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Introduction: Differential diagnosis of rest tremor (RT) disorders is challenging, 
often requiring 123I-ioflupane single-photon-emission-computed tomography 
(DaTscan), an expensive technique not available worldwide. In the current study, 
we investigated the performance of a new wearable mobile device termed “RT-
ring” in predicting DaTscan result in patients presenting with RT based on rest 
tremor inertial features.

Methods: Consecutive RT patients underwent RT-ring tremor analysis, surface 
electromyography (sEMG), and DaTscan. The RT-ring is a miniaturized mobile 
device that uses machine learning based on inertial tremor data to estimate 
the RT pattern. This electrophysiologic tremor feature has proven to accurately 
predict DaTscan result. The primary outcome was the RT-ring’s performance in 
distinguishing patients with and without striatal dopaminergic deficit.

Results: Sixty-seven RT patients were enrolled, including 42 patients with 
striatal dopaminergic deficit and 25 with normal DaTscan. The RT-ring showed 
85.0% sensitivity, 90.9% specificity, and 87.9% balanced accuracy in predicting 
DaTscan result, and demonstrated 96.8% agreement with sEMG in RT pattern 
classification.

Conclusion: The RT-ring is a promising, non-invasive, user-friendly, wearable 
mobile device for supporting the diagnosis of tremulous Parkinson’s disease in 
primary care settings, especially in low-income countries with limited access to 
dopamine imaging.
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1 Introduction

Upper limb rest tremor (RT) is a typical presenting symptom of Parkinson’s disease (PD); 
however, it can be observed in essential tremor (ET) plus, dystonic or drug-induced tremor 
(1–4). The DaTscan (123I-ioflupane) often guides the differential diagnosis (1, 5, 6) but is 
unsuitable for routine use due to high costs, invasiveness long waiting lists in high-income 
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countries, or limited availability in low-income countries with 
resource-constrained settings and rural areas. Therefore, simple 
biomarkers are needed to support routine clinical RT diagnosis and 
select patients for second-level diagnostic procedures.

Previous studies demonstrated that the RT muscular contraction 
pattern evaluation through surface electromyography (sEMG) can 
differentiate Parkinsonian tremor (alternating pattern) from other RT 
syndromes with no damage of the dopaminergic system (typically 
showing a synchronous pattern) (7–15). Unlike postural tremor, often 
showing variability of tremor features over time with spontaneous 
shifts across alternating and synchronous patterns (13, 16), rest tremor 
shows a very stable pattern over time, also across multiple recordings 
(10–13). We  have recently developed a small, user-friendly, ring-
shaped wearable device termed “RT-ring,” which, by being worn on a 
finger of the tremulous hand, can estimate the RT pattern, a tremor 
characteristic that has proven to accurately predict DaTscan result 
(10). RT-Ring employed robust machine learning technology based 
on tremor inertial data (17), overcoming the main limitations of 
sEMG (expertise and subjective assessment). The objective of the 
current study was to investigate the RT-ring performance in 
distinguishing RT patients with or without striatal dopaminergic 
deficit (using the DaTscan as ground truth), establishing the role of 
this portable and user-friendly device as surrogate biomarker of 
dopamine imaging in RT patients for routine clinical practice.

2 Methods

2.1 Patients

Patients presenting with asymmetric upper limb RT were 
consecutively enrolled at the Institute of Neurology and Neuroscience 
Research Center of the Magna Graecia University of Catanzaro between 
January 2023 and May 2024. The study protocol included a neurological 
examination performed by movement disorder specialists, brain 
3 T-MRI, tremor analysis using sEMG and “RT-ring,” followed by 
DaTscan within 3 months. To ensure accurate tremor assessment, all 
medications known to interfere with tremor were suspended at least 
2 days before the examination. Patients on dopaminergic therapy were 
evaluated in the ‘OFF’ state (off medications overnight). Exclusion 
criteria were the presence of prominent bradykinesia or rigidity [defined 
as score > 2 on items 3.3-to-3.6 of the Movement-Disorders-Society-
Unified-Parkinson’s-Disease-Rating-Scale pars-III (MDS-UPDRS-III)] 
(18), and widespread vascular lesions or neoplasia on MRI. The 
institutional review board (Magna Graecia University review board, 
Catanzaro, Italy) approved all study procedures and ethical aspects. All 
study participants gave written informed consent.

2.2 Tremor analysis

2.2.1 RT-ring
The RT-ring is a miniaturized wearable device consisting of a 

small hardware with a printed circuit board and a rechargeable 
battery, mounted on a ring-shape silicon support to be worn on a 
finger (Figures 1A,B). Technical details on the hardware structure 
are provided in a previous publication (17). Tremor inertial data are 

collected using a triaxial accelerometer and gyroscope and 
transmitted to a smartphone app via Bluetooth Low Energy. The 
mobile app has a user-friendly graphic user interface (GUI) 
designed to guide the physician through the tremor recording 
procedure, providing step-by-step instructions that enable its wide 
use by people with no experience in the field. The app home screen 
includes one box to start a new session, one to access the previous 
sessions, and one showing the device battery level and connection 
status (Figure  1C). Several quality checks were implemented to 
ensure reliable data acquisition, as shown in 
Supplementary Figures S1, S2. First, the correct hand positioning is 
checked through tilt sensors, aiming to minimize the possibility of 
postural tremor; the recording begins when the hand hangs from 
the chair armrest, as shown in Figure 2. Five 10-s tremor recording 
segments are acquired, and each segment undergoes a 
comprehensive quality control (QC) process to confirm the 
presence of tremor, defined as a rhythmic movement with a stable 
frequency falling between 2 and 10 Hz (Figure  3), as typically 
observed in most hand tremor disorders (2); recording segments 
not passing QC are discarded. Inertial tremor features are extracted 
from tremor segments and used as input for a random forest model 
to estimate the RT pattern without sEMG. The model building was 
previously described (17). It was trained and tested on a dataset of 
389 RT segments from an independent patient cohort with 70–30 
splitting procedure, showing accuracy: 0.98 (0.93–1.00) in 
estimating the pattern of RT segments, and it was frozen before the 
current study. If at least 4/5 segments show a consistent pattern, 
each with high prediction probability (≥70%), the patient’s tremor 
is classified as predominantly alternating or synchronous 
(Supplementary Figure S1A); otherwise, the RT-ring recording 
session is repeated. A report is then generated, including the 
estimated tremor pattern, the DaTscan result prediction, and a 
summary of the characteristics of the acquired tremor segments, as 
shown in Figure 1D.

2.2.2 Surface electromyography
All patients also underwent sEMG electrophysiological 

analysis of RT in the most affected upper limb, contemporary to 
the RT-ring assessment for evaluating RT-ring accuracy in pattern 
estimation compared to the gold standard sEMG technique. The 
rest tremor activity was recorded by surface electrodes from 
antagonistic forearm muscles (extensor carpi radialis and flexor 
carpi ulnaris muscles), using an Electromyograph Dantec Keypoint 
system by Natus Neurology, as previously described (7–10). All 
drugs that might interfere with tremor were suspended 2 days 
before the examination. The patient was seated in a comfortable 
chair with the arm flexed at 90 degrees, the forearm fully supported 
against gravity, and the hand hanging down from the armrest. The 
tremor assessment was performed at rest without any motor task. 
A standardized cognitive task (subtracting 3 or 7 by a hundred) 
was employed before the recording started to bring out the RT in 
patients with slight and intermittent tremor. Five recording 
segments, each characterized by 10 s with rest tremor, were 
considered for each patient. The bursts were manually segmented 
from the filtered sEMG signals, and the mean burst amplitude was 
evaluated. Spectral analysis was performed to extract the frequency 
associated with the tremor peak. The contraction pattern of 
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antagonistic muscles was visually assessed on sEMG recordings by 
two independent raters (a neurologist and a technician expert in 
tremor analysis) blinded to the clinical diagnoses, and it was 

classified as alternating or synchronous; a third rater evaluated the 
traces in case of discrepancy. The tremor pattern reflects the 
temporal relationship between contraction bursts in antagonist 

FIGURE 1

(A) The RT-ring device. (B) The RT-ring worn on a subject’s finger. (C) The mobile app’s initial screen shows three boxes: one to start a new session, 
one to see and access the session list with previous recordings, and one showing the device battery charge level and the connection status between 
the app and the device. (D) An example of the RT-ring report with the patient’s name or identifier, the estimated predominant rest tremor pattern, the 
prediction on DaTscan result, and a summary of the characteristics for each of the five tremor recording segments (frequency, estimated pattern and 
probability of pattern estimation). In the report shown in part label D, in the RT-ring report, frequency is provided in Hz.

FIGURE 2

The correct hand positioning is checked through tilt sensors (roll and pitch angle evaluation). (A) The correct positioning of the hand for rest tremor 
recording is shown on the graphic user interface. (B) Incorrectly positioned hand: roll in red. (C) Correctly positioned hand: recording can be started.
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muscles. The term “synchronous” was used to describe a pattern 
characterized by intermittent contractions of the antagonist 
muscles occurring simultaneously, while the term “alternating” 
reflected a temporal shift between the two muscles’ contractions 
(11, 19, 20).

2.3 MRI acquisition protocol

All MRI scans were performed with the same 3-T MR750 
General Electric scanner with an 8-channel head coil (Discovery 
MR- 750, GE, Milwaukee, WI, United  States). The acquisition 
protocol included: a 3-dimensional T1-weighted volumetric 
spoiled gradient echo (GE) (sagittal section; repetition time/echo 
time 9.2/3.7 milliseconds; slice thickness 1.0 mm; frequency and 
phase encoding matrix 256 × 256; flip angle 12°; field of view 
25.6 mm), a T2-weighted fast spin echo (axial section; repetition 
time/echo time 5462/85 milliseconds; slice thickness 4.0 mm; 
frequency and phase encoding matrix 512 × 256; field of view 
24 mm), and a T2-weighted fluid attenuated inversion recovery 
(axial section; repetition time/echo time/inversion time 
9500/100/2250 milliseconds; slice thickness 4.0 mm; frequency 
and phase-encoding matrix 512 × 256) sequences. MRI was 
performed in all patients to exclude the presence of widespread 
vascular lesions or neoplasia.

2.4 Dopamine imaging

DaTscan images were acquired with an INFINIA GE Hawkeye 
(Milwaukee, WI, United States) without scatter and attenuation 
correction and reconstructed using the OSEM algorithm (two 
iterations, 10 subsets), as previously described (10). According to 
the visual inspection performed by an expert Nuclear Medicine 
physician and a movement disorder specialist, who were blind to 
the patient’s diagnoses, the DaTscan was classified as either 
normal or abnormal.

2.5 Statistical analysis

Demographic, clinical and electrophysiological were 
compared between RT patients with and without striatal 
dopaminergic deficit using Fisher’s exact test for categorical 
variables and the Wilcoxon rank sum test or t-test for continuous 
variables, depending on data normality. Sensitivity, specificity, 
and balanced accuracy were calculated to evaluate the RT-ring’s 
performance in distinguishing patients with abnormal DaTscan 
results from those with a normal dopaminergic system, as 
described in Supplementary materials. Confidence intervals 
estimated using the exact binomial method. All statistical tests 
were two tailed, and the α level was set at p < 0.05. The statistical 

FIGURE 3

RT-ring workflow. (A) When starting a new session, the correct positioning of the hand is checked. The recording begins only when the hand is 
hanging down from the chair armrest. The app collects five 10-s segments, each undergoing a quality control process. The tremor pattern of each 
segment is then estimated using a machine-learning (ML) model based on tremor inertial features. If the same pattern (alternating or synchronous) is 
estimated with a probability >70% by the ML model in at least 4 out of 5 segments, the patient’s tremor is classified as predominantly alternating or 
synchronous and the prediction on the DaTscan result is shown. (B) The processing of a single 10-s recording is shown. Each segment undergoes a 
tremor quality check (QC) to ensure there is a rhythmic hand movement with a frequency between 2 and 10 Hz, without significant frequency shifts 
over time. If a segment does not meet these criteria, it is discarded and a new segment is recorded, until 5 segments passing the QC are collected. 
Tremor inertial features are then extracted from each recording segment and used as input for a ML model to predict the tremor pattern of the RT 
segment. RT, rest tremor; ML, machine-learning.
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analyses were performed using R statistical software (version 
4.3.2, R Foundation for Statistical Computing, 2023).

3 Results

3.1 Patients

Seventy-one patients with RT were consecutively enrolled. No 
patients showed MRI abnormalities consistent with exclusion 
criteria. Four patients were excluded from the analysis because 
they refused the DaTscan examination. Thus, the final cohort 
consisted of 67 patients (Supplementary Figure S1), including 42 
patients (62.7%) with striatal dopaminergic deficit and 25 patients 
(37.3%) with normal DaTscan. RT patients with striatal 
dopaminergic deficit were slightly older and had shorter disease 
duration compared to those with normal DaTscan, but the two 
groups had a similar RT duration (Table 1).

3.2 RT-ring report

The RT-ring mobile app generates a report showing the tremor 
frequency and the pattern estimation (“alternating” or “synchronous,” 
with the corresponding probability provided by the machine learning 
model) for each segment that passed the quality check (Figure 1D). A 
box in the upper part of the report provides information on the 
predominant RT pattern in that patient, based on the agreement of the 
estimated pattern across at least 4 out of 5 tremor recording segments, 

and information on the predicted DaTscan result based on the 
assumption that an alternating RT pattern is highly suggestive of 
abnormal DaTscan, while a synchronous one typically suggests a 
non-parkinsonian tremor. The mean time of RT ring assessment was 
5.87 ± 2.87 min, allowing a quick RT assessment also during a 
consultation in outpatient settings.

3.3 RT-ring performances

The RT-ring identified a clear tremor pattern (probability of 
estimated pattern >70%) stable across at least 4 out of 5 tremor 
segments within three attempts in 62/67 patients (92.5% of the 
study population) (Supplementary Figure S1). The remaining five 
patients required more than three RT-ring sessions to obtain the 
report; thus, they were excluded from the main analysis, 
considering it is unlikely for a physician using the RT-ring to make 
more than three attempts in an ambulatory clinical setting. The 
RT-ring pattern estimation showed 96.8% agreement with the 
gold-standard sEMG classification (RT-ring correctly identified 
36/38 patients with sEMG alternating pattern and 24/24 patients 
with sEMG synchronous pattern). Regarding the DaTscan 
prediction based on these data, the RT-ring showed 85.0% 
sensitivity (95% CI: 70.2–94.3%), 90.9% specificity (95% CI: 70.8–
98.9%), 87.0% accuracy (95% CI: 76.1–94.3%) and 87.9% balanced 
accuracy in predicting the DaTscan result (Supplementary Table S1). 
To investigate reproducibility, the RT-ring assessment was 
repeated twice on the same day in 10 patients, showing the same 
result on DaTscan prediction.

TABLE 1 Demographic, clinical and electrophysiological data of patients with rest tremor.

Data All RT patients 
(n = 67)

RT patients with 
abnormal DaTscan 

(n = 42)

RT patients with 
normal DaTscan 

(n = 25)

p value

Sex (M/F) 36 / 31 26 / 16 10 / 15 0.13a

Age at examination, yearsb 66.8 ± 10.1 69.2 ± 9.6 62.4 ± 9.8 <0.05c

Disease duration, yearsb 7.2 ± 7.2 5.3 ± 4.2 11.7 ± 10.4 <0.05c

RT duration, yearsb 4.7 ± 3.8 4.4 ± 3.5 5.4 ± 4.5 0.49c

Clinical MAS (Right / Left) 35/32 24 / 18 11 / 14 0.32a

Medication status (D/ND/N) 19/29/19 19 / 13 / 10 0 / 16 / 9 <0.001a

MDS-UPDRS pars III score b 21.7 ± 10.9 23.2 ± 11.3 19.2 ± 10.1 0.16c

MDS-UPDRS tremor scoreb 9.2 ± 6.2 8.6 ± 5.3 10 ± 7.5 0.94c

MDS-UPDRS rest tremor scoreb 5.2 ± 2.1 4.3 ± 2.2 3.6 ± 1.8 0.16c

MDS-UPDRS kinetic tremor scoreb 1.3 ± 1.2 1.1 ± 1.1 1.7 ± 1.5 0.13c

FTMb 9.9 ± 6.7 9.5 ± 5.7 10.8 ± 8.2 0.97c

sEMG electrophysiological data

RT amplitude (uV)b 183.1 ± 146.2 245.7 ± 140.1 78.0 ± 83.0 <0.001c

RT frequency (Hz)b 5.2 ± 0.8 4.9 ± 0.6 5.5 ± 1.0 <0.05c

RT, rest tremor; MAS, most affected side; MDS-UPDRS, Movement Disorders Society-Unified Parkinson Disease Rating Scale; sEMG, surface electromyography; FTM, Fahn-Tolosa-Marin 
tremor rating score. D/ND/N, dopaminergic therapy/non-dopaminergic therapy/drug naïve. The MDS-UPDRS tremor score was calculated as the sum of 11 items that address tremor (items 
2.10 and 3.15–3.18); the MDS-UPDRS rest tremor score was calculated as the sum of 2 items that address rest tremor (items 3.17–3.18); the MDS-UPDRS kinetic tremor score was the items 
3.15. Electrophysiological data were obtained from surface electromyographic tremor analysis. All statistical tests were two tailed, and the α level was set at p < 0.05. The patient group with 
abnormal DaTscan included 40 patients with Parkinson’s Disease (PD) diagnosis, one with ET-PD syndrome and one with probable Progressive Supranuclear Palsy-Parkinsonism (PSP-P) 
diagnosis. The patient group with normal DaTscan included 21 patients with Essential Tremor (ET) plus, 2 patients with drug-induced tremor (1 with risperidone and 1 with valproate), and 2 
patients with functional tremor. aFisher’s exact test. bData expressed as mean ± standard deviation. cWilcoxon rank sum test.
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4 Discussion

This study demonstrated that a small wearable device accurately 
predicted the DaTscan result at the individual level in RT patients, 
based on tremor inertial features.

There is great interest in wearable mobile digital health 
technologies in several branches of medicine, having these devices 
the potential to change how diseases are diagnosed, observed and 
managed, toward a more personalized and patient-centered 
medical approach (21). In the tremor field, a plethora of medical 
devices have been developed so far (22, 23); previous efforts 
mainly focused on detecting tremor presence, developing home 
monitoring systems to assess symptom severity and drug efficacy. 
Although there is a growing demand for tools capable of 
performing differential diagnosis, relatively few studies have 
focused explicitly on distinguishing Parkinson’s disease from 
essential tremor (24–32). Moreover, prior research efforts focused 
on tremor in general, often merging rest and action tremor data 
or comparing postural tremor in ET with rest tremor in PD, which 
are different by definition based on the circumstances when the 
tremor occurs (24–30). Furthermore, most previous study in the 
field presented results with good potential in terms of 
performance, but had the drawback of complex methodology 
requiring extensive data processing, thus making previous devices 
mainly suitable for research settings (24–30). On the other hand, 
the RT-Ring is a small ring-shaped mobile device with a user-
friendly mobile app which has the potential to help clinicians in 
the differential diagnosis between parkinsonian and 
non-parkinsonian RT syndromes (i.e., ET plus), it has been 
patented (patent no: 102021000019793) and is conform to 
European safety regulations, on track for a broad distribution. The 
RT-Ring is based on machine learning technology using accessible 
RT inertial features to estimate the muscular contraction RT 
pattern, a feature which has proven to accurately predict DaTscan 
result (7–11). This model employs random forest algorithm and 
uses as input tremor features including amplitude, coherence, 
harmonics, frequency and other tremor characteristics which are 
automatically extracted from the inertial tremor signals recorded 
by the device. The rationale of developing such a device to predict 
the tremor pattern lies in its ability to distinguish patients with 
and without striatal dopaminergic deficit (10). Indeed, in a 
previous study on a large cohort of more than 200 RT patients, 
we demonstrated that RT pattern significantly outperformed other 
canonical tremor features such as RT amplitude or frequency in 
this diagnostic task (10), providing a solid basis for the current 
study. Moreover, RT pattern has the advantage to be a very stable 
feature over time (10), while tremor amplitude can fluctuate due 
to factors such as stress, mental concentration and medications, 
reducing its reliability for the differential diagnosis of rest tremor. 
The RT-Ring is a simple user-friendly wearable device allowing an 
easy and fully automated evaluation of the RT pattern and also 
overcomes the current limitations of pattern sEMG assessment, 
representing a further step forward in the field. In fact, unlike 
sEMG, which demands expensive equipment and expertise for 
electrode placement, and relies on pattern visual subjective 
interpretation, the RT-ring does not require any specific expertise 
and allows automated operator-independent pattern estimation 
based on robust machine learning technology.

A strength of this study is its prospective design, with all patients 
undergoing RT-ring assessment, sEMG tremor analysis, and DaTscan 
in addition to clinical examination. A limitation is the relatively 
limited sample size, which highlights the need for larger multicenter 
studies to validate the findings and investigate the benefits for health 
outcomes and the healthcare economic burden.

In conclusion, the RT-ring is a promising non-invasive wearable 
mobile device for the differential diagnosis of rest tremor disorders. It 
can be used by general practitioners and physicians with no expertise 
in tremor, making it suitable as an inclusive screening tool for primary 
care and outpatient settings. This strategy may potentially improve the 
referral of RT patients to neurology, reducing the diagnostic delay and 
supporting the tremulous PD clinical diagnosis in settings with 
limited access to dopamine imaging. It may also mitigate diagnostic 
disparities across populations related to social conditions and limited-
income regions.
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SUPPLEMENTARY FIGURE S1

The figure shows a flowchart of the study inclusion/exclusion procedures. 
Among the five patients requiring more than 3 RT-ring sessions, 3 patients 
required 4 sessions, 1 patient required 5 sessions, and 1 patient did not show a 
stable RT pattern within 5 sessions (maximum number of attempts). RT, 
rest tremor.
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