses of 70

prolonged DOC patients, including 30 with vegetative state/unresponsive

wakefulness syndrome (VS/UWS), 20 with minimally conscious state minus

(MCS–), and 20 with minimally conscious state plus (MCS+), during a

command-driven hand-open-close motor imagery task. Seven features of

hemodynamic responses were extracted during the task and the rest conditions.

The support vector machine combined with genetic algorithm was employed to

classify and predict the brain’s response to spoken commands and to identify

CMD patients among prolonged DOC individuals.

Results: We identified seven CMD patients using fNIRS, of whom four were in

VS/UWS and three were in MCS–. Six months after fNIRS examination, the seven

identified CMD patients were more likely to have a favorable outcome (3/4 vs.

1/31, P = 0.014, Fisher’s exact test) compared with non-CMD patients.

Conclusions: CMD patients can be identified through fNIRS combined with a

command-driven motor imagery task, which will aid in the accurate diagnosis of

DOC patients.

KEYWORDS

disorders of consciousness, cognitive motor dissociation, functional near-infrared

spectroscopy, motor imagery, support vector machine

Introduction

Disorders of consciousness (DOC) are conditions characterized by changes in arousal

and/or awareness resulting from severe brain injury or disease (1), including coma,

vegetative state/unresponsive wakefulness syndrome (VS/UWS), and minimally conscious

state (MCS) (1, 2). Coma is defined as a state with a complete lack of arousal (eyes

closed) and awareness (3). VS/UWS is defined as a state of preserved arousal (eyes
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open) but without awareness (4). While MCS is defined as

the minimal, reproducible, but inconsistent state of awareness

(5), it can occur without (MCS–) or with (MCS+) evidence of

language function (6). The DOC lasting more than 28 days is

called prolonged DOC (7). Accurate assessment of the level of

consciousness in DOC patients is crucial for treatment planning,

rehabilitation programs, and prognosis prediction. Currently,

subjective behavioral assessments (Coma Recovery Scale-Revised,

CRS-R; Full Outline of Unresponsiveness, FOUR, etc.) are

commonly regarded as clinical reference standard for assessing

the level of consciousness in DOC patients (8). However, these

behavioral assessments rely on external behavioral manifestations

of consciousness, and may fail when consciousness cannot be

expressed through external behaviors. Accurate assessment of the

conscious state in DOC patients is complex and challenging.

Fortunately, brain activities are accompanied by changes in

bioelectrical activities, cerebral blood oxygen levels, and brain

metabolism. Neuroimaging and electrophysiology techniques used

to detect these representations provide us an access to objectively

detect brain activities and subsequently assess the consciousness

level in DOC patients. In 2006, researchers verbally instructed

a patient who met the behavioral criteria of VS/UWS to

perform two mental imagery tasks (imagining playing tennis

and imagining visiting her own house) during the functional

magnetic resonance imaging (fMRI) scan (9). The patient exhibited

neural responses similar to those of healthy volunteers when

performing the same imagination tasks, indicating the patient

had residual cognition. Subsequently, these researchers conducted

fMRI scans of mental imagery tasks on 54 patients, where five

cases of behaviorally unresponsive patients with VS/UWS and

MCS showed meaningful brain activation (10). Similarly, in

another study, electroencephalogram (EEG) recordings revealed

27 cases of brain activation in response to spoken commands

among 193 DOC patients with acute brain injury who were

unable to follow spoken commands (11). This led to the

proposal of the concept of cognitive motor dissociation (CMD)

(12), specifically referring to the patients who are behaviorally

unresponsive (coma, VS/UWS, and MCS–) but have neuroimaging

and electrophysiology evidence of command following. Conversely,

the other behaviorally unresponsive patients without neuroimaging

and electrophysiological evidence of command following are called

non-CMD patients (13, 14), or true DOC patients, as defined by the

Motor Behavior Tool (15). Recently, 2020 European Academy of

Neurology guidelines suggested that task-based neuroimaging and

electrophysiology should be used where feasible to accurately detect

consciousness in DOC patients (16).

Functional near-infrared spectroscopy (fNIRS) is a recently

emerged neuroimaging technique based on optical principles

(17). By measuring differential absorption of near-infrared light

with a wavelength of 600–900 nm by oxyhemoglobin (HbO)

and deoxyhemoglobin (HbR) in brain tissue, fNIRS can detect

hemodynamic changes in the cerebral cortex, and indirectly detect

functional activities based on the law of neurovascular coupling

(17, 18). In comparison to fMRI, fNIRS is less susceptible to

motion artifacts and metal implants and offers greater temporal

resolution (8, 17, 18). It can simultaneously measure changes

in the concentrations of HbO, HbR, and total hemoglobin

(HbT), providing more comprehensive information to better

characterize hemodynamic responses (8). Furthermore, fNIRS is

cost-effective, portable, convenient, and can be used for repeated

bedside monitoring of the brain function of DOC patients (8,

18). Compared to EEG, fNIRS has superior electromagnetic

compatibility and spatial resolution (8, 18).

As an emerging brain functional imaging technique,

researchers first proved the feasibility of using fNIRS combined

with an imagined squeezing a ball task to assess brain function in

DOC patients in 2016 (19). Subsequently, researchers successfully

communicated with a functionally locked-in patient using fNIRS

combined with an imagined playing tennis task (20). A study

further revealed that three out of five MCS (2MCS+ and 1MCS–)

patients exhibited hemodynamic responses similar to those of

healthy controls (HC) during an imagined playing tennis task

(7). However, studies on brain functional activities of DOC

patients and assessment of consciousness state using fNIRS are still

scattered and limited. Currently, there are no reports on fNIRS

specifically targeting CMD patients from DOC patients without

command-following abilities (coma, VS/UWS, MCS–). Identifying

CMD can capture the internal cognition of these patients, improve

care, and guide treatment and prognosis (11). In this study, we used

fNIRS to identify CMD patients from DOC patients. Additionally,

we explored the utility of fNIRS in the diagnosis of DOC.

Materials and methods

Participants

In this study, 70 DOC patients were recruited from the

Department of Rehabilitation Medicine at the First Affiliated

Hospital of Nanchang University. The inclusion criteria were: (i)

patients aged 16 to 80 years; (ii) the duration of DOC lasting

more than 28 days; (iii) right-handedness; (iv) complete auditory

brainstem evoked potentials confirmed by electrophysiological

examination; and (v) providing informed consent. The exclusion

criteria were: (i) patients with unstable vital signs; (ii) patients with

cranial defects who underwent debridement flap decompression;

(iii) patients with alcohol or substance abuse or a previous history

of neurological or psychiatric disorders; (iv) patients with a large

amount of intracranial hematomas impacting data quality; (v)

patients with scalp injuries preventing skullcap wear; and (vi)

patients who had received sedative medication within the past 24 h.

In addition, 70 healthy right-handed individuals were recruited as

controls. An informed consent form was signed before the start of

the study, and the purpose, risks, procedures, and significance of

the experiment were explained in detail. Patients’ legal guardians

provided written informed consent, and HC provided consent for

themselves. The study adhered to the Declaration of Helsinki and

obtained approval from the Ethics Committee of the First Affiliated

Hospital of Nanchang University (approval number IIT2023-222).

Experimental paradigm

Both DOC patients and HC were required to perform a

hand-open-close motor imagery (MI) task (21). Throughout

experiment, the hemodynamic responses of cerebral cortex of
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FIGURE 1

(a) Experimental paradigm of the motor imagery task. (b) Location of probes and channels and delineation of regions of interest. (c) The patient is

undergoing an fNIRS examination. ROC, right occipital cortex; LOC, left occipital cortex; RPC, right parietal cortex; LPC, left parietal cortex; RM1,

right primary motor cortex; LM1, left primary motor cortex; RPMC, right premotor cortex; LPMC, left premotor cortex; RPFC, right prefrontal cortex;

LPFC, left prefrontal cortex.

all participants were detected by the fNIRS system. During the

task, participants were asked to imagine repeatedly opening and

closing their both hands as quickly and naturally as possible

without distinguishing between the left and right. This relatively

simple task paradigm reduces the cognitive processing demands

(22). We believe that MI of both hands is more conducive for

the performance of DOC patients. The MI task was designed in

an experimental block paradigm, consisting of a 20-s imagery

task followed by a 20-s rest. The block paradigm condition was

repeated five times. Because auditory pathway is a relatively well-

preserved information input channel in DOC patients (23), each

condition command (“imagery” and “rest”) was presented verbally.

A scheduled procedure was triggered to alert participants when the

task began or when the rest period started. A 50-s pre-baseline

and post-baseline period preceded and followed the repetition

of the block paradigm, allowing participants to remain at rest

so that cortical hemodynamics could stabilize at baseline levels.

The total duration of the experimental paradigm was 300 s (see

Figure 1a). The Glasgow Outcome Scale-Extended (GOSE) scores

of the patients were followed up 6months after fNIRS examination.

fNIRS data acquisition

Cortical hemodynamic activity of each participant was

recorded using a continuous-wave fNIRS system (NirScan-6000A,

Danyang Huichuang Medical Equipment Co., Ltd., Jiangsu,

China). The fNIRS system utilizes wavelengths of 703 nm, 808 nm,

and 850 nm, with a sampling frequency of 11Hz. Referring to

the international 10–20 EEG electrode placement system, 24

source optodes and 24 detector optodes were symmetrically

placed in the frontal, parietal, temporal, and occipital lobe areas

via a flexible headgear, with a spacing of 3 cm, forming 63

measurement channels (see Figure 1b). Space registration was

based on a standard head model. Specifically, spatial positions

of the source optodes, detector optodes, and anchor points

(located at Nz, Cz, Al, Ar, and Iz, based on the international

10–20 EEG electrode placement system) were measured using

a 3D electromagnetic digitizer (Patriot, Polhemus, USA). The

acquired coordinates were converted to Montreal Neurological

Institute (MNI) coordinates in NirSpace (Danyang Huichuang

Medical Equipment Co., Ltd., Jiangsu, China), and subsequently

projected onto the MNI standard brain template. Brodmann

areas were then determined using a space registration method

(24). Supplementary material 1 shows the MNI coordinates for

each channel and optode. Supplementary material 2 shows the

Brodmann areas for each channel and optode. Based on the

above information, 10 regions of interest (ROI) were delineated:

left prefrontal cortex (LPFC) (channels #8–12, 23–26, 29, 39);

right prefrontal cortex (RPFC) (channels #3–7, 18–20, 22, 34,

35); left premotor cortex (LPMC) (channels #27, 36–38, 40, 41);

right premotor cortex (RPMC) (channels #31, 33, 46, 47, 50, 51);
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left primary motor cortex (LM1) (channels #54, 55, 57); right

primary motor cortex (RM1) (channels #30, 32, 45); the left

parietal cortex (LPC) (channels #13–15, 52, 53, 56); right parietal

cortex (RPC) (channels #1, 2, 16, 17, 44, 48); left occipital cortex

(LOC) (channels #60–63); right occipital cortex (ROC) (channels

#42, 43, 58, 59). Figure 1b shows the delineation of the regions

of interest.

Data acquisition was performed in a quiet room with soft

lighting. Patients were positioned comfortably in a wheelchair,

and data were collected while they were awake. HC were

asked to maintain a good mental state, refrain from smoking,

drinking alcohol or coffee, taking psychotropic medication, or

engaging in strenuous exercise prior to data collection. They were

tested in a comfortable sitting position. Following the wearing

instructions, both patients and HC were fitted with a headgear

containing optodes (see Figure 1c). It was ensured that the optodes

were securely attached to the scalp. Where necessary, hair was

swept away or cut to maximize the efficiency of light coupling

to the tissue. Prior to data collection, both patients and HC

were informed in detail about the experimental paradigm and

were asked to minimize head movements. They also underwent

simulation training to enhance task performance. When all

preparations were completed, the fNIRS system was used to gather

brain functional data during the MI task from both patients

and HC.

fNIRS data processing and feature
extraction

NirSpark software (Danyang Huichuang Medical Equipment

Co., Ltd., Jiangsu, China) was used to preprocess fNIRS signals

(17, 25, 26). Firstly, an experienced data analyst performed an

initial data check and excluded any poor-quality data. The signal-

to-noise ratio for each channel was then calculated using the

coefficient of variation (CV = σ/µ×100%, where σ represents

the standard deviation and µ represents the mean value of the

signal), discarding channels with CV >15% (27). The remaining

data underwent the following processing steps: (i) Converting

raw light intensity to optical density. (ii) Utilizing a sliding

window [with a threshold standard deviation of six and a

threshold amplitude of 0.5 (25)] combined with cubic spline

interpolation to identify and correct motion artifacts caused by

head movements, etc. (25, 26, 28). (iii) Removing interference

signals caused by heart rate, breathing rate, Mayer waves, and

low-frequency signal drift using 0.01 to 0.1Hz band-pass filtering

(8, 25). (iv) All differential path-length factors were set to 6.0

and the relative concentration changes in HbO and HbR of each

channel were calculated according to the modified Beer-Lambert

law (25).

After preprocessing, average hemodynamic responses within

the 10 ROIs were calculated. Data was then segmented into

epochs from 5 s before each block to the end of each block (−5

s−40 s). After baseline correction (the data of 5 s before each block

[−5s−0s] was used as baseline), block-averaged hemodynamic

responses were calculated. Finally, seven commonly used fNIRS

features—mean, peak, variance, median, peak-to-peak, skewness,

FIGURE 2

Workflow for fNIRS data classification. HC, healthy controls; HbO,

oxyhemoglobin; HbR, deoxyhemoglobin; ROI, regions of interest;

DOC, disorders of consciousness.

and kurtosis (29–32)—were extracted from HbO and HbR

responses during MI and rest periods. Features were specifically

extracted 5 to 20 s following the onset of task and rest commands,

accounting for the lag effect of hemodynamic responses (8, 33, 34).

fNIRS data classification

For each ROI, we combined Support Vector Machines (SVM)

with Genetic Algorithms (GA) to identify the optimal parameters

C and γ. Specifically, HC were used for model training, as they

can reliably follow commands and provide clear task response

labels (imagery vs. rest), which helps establish a well-defined

reference pattern for the MI task. We selected seven HbO and HbR

features and explored the performance of 120 feature combinations

(excluding one-dimensional features and forming combinations

of 2 to 7 features out of the seven available) to classify the two

conditions (35), labeled as 1 for imagery and 0 for rest. Optimal

parameters for each combination were identified by GA based

on the best 20-fold cross-validation accuracy. The combination

of mean, variance, peak-to-peak, and skewness within motor

function-related ROIs (LPMC, RPMC, RM1, LM1) showed the

highest accuracy with their optimal parameters. Additionally,

in healthy individuals, the general linear model confirmed the

activation of motor-related brain regions during the MI process,

as detailed in Supplementary Figure 1. In summary, classification

models for these ROIs were built on a training set of 65 HC

using optimal parameters and feature combinations, with 20-

fold cross-validation assessing model robustness. The model was

then applied to predict a test set of 63 DOC patients, allowing

identification of fNIRS responses to MI tasks based on predicted

labels (1 for imagery, 0 for rest). Figure 2 illustrates the workflow

for fNIRS data classification. Data analysis was completed on the

MATLAB (R2022a, The MathWorks, Inc., Natick, Massachusetts,

United States) and the Libsvm-Faruto toolbox (Libsvm-Faruto

Ultimate V3.1, https://github.com/faruto/Libsvm-FarutoUltimate-

Version).
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Statistical analysis

Demographic differences between the training and testing sets

were assessed using the independent samples t-test or Mann-

Whitney U test for continuous variables, and the chi-square test or

Fisher’s exact test for categorical variables. To evaluate the reliability

of fNIRS detection of command-following evidence in the MI

task, we calculated the true positive rate (TPR; i.e., sensitivity),

true negative rate (TNR; i.e., specificity), false positive rate (FPR),

and false negative rate (FNR) within the patient cohort (36, 37).

Behavioral diagnosis based on CRS-R served as the reference

standard for command-following, while fNIRS response to MI task

was utilized as the test standard (36). Then, a confusion matrix was

constructed. The false positive patients (those without behavioral

command following but exhibiting fNIRS response to the MI task)

were the CMD patients we were searching for. Patient prognosis

was dichotomized as favorable outcome [upper severe disability or

better (GOS-E score of 4–8)] or unfavorable outcome [lower severe

disability or worse (GOS-E score of≤3)] (11, 38, 39). The prognosis

of CMD patients and non-CMD patients was compared using the

Fisher’s exact test. The statistical analysis was completed with SPSS

26 software (SPSS Inc., Chicago, IL, United States).

Results

Demographics and clinical characteristics

FNIRS data from 70 prolonged DOC patients (30 VS/UWS,

20 MCS–, 20 MCS+) during MI tasks were successfully collected.

Among them, data from seven patients (2 VS/UWS, 4 MCS–, 1

MCS+) were excluded from further analysis due to significant

motion artifacts or a large coefficient of variation. Meanwhile, we

collected fNIRS data from 70 HC, with five individuals excluded

due to significant motion artifacts or large coefficient of variation.

Ultimately, the training set included 65 HC, while the testing set

comprised 63 DOC patients. Detailed demographic and clinical

characteristics of the training and testing sets are presented in

Table 1. There was no significant statistical difference in gender

between the two datasets (χ2
= 1.596, p = 0.206); however, there

was a significant statistical difference in age (U= 730.5, p < 0.001).

Finding CMD patients with MI tasks

The combination of GA and SVM was used to construct a

classification model and identify the response of patients with

prolonged DOC to MI commands. In the training set, the model

achieved a cross-validation accuracy of 95.4% (with parameters C

= 6.69 and γ = 6.08) in the RPMC. In the LPMC, the accuracy

was 91.5% (with C = 3.64 and γ = 7.66). In the RM1, the accuracy

was 90.0% (with C = 0.21 and γ = 1.63). In the LM1, the accuracy

was 93.1% (with C = 9.02 and γ = 9.80). The confusion matrices

for identifying the response of patients with prolonged DOC to MI

commands across the four ROIs (RPMC, LPMC, RM1, LM1) are

shown in Figure 3. The highest sensitivity (68.4%) was observed

in LPMC. Hence, the results from LPMC were considered as the

final identification outcomes. Among the 19 MCS+ patients with

TABLE 1 Demographic and clinical characteristics of the training set and

the testing set.

Items Testing set
n = 63

Training
set

n = 65

Statistics p-value

Gender χ
2
= 1.596 0.206a

male 40 48

female 23 17

Age (years) 60 (16) 44 (26) U= 730.5 <0.001b

Etiology

traumatic

brain injury

16 - - -

hemorrhagic

stroke

36 -

ischemic

stroke

7 -

anoxia 4 -

Time from

DOC onset to

fNIRS (days)

55 (44) - - -

Gender and etiology are presented as frequencies. Age and time from DOC onset to fNIRS

are presented as medians (interquartile range). ap-value was obtained using Chi-square test.
bp-value was obtained using Mann-Whitney U test.

command-following abilities, 13 showed fNIRS responses to the

MI task [TPR = 68.4% (13/19), FNR = 31.6% (6/19)]. Among

the 44 VS/UWS and MCS– patients without command-following

abilities, 37 showed no fNIRS responses to the MI task [TNR

= 84.1% (37/44), FPR = 15.9% (7/44)]. The sensitivity of fNIRS

response to MI tasks for detecting patients’ command-following

abilities was 68.4%, and the specificity was 84.1%. In this context,

seven CMD patients were identified, four from VS/UWS patients

and three from MCS– patients. Therefore, among the VS/UWS

and MCS– patients, the ratio of CMD patients was 15.9% (7/44).

These CMD patients were missed by CRS-R evaluation, while the

remaining 37 patients were true DOC patients. Figure 4 shows

the block-averaged hemodynamic response curves of HbO and

HbR for a true VS/UWS patient, a true MCS– patient, a CMD

patient, an MCS+ patient, and a HC during the MI task. The

typical hemodynamic response is characterized by a significant

increase in HbO concentration along with a slight decrease in HbR

concentration. The trends of hemodynamic response during theMI

task in the CMDpatient, theMCS+ patient, and theHCwere found

to be consistent.

Prognosis of CMD patients

Six months after fNIRS examination, seven CMD patients were

all followed up, while five were lost in 37 true DOC patients. CMD

patients weremore likely to have a favorable outcome (GOS-E score

of 4–8) compared with true DOC patients (3/4 vs. 1/31, P = 0.014,

Fisher’s exact test, Figure 5a). However, among the seven CMD

patients, there was still one with a GOS-E score of three and three

with a GOS-E score of 2. Furthermore, intergroup differences in
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FIGURE 3

Confusion matrix of fNIRS response to MI task on 4 ROIs. RPMC, right premotor cortex; LPMC, left premotor cortex; RM1, right primary motor

cortex; LM1, left primary motor cortex; VS/UWS, vegetative state/unresponsive wakefulness syndrome; MCS, minimal conscious state.

prognosis among CMD patients, true VS/UWS patients, and true

MCS– patients were analyzed (Figure 5b). There was a significant

statistical difference between true VS/UWS patients and CMD

patients (0/20 vs. 3/4, P=0.012, Fisher’s exact test). However, there

was no significant statistical difference between true VS/UWS

patients and true MCS– patients (0/20 vs. 1/11, P=0.375, Fisher’s

exact test), nor between true MCS– patients and CMD patients

(1/11 vs. 3/4, P=0.117, Fisher’s exact test). Multiple comparisons

between groups were corrected using Bonferroni adjustment, with

P < 0.0167 considered statistically significant.

Discussion

Consciousness is a multifaceted concept. Medically, it signifies

the state of patients’ awareness of self and environment, as well

as their responses to external stimuli and internal needs (40).

The behavioral assessment, based on the external manifestations

of consciousness, is the simplest and most intuitive approach,

often regarded as the gold standard for assessing the level of

consciousness (7). CRS-R has undergone continuous improvement

and has become the most classic, detailed, and widely used

behavioral assessment tool (41–43). It classifies DOC into coma,

VS/UWS, MCS–, and MCS+ based on rigorous scoring criteria

across six aspects. However, consciousness can only be captured

and identified by behavioral assessment when it is expressed

through external behavioral manifestations. This is the greatest

drawback of behavioral assessment. In abnormal circumstances

where consciousness cannot be externalized through observable

manifestations, behavioral assessment becomes ineffective, leading

to a significant underestimation of the actual state of consciousness

in these patients. For such patients, it is terrible that their inner

world (feelings, thoughts, desires) will be in the dark and cannot be

known by doctors and family members. On the other hand, due to

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2025.1532804
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1532804

FIGURE 4

Task-evoked block-averaged hemodynamic response curves of one representative true VS/UWS patient, one true MCS– patient, one CMD patient,

one MCS+ patient, and one HC. VS/UWS, vegetative state/unresponsive wakefulness syndrome; MCS, minimal conscious state; CMD, cognitive

motor dissociation; HC, healthy control. ROC, right occipital cortex; LOC, left occipital cortex; RPC, right parietal cortex; LPC, left parietal cortex;

RM1, right primary motor cortex; LM1, left primary motor cortex; RPMC, right premotor cortex; LPMC, left premotor cortex; RPFC, right prefrontal

cortex; LPFC, left prefrontal cortex.
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FIGURE 5

(a) Comparison of prognosis between true DOC patients and CMD patients. (b) Comparison of prognosis between true VS/UWS patients, true MCS–

patients and CMD patients. DOC, disorders of consciousness; CMD, cognitive motor dissociation; VS/UWS, vegetative state/unresponsive

wakefulness syndrome; MCS, minimal conscious state.

the subtlety, inconsistency, and volatility of consciousness in DOC

patients, as well as the subjectivity of assessors (44), misdiagnosis of

the level of consciousness in DOC patients is not uncommon, with

misdiagnosis rates reaching up to 40% (8, 44).

Neuroimaging and electrophysiology techniques compensate

for the shortcomings of behavioral assessments to some extent.

They do not rely on external manifestations of consciousness or

subjective judgments of assessors. They play an important role

in objectively identifying patients’ conscious states and exploring

their inner world from the perspective of brain functional activities

related to consciousness. In this study, we used fNIRS, an emerging

neuroimaging technique, combined with the MI task to discern

indications of consciousness in prolonged DOC patients. More

specifically and importantly, we focused on finding evidence of

consciousness activities in unresponsive DOC patients (coma,

VS/UWS, MCS–). These patients are referred to as CMD patients

(11, 12).

In this study, we adopted the hand-open-close MI task,

requiring participants to perform the task with both hands without

discriminating between left and right. We thought that intricate

and advanced MI tasks, such as imagining playing tennis (7, 20,

45) and imagining playing badminton (8), might pose challenges

for DOC patients to execute. More importantly, if participants

lacked prior experience in playing badminton or tennis, it would

impede the successful performance of the MI task. Therefore,

we opted for a hand-open-close MI task. Performing with both

hands without distinguishing between left and right further reduces

the difficulty of the task and avoids the problem that unilateral

structural brain injury may affect brain functional activities.

We have made the greatest effort to detect brain functional

activities. However, the MI task is an internal cognitive process,

and the quality of the task is difficult to monitor, which may

subsequently affect the data and results. For HC, incorporating

actual execution of the motor tasks (rather than just imagining

them) may help to compare and validate the quality of the

MI tasks and assist in excluding some “poor imagers” from

the dataset. This could be a viable option for consideration in

the future.

Previous research has confirmed the applicability of SVM in

classifying hemodynamic responses under different conditions (7).

When using the mean and peak of HbO in the M1 and S1

areas as features, SVM achieved an 80% classification accuracy

in healthy individuals. When the mean and peak of HbR were

added as features, the classification accuracy was improved to 90%

(7). This indicated that adding classification features can enhance

classification accuracy, and HbR can also provide additional

useful information for classification (7). In our study, we used

seven features of HbO and HbR within 10 ROIs and combined

SVM with GA. The global search ability of GA was utilized

to find the optimal parameter combination and optimal feature

subset of SVM. This approach was instrumental in enhancing

the classification accuracy and robustness of the algorithm, while

mitigating the risk of overfitting (46, 47). As expected, the

classification accuracy of the model we constructed on the four

ROIs (RPMC, LPMC, RM1, LM1) of HC was 95.4%, 91.5%,

90.0%, and 93.1%, respectively. Using this model, we successfully

classified the MI and rest conditions of 13 out of 19 MCS+

patients, and detected their conscious activities in response to MI

commands. Some researchers also usedMI tasks and neuroimaging

and electrophysiology techniques to detect consciousness (36). In

MRI evidence, using traditional methods to quantify the percentage

of activated voxels within the ROI and setting statistical thresholds,

researchers discovered brain responses in 11 out of 16 healthy

individuals (sensitivity of 68.8%) and in three out of seven

patients with command-following (sensitivity of 42.9%). Their

EEG findings revealed brain responses in 12 out of 16 healthy

individuals (sensitivity of 75%) and in three out of nine patients

with command-following (sensitivity of 33.3%) using SVM (36).

We used healthy individuals to train the classificationmodel, which

was then applied to test DOC patients. By combining SVM with

GA, we were able to increase the sensitivity of identifying the brain

responses of MCS+ patients to 68.4%.

We found that LPMC exhibited the highest sensitivity. This

finding may be attributed to the role of the premotor cortex

in motor planning and preparation (48–50), along with the

dominance of the left hemisphere. We believe that premotor cortex
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plays an important role in the hand-open-close MI task. Based on

the identification results obtained from the LPMC, we identified

seven CMD patients, and we found CMD patients were more likely

to have a favorable outcome (GOSE≥4) than true DOC patients 6

months after fNIRS examination. More specifically, CMD patients

had a better prognosis than true VS/UWS patients. This finding

was consistent with previous reports (11, 14, 37), which further

confirmed the reliability of machine learning recognition results.

However, there was still one patient with a GOSE score of

three and three patients with a GOSE of 2. Moving forward,

we intend to continue monitoring the prognosis of these four

CMD patients.

Using fNIRS, we explored the consciousness activities

of prolonged DOC patients and successfully discerned the

consciousness traces of seven unresponsive patients. This finding

provides more evidence for the diagnosis of these patients beyond

behavioral assessment. The diagnosis of CMD serves not only as a

conclusion but also as a guiding factor for patient treatment and

prognosis, while also providing valuable insights for the allocation

of medical resources and ethical considerations (51–53). In a study

involving 193 acute DOC patients lacking command following,

Egbebike et al. (11) identified 27 CMD patients through EEG. In

our study, we identified seven CMD patients among 44 prolonged

DOC (VS/UWS and MCS–) patients using fNIRS. The prevalence

of CMD among patients with acute (14.0%) or prolonged (15.9%)

DOC was found to be comparable.

This study further proves the value of fNIRS in assessing

the conscious state of DOC patients. However, there are some

limitations. Firstly, we identified only seven CMD patients.

The small sample size poses greater challenges in ensuring the

robustness of our results and constrains the generalizability

of our findings. It also affects the statistical power of patient

prognosis. In the future, we aim to increase the sample size

to enhance the generalizability of our findings and improve

the statistical power. Secondly, similar to other neuroimaging

and electrophysiology techniques such as fMRI and EEG (36),

fNIRS also has technical defects in sensitivity. In our study,

LPMC exhibited the highest sensitivity (68.4%), while the

sensitivity of the other three ROIs was lower. That is, failure

to detect brain functional activities following task commands

does not mean that there is no consciousness. Sensitivity is a

common challenge across all neuroimaging and electrophysiology

techniques. The combination of multimodal neuroimaging and

electrophysiological techniques (fNIRS, fMRI, EEG, etc. whether

detected simultaneously or separately) may help improve detection

sensitivity. Thirdly, the ages of training set and testing set

do not match, which may have a potential impact on the

dataset and the results. Finally, steep learning curve associated

with fNIRS data analysis poses a barrier to widespread clinical

application and adoption of this technique. Moving forward,

additional research is needed to enhance the sensitivity of

neuroimaging and electrophysiology techniques (by designing

more sensitive paradigms or combining different neuroimaging

and electrophysiology techniques). Software or programs should be

developed to explore automated data preprocessing and analysis

to assist clinicians in quickly obtaining results. We believe that

repetitive bedside behavioral assessments combined with portable

neuroimaging and electrophysiology techniques will facilitate a

better assessment of the conscious state of DOC patients in

the future.

In summary, fNIRS can objectively detect the consciousness of

DOC patients from the perspective of brain functional activities.

We found seven CMD patients with fNIRS, who were more likely

to have a favorable outcome. This study not only contributes

to improving the accuracy of prognosis and diagnosis, but also

confirms the utility of fNIRS in detecting consciousness in this

challenging population. In the future, it is necessary to conduct

larger-scale studies to validate these findings and explore the impact

of variations in patient condition (such as etiology or chronicity)

on fNIRS responses, further determining the clinical applicability

of fNIRS in consciousness assessment.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the First

Affiliated Hospital of Nanchang University. The studies were

conducted in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study.

Author contributions

YW:Data curation,Writing – original draft.WZ:Methodology,

Writing – review & editing. LZ: Visualization, Writing –

review & editing. QW: Investigation, Supervision, Writing –

review & editing. BR: Data curation, Writing – review &

editing. QX: Resources, Writing – review & editing. YB:

Conceptualization, Project administration, Writing – review &

editing. ZF: Conceptualization, Project administration, Writing –

review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by the Jiangxi Provincial Natural Science Foundation

(20232ACB216007) and (20232ACB206012).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2025.1532804
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1532804

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fneur.2025.

1532804/full#supplementary-material

References

1. Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of
consciousness: mechanisms, prognosis and emerging therapies. Nature reviews
Neurology. (2021) 17:135–56. doi: 10.1038/s41582-020-00428-x

2. Molteni E, Canas LDS, Briand MM, Estraneo A, Font CC, Formisano R, et al.
Scoping review on the diagnosis, prognosis, and treatment of pediatric disorders of
consciousness.Neurology. (2023) 101:e581–e93. doi: 10.1212/WNL.0000000000207473

3. Young GB. Coma. Ann N Y Acad Sci. (2009) 1157:32–
47. doi: 10.1111/j.1749-6632.2009.04471.x

4. Laureys S, Celesia GG, Cohadon F, Lavrijsen J, León-Carrión J, Sannita WG, et al.
Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic
syndrome. BMCMed. (2010) 8:68. doi: 10.1186/1741-7015-8-68

5. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, et al. The
minimally conscious state: definition and diagnostic criteria.Neurology. (2002) 58:349–
53. doi: 10.1212/WNL.58.3.349

6. Bruno MA, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S. From
unresponsive wakefulness to minimally conscious PLUS and functional locked-in
syndromes: recent advances in our understanding of disorders of consciousness. J
Neurol. (2011) 258:1373–84. doi: 10.1007/s00415-011-6114-x

7. Li M, Yang Y, Zhang Y, Gao Y, Jing R, Dang Y, et al. Detecting residual awareness
in patients with prolonged disorders of consciousness: an fNIRS study. Front Neurol.
(2021) 12:618055. doi: 10.3389/fneur.2021.618055

8. Si J, Yang Y, Xu L, Xu T, Liu H, Zhang Y, et al. Evaluation of residual
cognition in patients with disorders of consciousness based on functional near-infrared
spectroscopy. Neurophotonics. (2023) 10:025003. doi: 10.1117/1.NPh.10.2.025003

9. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S,
Pickard JD. Detecting awareness in the vegetative state. Science. (2006)
313:1402. doi: 10.1126/science.1130197

10. Monti MM, Vanhaudenhuyse A, ColemanMR, BolyM, Pickard JD, Tshibanda L,
et al. Willful modulation of brain activity in disorders of consciousness. N Engl J Med.
(2010) 362:579–89. doi: 10.1056/NEJMoa0905370

11. Egbebike J, Shen Q, Doyle K, Der-Nigoghossian CA, Panicker L, Gonzales IJ,
et al. Cognitive-motor dissociation and time to functional recovery in patients with
acute brain injury in the USA: a prospective observational cohort study. Lancet Neurol.
(2022) 21:704–13. doi: 10.1016/S1474-4422(22)00212-5

12. Schiff ND. Cognitive motor dissociation following severe brain injuries. JAMA
Neurol. (2015) 72:1413–5. doi: 10.1001/jamaneurol.2015.2899

13. Franzova E, Shen Q, Doyle K, Chen JM, Egbebike J, Vrosgou A, et al.
Injury patterns associated with cognitive motor dissociation. Brain. (2023) 146:4645–
58. doi: 10.1093/brain/awad197

14. Lejeune N, Fritz P, Cardone P, Szymkowicz E, Vitello MM, Martial C,
et al. Exploring the significance of cognitive motor dissociation on patient
outcome in acute disorders of consciousness. Semin Neurol. (2024) 44:271–
80. doi: 10.1055/s-0044-1785507

15. Diserens K, Meyer IA, Jöhr J, Pincherle A, Dunet V, Pozeg P, et al. A focus
on subtle signs and motor behavior to unveil awareness in unresponsive brain-
impaired patients: the importance of being clinical. Neurology. (2023) 100:1144–
50. doi: 10.1212/WNL.0000000000207067

16. Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R,
et al. European academy of neurology guideline on the diagnosis of coma and other
disorders of consciousness. Eur J Neurol. (2020) 27:741–56. doi: 10.1111/ene.14151

17. Li H, Fu X, Lu L, Guo H, Yang W, Guo K, et al. Upper limb intelligent
feedback robot training significantly activates the cerebral cortex and promotes the

functional connectivity of the cerebral cortex in patients with stroke: a functional near-
infrared spectroscopy study. Front Neurol. (2023) 14:1042254. doi: 10.3389/fneur.2023.
1042254

18. Song M, Zhang Y, Cui Y, Yang Y, Jiang T. Brain network studies in chronic
disorders of consciousness: advances and perspectives. Neurosci Bull. (2018) 34:592–
604. doi: 10.1007/s12264-018-0243-5

19. Kempny AM, James L, Yelden K, Duport S, Farmer S, Playford ED, et al.
Functional near infrared spectroscopy as a probe of brain function in people
with prolonged disorders of consciousness. NeuroImage Clinical. (2016) 12:312–
9. doi: 10.1016/j.nicl.2016.07.013

20. Abdalmalak A, Milej D, Norton L, Debicki DB, Gofton T, Diop M, et al.
Single-session communication with a locked-in patient by functional near-infrared
spectroscopy. Neurophotonics. (2017) 4:040501. doi: 10.1117/1.NPh.4.4.040501

21. Claassen J, Doyle K, Matory A, Couch C, Burger KM, Velazquez A, et al.
Detection of brain activation in unresponsive patients with acute brain injury. N Engl J
Med. (2019) 380:2497–505. doi: 10.1056/NEJMoa1812757

22. Holper L, Wolf M. Single-trial classification of motor imagery differing in task
complexity: a functional near-infrared spectroscopy study. J Neuroeng Rehabil. (2011)
8:34. doi: 10.1186/1743-0003-8-34

23. Perrin F, Schnakers C, Schabus M, Degueldre C, Goldman S, Brédart S, et al.
Brain response to one’s own name in vegetative state, minimally conscious state, and
locked-in syndrome. Arch Neurol. (2006) 63:562–9. doi: 10.1001/archneur.63.4.562

24. Tsuzuki D, Jurcak V, Singh AK, Okamoto M, Watanabe E, Dan I. Virtual
spatial registration of stand-alone fNIRS data to MNI space. Neuroimage. (2007)
34:1506–18. doi: 10.1016/j.neuroimage.2006.10.043

25. Ma Y, Yu Y, Gao W, Hong Y, Shen X. Cerebral hemodynamic changes during
unaffected handgrip exercises in stroke patients: an fNIRS study. Brain Sci. (2023)
13:141. doi: 10.3390/brainsci13010141

26. Zhang H, Cao XY, Wang LN, Tong Q, Sun HM, Gan CT, et al.
Transcutaneous auricular vagus nerve stimulation improves gait and cortical activity
in Parkinson’s disease: a pilot randomized study. CNS Neurosci Ther. (2023) 29:3889–
900. doi: 10.1111/cns.14309

27. Piper SK, Krueger A, Koch SP, Mehnert J, Habermehl C, Steinbrink J, et al. A
wearable multi-channel fNIRS system for brain imaging in freely moving subjects.
NeuroImage. (2014) 85:64–71. doi: 10.1016/j.neuroimage.2013.06.062

28. Scholkmann F, Spichtig S, Muehlemann T, Wolf M. How to detect and reduce
movement artifacts in near-infrared imaging using moving standard deviation and
spline interpolation. Physiol Meas. (2010) 31:649–62. doi: 10.1088/0967-3334/31/5/004

29. Hong KS, Khan MJ, Hong MJ. Feature extraction and classification methods
for hybrid fNIRS-EEG brain-computer interfaces. Front Hum Neurosci. (2018)
12:246. doi: 10.3389/fnhum.2018.00246

30. Naseer N, Noori FM, Qureshi NK, Hong KS. Determining optimal feature-
combination for LDA classification of functional near-infrared spectroscopy
signals in brain-computer interface application. Front Hum Neurosci. (2016)
10:237. doi: 10.3389/fnhum.2016.00237

31. Noori FM, Naseer N, Qureshi NK, Nazeer H, Khan RA. Optimal feature selection
from fNIRS signals using genetic algorithms for BCI. Neurosci Lett. (2017) 647:61–
6. doi: 10.1016/j.neulet.2017.03.013

32. Qureshi NK, Naseer N, Noori FM, Nazeer H, Khan RA, Saleem S. Enhancing
classification performance of functional near-infrared spectroscopy- brain-computer
interface using adaptive estimation of general linear model coefficients. Front
Neurorobot. (2017) 11:33. doi: 10.3389/fnbot.2017.00033

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2025.1532804
https://www.frontiersin.org/articles/10.3389/fneur.2025.1532804/full#supplementary-material
https://doi.org/10.1038/s41582-020-00428-x
https://doi.org/10.1212/WNL.0000000000207473
https://doi.org/10.1111/j.1749-6632.2009.04471.x
https://doi.org/10.1186/1741-7015-8-68
https://doi.org/10.1212/WNL.58.3.349
https://doi.org/10.1007/s00415-011-6114-x
https://doi.org/10.3389/fneur.2021.618055
https://doi.org/10.1117/1.NPh.10.2.025003
https://doi.org/10.1126/science.1130197
https://doi.org/10.1056/NEJMoa0905370
https://doi.org/10.1016/S1474-4422(22)00212-5
https://doi.org/10.1001/jamaneurol.2015.2899
https://doi.org/10.1093/brain/awad197
https://doi.org/10.1055/s-0044-1785507
https://doi.org/10.1212/WNL.0000000000207067
https://doi.org/10.1111/ene.14151
https://doi.org/10.3389/fneur.2023.1042254
https://doi.org/10.1007/s12264-018-0243-5
https://doi.org/10.1016/j.nicl.2016.07.013
https://doi.org/10.1117/1.NPh.4.4.040501
https://doi.org/10.1056/NEJMoa1812757
https://doi.org/10.1186/1743-0003-8-34
https://doi.org/10.1001/archneur.63.4.562
https://doi.org/10.1016/j.neuroimage.2006.10.043
https://doi.org/10.3390/brainsci13010141
https://doi.org/10.1111/cns.14309
https://doi.org/10.1016/j.neuroimage.2013.06.062
https://doi.org/10.1088/0967-3334/31/5/004
https://doi.org/10.3389/fnhum.2018.00246
https://doi.org/10.3389/fnhum.2016.00237
https://doi.org/10.1016/j.neulet.2017.03.013
https://doi.org/10.3389/fnbot.2017.00033
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1532804

33. West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D,
et al. BOLD hemodynamic response function changes significantly with healthy aging.
Neuroimage. (2019) 188:198–207. doi: 10.1016/j.neuroimage.2018.12.012

34. Hirano Y, Stefanovic B, Silva AC. Spatiotemporal evolution of the functional
magnetic resonance imaging response to ultrashort stimuli. J Neurosci. (2011) 31:1440–
7. doi: 10.1523/JNEUROSCI.3986-10.2011

35. Liang Z, Shao S, Lv Z, Li D, Sleigh JW, Li X, et al. Constructing a consciousness
meter based on the combination of non-linear measurements and genetic algorithm-
based support vector machine. IEEE Trans Neural Syst Rehabil Eng. (2020) 28:399–
408. doi: 10.1109/TNSRE.2020.2964819

36. Edlow BL, Chatelle C, Spencer CA, Chu CJ, Bodien YG, O’Connor KL, et al. Early
detection of consciousness in patients with acute severe traumatic brain injury. Brain.
(2017) 140:2399–414. doi: 10.1093/brain/awx176

37. Cruse D, Gantner I, Soddu A, Owen AM. Lies, damned lies and diagnoses:
estimating the clinical utility of assessments of covert awareness in the vegetative state.
Brain Inj. (2014) 28:1197–201. doi: 10.3109/02699052.2014.920517

38. Puffer RC, Yue JK, Mesley M, Billigen JB, Sharpless J, Fetzick AL, et al. Long-
term outcome in traumatic brain injury patients with midline shift: a secondary
analysis of the phase 3 COBRIT clinical trial. J Neurosurg. (2018) 131:596–
603. doi: 10.3171/2018.2.JNS173138

39. Wilkins TE, Beers SR, Borrasso AJ, Brooks J, Mesley M, Puffer R, et al. Favorable
functional recovery in severe traumatic brain injury survivors beyond six months. J
Neurotrauma. (2019) 36:3158–63. doi: 10.1089/neu.2018.6153

40. Calabrò RS, Cacciola A, Bramanti P, Milardi D. Neural correlates of
consciousness: what we know and what we have to learn! Neurol Sci. (2015) 36:505–
13. doi: 10.1007/s10072-015-2072-x

41. Giacino JT, KezmarskyMA, DeLuca J, Cicerone KD.Monitoring rate of recovery
to predict outcome in minimally responsive patients. Arch Phys Med Rehabil. (1991)
72:897–901. doi: 10.1016/0003-9993(91)90008-7

42. Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised:
measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. (2004)
85:2020–9. doi: 10.1016/j.apmr.2004.02.033

43. Briand MM, Gosseries O, Staumont B, Laureys S, Thibaut A. Transcutaneous
auricular vagal nerve stimulation and disorders of consciousness: a hypothesis

for mechanisms of action. Front Neurol. (2020) 11:933. doi: 10.3389/fneur.2020.
00933

44. Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, et al. Practice
guideline update recommendations summary: disorders of consciousness: report of
the guideline development, dissemination, and implementation subcommittee of the
american academy of neurology; the american congress of rehabilitation medicine;
and the national institute on disability, independent living, and rehabilitation research.
Neurology. (2018) 91:450–60. doi: 10.1212/WNL.0000000000005926

45. Abdalmalak A, Laforge G, Yip LCM, Milej D, Gonzalez-Lara LE, Anazodo U, et
al. Shining light on the human brain: an optical BCI for communicating with patients
with brain injuries. In: IEEE International Conference on Systems, Man, and Cybernetics
(SMC). Toronto, ON: IEEE (2020). p. 502–7. doi: 10.1109/SMC42975.2020.9283123

46. Aviles M, Sánchez-Reyes LM, Fuentes-Aguilar RQ, Toledo-Pérez DC,
Rodríguez-Reséndiz J. A novel methodology for classifying emg movements based on
svm and genetic algorithms.Micromachines. (2022) 13:2108. doi: 10.3390/mi13122108

47. Wutzl B, Leibnitz K, Rattay F, Kronbichler M, Murata M, Golaszewski SM.
Genetic algorithms for feature selection when classifying severe chronic disorders of
consciousness. PLoS ONE. (2019) 14:e0219683. doi: 10.1371/journal.pone.0219683

48. Wong AL, Jax SA, Smith LL, Buxbaum LJ, Krakauer JW. Movement imitation
via an abstract trajectory representation in dorsal premotor cortex. J Neurosci. (2019)
39:3320–31. doi: 10.1523/JNEUROSCI.2597-18.2019

49. D’Aleo R, Rouse AG, Schieber MH, Sarma SV. Cortico-cortical drive in
a coupled premotor-primary motor cortex dynamical system. Cell Rep. (2022)
41:111849. doi: 10.1016/j.celrep.2022.111849

50. Sugiyama T, Nakae K, Izawa J. Transcranial magnetic stimulation on the dorsal
premotor cortex facilitates human visuomotor adaptation.Neuroreport. (2022) 33:723–
7. doi: 10.1097/WNR.0000000000001838

51. BrunoMA, Laureys S, Demertzi A. Coma and disorders of consciousness.Handb
Clin Neurol. (2013) 118:205–13. doi: 10.1016/B978-0-444-53501-6.00017-2

52. Kreitmair KV, Kruse KE. Practical implications of the minimally
conscious state diagnosis in adults. Camb Q Healthc Ethics. (2017)
26:628–39. doi: 10.1017/S0963180117000135

53. Luce JM. Chronic disorders of consciousness following coma: part two: ethical,
legal, and social issues. Chest. (2013) 144:1388–93. doi: 10.1378/chest.13-0428

Frontiers inNeurology 11 frontiersin.org

https://doi.org/10.3389/fneur.2025.1532804
https://doi.org/10.1016/j.neuroimage.2018.12.012
https://doi.org/10.1523/JNEUROSCI.3986-10.2011
https://doi.org/10.1109/TNSRE.2020.2964819
https://doi.org/10.1093/brain/awx176
https://doi.org/10.3109/02699052.2014.920517
https://doi.org/10.3171/2018.2.JNS173138
https://doi.org/10.1089/neu.2018.6153
https://doi.org/10.1007/s10072-015-2072-x
https://doi.org/10.1016/0003-9993(91)90008-7
https://doi.org/10.1016/j.apmr.2004.02.033
https://doi.org/10.3389/fneur.2020.00933
https://doi.org/10.1212/WNL.0000000000005926
https://doi.org/10.1109/SMC42975.2020.9283123
https://doi.org/10.3390/mi13122108
https://doi.org/10.1371/journal.pone.0219683
https://doi.org/10.1523/JNEUROSCI.2597-18.2019
https://doi.org/10.1016/j.celrep.2022.111849
https://doi.org/10.1097/WNR.0000000000001838
https://doi.org/10.1016/B978-0-444-53501-6.00017-2
https://doi.org/10.1017/S0963180117000135
https://doi.org/10.1378/chest.13-0428
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Detecting cognitive motor dissociation by functional near-infrared spectroscopy
	Introduction
	Materials and methods
	Participants
	Experimental paradigm
	fNIRS data acquisition
	fNIRS data processing and feature extraction
	fNIRS data classification
	Statistical analysis

	Results
	Demographics and clinical characteristics
	Finding CMD patients with MI tasks
	Prognosis of CMD patients

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


