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Background: Etiological classification of ischemic stroke is fundamental for 
secondary prevention, but frequently results in undetermined cause. We aimed 
to develop a Deep Learning (DL)-based model for automatic etiological 
classification of ischemic stroke using digital images of thrombi retrieved by 
mechanical thrombectomy.

Methods: Patients with large vessel occlusion stroke subjected to mechanical 
thrombectomy between April 2016 and January 2023 at La Fe University and 
Polytechnic Hospital in Valencia were included. Thrombus digital images were 
obtained and clinical characteristics, including TOAST etiological classification 
as reference standard, were retrieved. Statistical analysis was performed to 
compare clinical characteristics between atherothrombotic and cardioembolic 
strokes. A DL method was designed based on two deep neural networks for: (1) 
image segmentation and (2) image classification including clinical characteristics. 
The metrics used were DICE coefficient for the segmentation network, and 
accuracy, precision, sensitivity, specificity and area under the curve (AUC) for 
the predictions of the classification network.

Results: A total of 166 patients (mean age 69 [SD, 13], 67 female) were included. TOAST 
classification was: 31 atherothrombotic, 87 cardioembolic, and 48 cryptogenic. The 
segmentation network achieved an average DICE coefficient of 0.96 [SD, 0.13]. The 
optimal fused imaging and clinical classification network had a 0.968 accuracy [95% 
CI, 0.935–0.994], and AUC of 0.947 [95% CI, 0.870–1]. Cryptogenic thrombi were 
classified as cardioembolic (96%) or atherothrombotic (4%).

Conclusion: Two convolutional neural networks perform the automatic 
segmentation of thrombus images and, combined with selected clinical 
characteristics, their accurate and precise classification into atherothrombotic 
or cardioembolic etiology in patients with acute ischemic stroke.
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1 Introduction

The most commonly used classification system to differentiate 
ischemic stroke subtypes is the one developed by the Trial of Org 
10,172 in Acute Stroke Treatment (TOAST). The different groups are: 
large-artery atherosclerosis (atherothrombotic), cardioembolic, small 
vessel occlusion, stroke of other determined etiology, and stroke of 
undetermined etiology (cryptogenic) (1). The correct diagnosis of 
ischemic stroke subtype is very important for improving clinical 
outcomes and preventing new events. Nonetheless, stroke classification 
sometimes is challenging.

One important problem faced by the neurologists is the correct 
classification of cryptogenic strokes, due to the unclear thrombus 
origin (1). Technologies such as artificial intelligence (AI), specifically 
deep learning (DL), could assist in classifying ischemic strokes, aiding 
in the development of supplementary tools for physicians (2). AI 
attempts to replicate human cognitive functions, while DL uses large 
neural networks to deal with complex regression or classification 
problems. One example of a deep neural network architecture is the 
convolutional neural network, which recognizes the visual patterns of 
an image and retains the main information by applying 
convolutions (3, 4).

AI has proven to have great applicability to aid in the diagnosis 
and prognosis of ischemic stroke patients. Radiomic features extracted 
from brain embolism regions segmented from CTA images of large 
vessel occlusion (LVO) stroke patients have been used as input of 
machine learning (ML) models for the classification of stroke 
subtypes. A four-center retrospective study gathered thrombus-
extracted radiomic features and basic information to construct a ML 
model that could reliably predict cardioembolic stroke, performing 
better than the routine radiological method (5). In another 
monocentric study, DL convolutional neural networks were applied 
for TOAST classification (cardioembolic vs. atherothrombotic) using 
only radiomic features from clots in brain CTA images (6). In a 
different approach, a deep neural network developed to diagnose 
cardioembolic stroke based on chest radiographs demonstrated good 
classification performance and biological plausibility (7). On the other 
hand, ML algorithms, including a deep neural network using 
demographic and clinical variables, have also been created for 
prediction of long-term functional outcome in stroke (8). Fused 
imaging (MRI/CTA) and clinical DL models outperformed 
predictability of good reperfusion after mechanical thrombectomy 
(MT) (9) and functional outcome (10, 11). Although MRI and CTA 
medical images have been usually used to build DL models in 
cerebrovascular disease, a recent study used retinal photographs for 
screening and staging of Moyamoya disease by a DL algorithm (12).

In 1996, alteplase became the first recanalization therapy for 
ischemic stroke, aimed at thrombus lysis (13). However, with the 
advent of endovascular therapies in the last decades, such as MT 
(14, 15) a different approach is available to treat ischemic stroke, 
which also enables the study of the biological material responsible 
for obstructing blood flow. Since Marder’s pioneering study (16), 
clot composition analysis emerged as a potential diagnostic tool to 
gain insight into ischemic stroke etiology (17) ML algorithms have 
been used in the histological (18) and proteomic (19) analysis of 
thrombi. The largest histological study in patients from the Stroke 
Thromboembolism Registry of Imaging and Pathology (STRIP) 
found statistically significant but clinically insignificant differences 

between clots of cardioembolic and atherothrombotic 
etiologies (18).

In a study regarding the macroscopic aspect of the clots, 
photographs were used to visually classify the thrombi as white or red/
black, with excellent inter-reader agreement for graded clot color. 
While white clots were significantly associated with atypical etiologies, 
in particular with infectious endocarditis, there was no significant 
difference in typical etiologies (i.e., cardioembolic vs. 
atherothrombotic) (20). DL can adaptively learn representative 
information from raw medical imaging without any preconceptions 
related to the human-involved feature extraction process. In the 
present study, we propose using DL methods to recognize complex 
patterns in photographs of the extracted thrombi, together with 
clinical characteristics of the patients, to produce accurate predictions 
of atherothrombotic or cardioembolic TOAST classes. For this 
purpose, two convolutional neural networks were used, first an image 
segmentation neural network, and later a binary classification neural 
network. To the best of our knowledge, DL models have never used 
photographs of retrieved thrombi to predict stroke etiology.

2 Materials and methods

2.1 Study design: patients, data retrieval, 
biological samples, and image acquisition

This retrospective study used a prospective registry of consecutive 
LVO ischemic stroke patients subjected to MT between April 2016 
and January 2023 at La Fe University and Polytechnic Hospital in 
Valencia. The study protocol was approved by the research ethics 
committee (CEIm, approval #2021–577-1). Informed consent was 
obtained from all participating patients or their legal representatives. 
This study follows the Guidelines for Developing and Reporting 
Machine Learning Predictive Models in Biomedical Research (21).

Vascular neurologists retrieved the demographic and clinical 
characteristics from the medical history (age, sex, active smoking, and 
occurrence of diabetes, dyslipidemia, or arterial hypertension). The 
biological material was cerebral clots retrieved by 
neurointerventionalists during MT. Depending on the decision of the 
neurointerventionalist, based on the characteristics of the LVO, 
different extraction devices were used: (a) distal aspiration catheter 
with manual syringe, (b) balloon guide catheter plus stent-retriever, 
or (c) combined stent-retriever with distal aspiration catheter. The 
retrieved clot was either detached from the extraction device by gentle 
flushing with saline solution in most cases, or in some cases found in 
the aspiration syringe, and then preserved in saline solution at 4°C. No 
distinction was made between the head and tail of the thrombus, or 
between its shell and core. In the case of fragmented thrombi, the 
entire set of fragments was collected and treated as a single sample. 
Digital images of the thrombi were acquired once within 24 h of MT.

All the thrombus images were captured with the same camera 
(OLYMPUS® CAMEDIA C-5050, Olympus Optical Co., Ltd., Tokyo, 
Japan), format (TIF) and resolution (640 × 480 pixels) to avoid internal 
variability. As the camera captured images containing thrombi and 
non-relevant information, a segmentation process was necessary to focus 
exclusively on the thrombi for image analysis. The result of this 
segmentation is a new binary image called mask that contains the 
relevant information of the original image (i.e., the thrombus; see 

https://doi.org/10.3389/fneur.2025.1534845
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lucero-Garófano et al. 10.3389/fneur.2025.1534845

Frontiers in Neurology 03 frontiersin.org

Figure 1 for representative images of cardioembolic and atherothrombotic 
thrombi). The manually segmented masks were obtained using the 
software ITK-SNAP v3.4.0 (22). This set of images/masks was used as a 
ground truth to train the segmentation neural network.

Convolutional neural network was the modeling technique 
selected in order to combine thrombus images and patient features as 
input for DL categorical predictive fused models.

2.2 Segmentation neural network

Choosing the architecture of a neural network is crucial when 
developing a model in DL. We used one of the most widely used 
networks in biomedical image segmentation, the U-NET network, 
first developed by Ronneberger et al. (23). The U-NET consists of two 
parts: an encoder and a decoder which are interconnected with skip 
connections. The detailed architecture of the segmentation network 
can be  seen in Figure  2. During the encoder phase, 4 blocks of 
convolutions layers are used, and in each block, different operations 
are applied such as convolution layers, batch normalization (24) and 
dropout (25) followed by pooling layers, effectively capturing the 
image’s contextual information. Batch normalization layers are used 
to normalize data during training, and dropout was used after pooling 
layers to avoid overfitting. In our U-NET, the kernel size utilized was 
3×3 pixels, the starting number of filters was 64, and it was doubled in 
each down sampling step. Subsequently, the decoder comprises 
up-convolution layers and concatenations of the cropped feature maps 
extracted from the encoder part. Conversely to the encoder, the 
number of filters is divided in the “up-convolutions” of the decoder 
(23). All layers were activated with the ReLU function except the 
output layer, which was activated with the softmax function.

2.3 Classification neural network

The classification network adopts an architecture reminiscent of 
the LeNet model (26). The input to the classification network results 
from multiplying the original image by the mask generated in the 

segmentation network. This approach selectively retains only the 
pertinent information for thrombus classification, discarding 
non-relevant details and emphasizing the macroscopic structure. The 
detailed architecture of the classification network can be  seen in 
Figure  3. The network started with 64 filters, each with 3×3 pixel 
kernels, and this number of filters was doubled after each pooling 
layer, culminating in a total of 1,024 filters. Dropout and Convolutional 
Block Attention Module (CBAM) (27) layers were applied following 
each fixed resolution block to enhance accuracy. Subsequent to the 
feature extraction layers, a global average pooling layer consolidates all 
features, yielding 1,024 values per image. These values are then utilized 
to input a fully connected subnetwork comprising of dense layers with 
128, 32 and lastly 1 neuron (all with ReLU activation, exception for the 
last layer which used sigmoid activation). The model’s output is a 
number between 0 and 1, and the image was classified as 
atherothrombotic or cardioembolic according to a set threshold.

Several experiments were conducted to improve the accuracy of 
the model. The first model exclusively used as input data the thrombus 
image and the mask. After the creation of this model, the concatenation 
of the six demographic and clinical characteristics was done. Statistical 
analysis was performed to find significant differences between 
atherothrombotic and cardioembolic etiologies regarding patient 
characteristics. Then, different models were created in order to find 
the best layer concatenation to the fully connected layer. Once the best 
model with the best concatenation was obtained, data augmentation 
techniques such as blurring or sharpening were applied to ameliorate 
the model’s accuracy.

2.4 k-fold cross-validation strategy

A k-fold cross-validation strategy was used to account for the rather 
small sample size. This involves dividing the dataset into k folds. Each 
fold will have a training set formed by k-1 folds and a test group which 
contains the remaining one. This process will be iterated k times so all 
data will be used as a train and test set (28). We used 5-fold cross-
validation in both the segmentation and classification networks. As 
atherothrombotic and cardioembolic classes were unbalanced, a 
generator function was used to provide balanced samples to the 
classification network by randomly sampling the corresponding datasets.

2.5 Training process

The segmentation network was first trained on a subset of original 
images of the thrombi and their manually generated masks. Then, all 
the images included in the study were used. The loss function chosen 
was Dice loss, which employs the DICE coefficient (29). The DICE 
coefficient measures the overlap between two images. The optimizer 
utilized was Adam (30), and the number of epochs was established to 
500 with 100 steps per epoch.

The classification network was trained with images whose etiology 
was known (i.e., atherothrombotic or cardioembolic). The loss 
function chosen in this network was the Binary Cross Entropy 
because, unlike the segmentation network, the classification operates 
as a binary classifier. Adamax was the optimizer employed in this 
network (30). The number of epochs was 1,000 with 100 steps 
per epoch.

FIGURE 1

Representative images of retrieved thrombi. Images of a 
cardioembolic thrombus (A) and an atherothrombotic thrombus 
(B) as captured by the camera, and their corresponding manual 
segmentations, the thrombus masks (C,D).
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DL algorithms require a substantial amount of training data, yet 
the disposition of annotated medical images is limited. Data 
augmentation was used, where some modifications are applied to the 
original images and improve the network’s performance (31). In our 
case, the modifications applied were random rotations/flips along the 
horizontal and vertical axes, and the application of blurring and 
sharpening, which affect the image edges. This process of data 
augmentation was applied in both segmentation and classification 
networks to improve their generalizability and minimize overfitting.

2.6 Test process

The DICE coefficient was employed to assess the performance of 
the segmentation network. The mask predicted by the model was 

generated using Test Time Data Augmentation (TTDA) (32), a 
technique consisting in predicting the output with different input 
transformations (horizontal and vertical flip in our case) to generate 
several predictions to later average them (after inverting the 
transformation). This technique is a simple way to use auto-assembling 
that generally improves accuracy and robustness of the network at 
test time.

The classification network underwent the evaluation using 
also the TTDA approach. The model’s input was the image 
multiplied by the mask generated in the segmentation network, 
and the output was the model’s prediction. The image was 
classified as either atherothrombotic or cardioembolic depending 
on the average numerical value returned by TTDA. A threshold 
was set to determine if images were classified as cardioembolic 
or atherothrombotic. The accuracy estimated from the training 

FIGURE 2

Segmentation neural network. Architecture of the U-NET neural network used for thrombus image segmentation.

FIGURE 3

Classification neural network. Architecture of the LeNet neural network used for the etiological classification of thrombus images concatenated with 
patient’s demographic and clinical characteristics.
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data of the model was used to determine the threshold which was 
stablished to 0.2. The models were evaluated three times and the 
results represent their average.

Once the classification predictions were obtained, which is the 
index test of this study, accuracy, precision, sensitivity, specificity and 
AUC score were used for the evaluation of the model. We used a 
bootstrapping approach in order to estimate the 95% confident 
intervals of our predictions. Bootstrap used 1,000 samples of the test 
set. In order to calculate these metrics, the reference standard was the 
TOAST classifications provided by clinicians. Performance accuracy 
was used to select the best model.

2.7 Statistical analysis

Statistical analysis was performed with the demographic and 
clinical characteristics obtained from the patients to observe the 
existence of significant differences between patients who suffered a 
stroke of atherothrombotic or cardioembolic etiology. The χ2 test was 
used for the categorical variables (sex, smoking, hypertension, 
dyslipidemia, and diabetes) and the Wilcoxon test for the 
non-normally distributed continuous variables (age and DICE 
coefficients). R software1 in version 4.3 was used. p-values <0.05 were 
considered statistically significant.

3 Results

3.1 Patient characteristics

A flowchart of the study is shown in Figure 4. Out of 290 LVO 
stroke cases subjected to MT, 166 patients were included (age 
[mean ± SD] 69.11 ± 13.39 years; 67 [40.36%] female). TOAST 
etiologies were: 87 cardioembolic, 31 atherothrombotic, and 48 
cryptogenic. Demographic and clinical characteristics are detailed in 
Table 1.

3.2 Image segmentation performance

In the segmentation network, the images of all 166 patients were 
used, regardless of stroke etiology. The proposed segmentation 
network had a total of 1,963,202 parameters (1,959,938 trainable) and 
obtained a DICE coefficient of 0.95551 ± 0.12996 without TTDA and 
0.95553 ± 0.13037 using it. As can be noticed, TTDA improved results 
(although not statistically significant, p = 0.744, W = 0.310, Wilcoxon 
test). The average processing time of the segmentation network was 
0.5 s per image.

3.3 Etiology classification performance

In the classification network, the images of 118 patients with 
known etiology were used (31 atherothrombotic and 87 

1 http://www.r-project.org

cardioembolic). Three consecutive models were developed to optimize 
accuracy, precision, sensitivity, specificity, and area under the curve 
(AUC). Cardioembolic etiology was considered the positive class. 
Table 2 summarizes input data, data augmentation, and performance 
metrics (mean [95% CI]) for each model.

Model 1 exclusively used the original image multiplied by the 
mask as input. The accuracy of the model was 0.944, and the precisions 
were 0.910 and 0.955 for atherothrombotic and cardioembolic 
etiologies, respectively.

Given the possibility of accessing demographic and clinical 
data associated with the thrombus image, Model 2 concatenated all 
the six characteristics (age, sex, active smoking, diabetes, 
dyslipidemia, and arterial hypertension occurrence) in the dense 
layer with 128 neurons to the fully connected layer of the 
classification model. In addition, image sharpening and blurring 
operations were applied in the data augmentation process. The 
accuracy of the model increased to 0.958, and the precisions were 
1 and 0.946 for atherothrombotic and cardioembolic etiologies, 
respectively.

Given that the addition of demographic and clinical characteristics 
improved the accuracy of Model 2, we decided to perform a statistical 
analysis of these characteristics to find out statistically significant 
differences between patients who suffered from a stroke of 
cardioembolic or atherothrombotic etiology (Table 1, characteristics 
with a p-value <0.05 have been highlighted). In the light of the 
statistical analysis results, only the 3 significantly different 
characteristics (age, sex, and active smoking) were included in Model 
3, and they were concatenated in the same layer that Model 2. The 
model increased its accuracy from 0.958 to 0.960. The precisions were 

FIGURE 4

Study flowchart. LVO, large vessel occlusion; MT, mechanical 
thrombectomy; TOAST, Trial of Org 10,172 in Acute Stroke 
Treatment.

https://doi.org/10.3389/fneur.2025.1534845
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.r-project.org


Lucero-Garófano et al. 10.3389/fneur.2025.1534845

Frontiers in Neurology 06 frontiersin.org

0.964 and 0.959 for atherothrombotic and cardioembolic etiologies, 
respectively.

Finally, we tested Model 3 with a different TTDA configuration 
consisting of blurring the images to see its effect not only in the 
training process, but also in the test. The accuracy of this optimal 
Model 3* increased to 0.968, and the precisions for atherothrombotic 
and cardioembolic etiologies were 1 and 0.959, respectively. AUC for 
cardioembolic (positive) prediction was 0.947. As can be noticed, the 
blurring at TTDA improved the accuracy metrics, thus suggesting that 
color information was more relevant for classification that texture 
information. The concatenation of the 3 patient characteristics in 
Model 3* was performed in the dense layer with 32 neurons. The 
parameters for this model were 4,874,922 (4,872,938 of them 
were trainable).

3.4 Classification of cryptogenic thrombi

Using Model 3*, the best performing classification network for 
atherothrombotic and cardioembolic thrombi, we  conducted a 
preliminary experiment to evaluate the 48 images of thrombi with 
cryptogenic etiology (together with age, sex, and active smoking data) 
and predict their classification. Cryptogenic thrombi were evaluated by 
the 5 folds of the model and the final result was the vote of the majority 
of the folds. The network classified 46 images as cardioembolic and 2 
images as atherothrombotic (Figure 5). This suggests that cryptogenic 
thrombi are more similar to cardioembolic thrombi (95.83%) than 
atherothrombotic thrombi (4.17%), which is in good agreement with 
the higher incidence of cardioembolic etiology. In 36 out of 46 cases 
(78.26%) the prediction of cardioembolic origin was unanimous. After 
further diagnostic workup, 5 out of the 36 unanimous predictions were 
clinically confirmed as cardioembolic etiology (Figure 5).

4 Discussion

In this study, we have developed and optimized a method to 
automatically segment stroke thrombus images from digital 
photographs and to accurately classify them, together with clinical 
characteristics, into atherothrombotic and cardioembolic 
categories. Our results show the usefulness of using DL on 
thrombus photographs for typical etiology classification, when 
compared to visual classification by expert interventional 
neuroradiologists (20). High accuracy of our best model (0.968) 
outperformed accuracies reported in previous studies using AI to 
predict cardioembolic or atherothrombotic origins based on 
different clot features. Combination of DL convolutional neural 
network and radiomics of brain embolism regions segmented from 
the CTA images predicted stroke subtype with 0.8929 accuracy (6). 
A ML model using thrombus-extracted radiomic features from 
CTA images and basic information predicted cardioembolic stroke 
with 0.904 accuracy (5). With regard to retrieved thrombi, ML 
models classified cardioembolic versus atherothrombotic with 0.77 
accuracy on the basis of clot histomics (33), 0.883 accuracy based 
on clot proteomics (19), and 0.889 accuracy when metabolomics 
features were used as etiology predictors (34). On the other hand, 
classification of cardioembolic stroke based on a DL neural 
network using chest radiographs showed 0.844 accuracy (7).

The segmentation network with the U-NET architecture has 
demonstrated high performance in various medical imaging tasks, 
such as segmentation of brain tumors or skin lesions (35, 36). The 
average DICE coefficient obtained in our case was 0.955, proving its 
good performance. This allowed reliable automatic segmentation of 
the thrombus from the whole photograph, in contrast to time-
consuming and less accurate manual segmentation carried out to 
delineate the cerebral embolism region in the CTA image on the 

TABLE 1 Sample description and statistical analysis.

Overall 
(n = 166)

Cryptogenic 
(n = 48)

Atherothrombotic 
(n = 31)

Cardioembolic 
(n = 87)

Statistic 
testa

P-value

Age (yr), mean ± SD 69.11 ± 13.39 65.77 ± 13.43 63.42 ± 10.76 72.98 ± 13.11 Wilcoxon <0.001

Sex, n (%) χ2 0.011

Female 67 (40.36) 24 (50.00) 5 (16.13) 38 (43.68)

Male 99 (59.64) 24 (50.00) 26 (83.87) 49 (56.32)

Active smoking, n (%) χ2 0.010

No 93 (56.02) 28 (58.33) 11 (35.48) 54 (62.07)

Yes 73 (43.98) 20 (41.67) 20 (64.52) 33 (37.93)

Arterial hypertension, n (%) χ2 0.304

No 59 (35.54) 22 (45.83) 12 (38.71) 25 (28.74)

Yes 107 (64.46) 26 (54.17) 19 (61.29) 62 (71.26)

Diabetes, n (%) χ2 0.308

No 119 (71.69) 31 (64.58) 21 (67.74) 67 (77.01)

Yes 47 (28.31) 17 (35.42) 10 (32.26) 20 (22.99)

Dyslipidemia, n (%) χ2 0.418

No 75 (45.18) 22 (45.83) 12 (38.71) 41 (47.13)

Yes 91 (54.82) 26 (54.17) 19 (61.29) 46 (52.87)

aStatistical tests were performed between atherothrombotic and cardioembolic data. SD, standard deviation; χ2, chi-squared test. Bold p-values <0.05 were considered statistically significant.
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patient’s head before extracting radiomic features for etiology 
prediction (6).

Regarding the classification neural network, our best model 
achieved not only a high accuracy of 0.968, but also high precisions of 
1 for atherothrombotic and 0.959 for cardioembolic cases. These 
results suggest that the proposed method can effectively classify 
thrombi as either atherothrombotic or cardioembolic. The architecture 
of the model was inspired in the well-known architecture proposed by 
LeCun et al. (26). The main difference in the present study was the 
application of dropout, Adamax optimizer, convolutional block 
attention module (CBAM) (27), and the change of the activation 
function in the last layer from softmax to sigmoid due to our approach, 
which is a binary classification.

Classification metrics were improved in the present study by 
combining imaging and selected clinical data in the DL model. This 
kind of fused DL models have not been previously used for stroke 
etiology prediction, but outperformed separate imaging or clinical 
models (and traditional risk-scoring by expert neurologists) when 
used in the prediction of functional ischemic stroke outcome (10, 11, 
37) and good reperfusion after endovascular treatment (9). 
Performance of more complex neuronal networks combining clot 
macroscopic imaging, omics features and patient clinical 
characteristics deserves further research.

Different data augmentation options were used. We  included 
rotations as the orientation of the clots was somewhat random at the 
moment of image acquisition. Blurriness is also a realistic artifact as 
sometimes the camera can be not totally focused. Of note, our best 
performing model applied blurring after the process of data 
augmentation. The improved performance by application of blurring 
may indicate that the network is using mainly color information from 
the image rather than texture information. Previous studies have 
compared the proportions of fibrin and cellular components (i.e., 
chromatic aspect) in atherothrombotic and cardioembolic thrombi, 
but there is no consensus. Some studies report that cardioembolic 
thrombi contain more red blood cells (red thrombus) than 
atherothrombotic thrombi (38, 39), while others conclude the opposite 
(40, 41). Of note, a recent meta-analysis including 21 studies found 
that fibrin composition is significantly higher (white thrombus) in 
strokes of cardioembolic and cryptogenic origin than in strokes of 
non-cardioembolic origin (42).

Cryptogenic thrombus and their clinical characteristics were 
introduced as input data into the classification network as a proof-of-
concept for the classification of thrombi with unknown origin. The 
findings of this experiment indicate that the classification network 
tends to unanimously categorize in most cases cryptogenic thrombi 
as cardioembolic rather than atherothrombotic. A previous study also 
more likely predicted a cardioembolic origin in cryptogenic thrombi 
by applying a histomics-based ML model (33). These results are in line 
with similarities in thrombus histology, interventional and clinical 
outcome parameters previously observed between cryptogenic and 
cardioembolic thrombi, when compared to non-cardioembolic 
thrombi (43), thus supporting the hypothesis that the majority of 
cryptogenic strokes are actually cardioembolic. However, this should 
be taken with caution, as bioinformatic analysis of clot transcriptomes 
from different TOAST etiologies showed that gene expression of 
cryptogenic thrombi was not clustered toward only one group, but 
showed expression patterns related to both atherothrombotic and 
cardioembolic etiologies (44). The use of DL offers a new research 
avenue for uncovering cryptogenic stroke. The next step in this 
process should be  to ensure that cryptogenic strokes, which were 
initially classified as a cardioembolic stroke by the model, are clinically 
re-evaluated to detect any underlying cause of cardioembolic stroke 
and thus confirm the diagnosis. Interestingly, at present 5 out of the 
36 cryptogenic thrombi unanimously predicted as cardioembolic by 
the model have been clinically confirmed after further diagnostic 
workup. This supports the need to maintain the diagnostic workup 
effort in the remaining 31 patients.

Regarding atherothrombotic strokes, there has been in recent 
years an increasing interest in the application of AI in carotid plaque 
detection using ultrasound, CT scans, and MRI. Deep learning models 
based in CNNs have been demonstrated to be  a valid help in 
identifying the characteristics of vulnerable and potentially 
symptomatic plaques, increasing the accuracy of imaging detection, 
or simply speeding up the diagnostic process, in order to prevent 
future cerebral ischemic events (45).

Although this study provides a DL classification model that shows 
translational promise in stroke diagnosis, it has limitations. Regarding 
the handling of thrombotic material, different MT devices and 
techniques were used to obtain clot samples with different degrees of 
fragmentation, which were stored in cold saline solution for different 

TABLE 2 Summary of input data, data augmentation, and performance metrics of the classification models.

Model 1 Model 2 Model 3 Model 3*a

Input data Image Image, 6 features Image, 3 features Image, 3 features

Data augmentation Rotations Rotations, sharpening, and blurring Rotations, sharpening, and blurring Rotations, sharpening, and blurring

TTDA Rotations Rotations Rotations Rotations and blurring

Accuracy 0.944 (0.901–0.977) 0.958 (0.918–0.992) 0.960 (0.920–0.991) 0.968 (0.935–0.994)

Sensitivity 0.969 (0.929–1) 1 (1–1) 0.988 (0.963–1) 1 (1–1)

Specificity 0.871 (0.745–0.970) 0.839 (0.697–0.960) 0.881 (0.753–0.980) 0.881 (0.753–0.980)

AUC 0.943 (0.873–0.994) 0.960 (0.901–0.999) 0.993 (0.981–1) 0.947 (0.870–1)

Precision

Atherothrombotic 0.910 (0.795–1) 1 (1–1) 0.964 (0.889–1) 1 (1–1)

Cardioembolic 0.955 (0.908–0.989) 0.946 (0.838–0.989) 0.959 (0.912–0.993) 0.959 (0.914–0.993)

Classification metrics are expressed as mean (95% CI). Cardioembolic etiology was considered the positive class. aModel 3* is Model 3 with different TTDA configuration. TTDA, test time 
data augmentation; CI, confidence interval; AUC, area under the curve.
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periods of time until image acquisition within 24 h, potentially affecting 
the morphological characteristics of the thrombi. It is a monocentric 
study with a limited sample size, although higher than in other studies 
using ML and clot histomics (33), proteomics (19), or radiomics (6). 
Some patients who underwent MT during the recruitment period were 
excluded because thrombus image or demographic/clinical data were 
not available, which may have introduced selection bias. However, the 
proportions of cardioembolic, atherothrombotic and cryptogenic 
etiologies in the patients finally included were quite similar to those 
expected in the TOAST stroke subtype classification in clinical practice 
(46). Data augmentation (image modification) techniques and a k-fold 
cross-validation strategy were used to account for the limited number 
of images available and to minimize overfitting. These methods proved 
useful in improving the performance of algorithms for classifying 
stroke subtypes (33) or predicting stroke functional outcome (37). 
Another limitation is the representativeness of the sample. The limited 
sample size has the potential to complicate the generalizability of the 
model, even with the use of techniques such as data augmentation and 
k-fold cross validation, given their dependence on the original dataset. 
To overcome this problem, a highly standardized protocol was 
developed to augment the dataset not only in our center, but also in 
different centers. Therefore, the present results should be extended in a 
multicentric study to increase the sample size and perform external 
validation of the model. For this purpose, it would be important to 
standardize data acquisition in all centers of a collaborative network. 
Finally, this DL model can only be used for patients from which a clot 
is retrieved. However, the estimated population eligible for 
endovascular treatment is ∼10% of stroke admissions (47).

5 Conclusion

In conclusion, two convolutional neural networks have been 
built for the automatic segmentation and highly accurate and 

precise etiological classification of thrombus images from patients 
with LVO acute ischemic stroke. This innovative approach should 
be validated in a multicentric study with a larger sample size. It has 
translational potential to serve as a complementary diagnostic 
support tool for vascular neurologists, thereby improving patient 
classification and enhancing decision making, particularly for 
secondary prevention of new events.
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