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Background: Stroke is a leading cause of mortality and disability globally. 
Among ischemic stroke patients, those with moderate to severe consciousness 
disorders constitute a particularly high-risk subgroup. Accurate predictive 
models are essential for guiding clinical decisions in this population. This study 
aimed to develop and validate an automated scoring system using machine 
learning algorithms for predicting short-term (3- and 7-day) and relatively long-
term (30- and 90-day) mortality in this population.

Methods: This retrospective observational study utilized data from the MIMIC-
IV database, including 648 ischemic stroke patients with Glasgow Coma Scale 
(GCS) scores ≤12, admitted to the ICU between 2008 and 2019. Patients with GCS 
scores indicating speech dysfunction but clear consciousness were excluded. A 
total of 47 candidate variables were evaluated, and the top six predictors for 
each mortality model were identified using the AutoScore framework. Model 
performance was assessed using the area under the curve (AUC) from receiver 
operating characteristic (ROC) analyses.

Results: The median age of the cohort was 76.8 years (IQR, 64.97–86.34), 
with mortality rates of 8.02% at 3 days, 18.67% at 7 days, 33.49% at 30 days, 
and 38.89% at 90 days. The AUCs for the test cohort’s 3-, 7-, 30-, and 90-day 
mortality prediction models were 0.698, 0.678, 0.724, and 0.730, respectively.

Conclusion: We developed and validated a novel machine learning-based 
scoring tool that effectively predicts both short-term and relatively long-term 
mortality in ischemic stroke patients with moderate to severe consciousness 
disorders. This tool has the potential to enhance clinical decision-making and 
resource allocation for these patients in the ICU.
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Introduction

Stroke, including both ischemic and hemorrhagic types, remains 
one of the leading causes of mortality and long-term disability 
worldwide (1). Stroke mortality is projected to increase by 50% from 
2020 to 2050 (2), significantly adding to the disease burden. The 
burden is particularly severe among patients who experience both 
severe ischemic stroke and consciousness disorders (3, 4), involving 
prolonged hospital stays, intensive rehabilitation efforts, and 
significant caregiver support (5). Consciousness disorders encompass 
a range of conditions, including coma, vegetative state, and minimally 
conscious state (6, 7), and are associated with significantly worse 
prognoses compared to ischemic stroke patients without consciousness 
disorders (8).

In this study, we focus on a distinct and challenging subgroup: 
ischemic stroke patients with moderate to severe consciousness 
disorders (GCS ≤ 12) at admission, excluding those with a GCS score 
of 4-1-6 or 4-2-6, as they are classified as having speech dysfunction 
with clear consciousness (9, 10). All these severe ischemic stroke 
patients were admitted to the ICU (11).

Patients in this category are typically incapable of independently 
deciding on interventions such as mechanical ventilation, artificial 
nutrition, surgical decompression, or even the withdrawal of life-
sustaining treatment. In many severe stroke cases, however, physicians 
and patient surrogates must make decisions under conditions of 
prognostic uncertainty and ambiguous definitions of acceptable 
outcomes (12). Accurate prediction of outcomes in these patients is 
essential for guiding clinical decisions, managing resources, and 
providing appropriate counseling for patients’ families. Prognostic 
models that accurately predict outcomes for patients with severe 
stroke are currently insufficient. Traditional assessment tools, such as 
the GCS and the Modified Rankin Scale (mRS), often overlook the 
complexities inherent in these patients’ conditions. Moreover, these 
models tend to rely on static clinical evaluations and do not take 
advantage of the massive data available from modern healthcare 
databases. Recent advancements in machine learning (ML) have 
shown potential in developing more precise and individualized 
prognostic models (13, 14). ML techniques can analyze large datasets 
to identify patterns often missed by traditional methods, enhancing 
prognostic accuracy for patients (15, 16). Despite its potential, 
research applying machine learning to predict outcomes in severe 
ischemic stroke patients remains limited. This gap underscores the 
need for innovative approaches to improve prognostic accuracy in this 
high-risk population.

Therefore, the primary objective of this study is to develop an 
automated scoring model using machine learning techniques to 
estimate mortality for severe ischemic stroke patients with moderate 
to severe consciousness disorders. By enhancing the interpretability 
and accuracy of the predictive model, we  aim to facilitate its 
integration into clinical workflows and decision-making processes.

Methods

Study population

This study is a retrospective observational analysis, and data were 
extracted from the Medical Information Mart for Intensive Care IV 

(MIMIC-IV) database. The MIMIC-IV database includes records of 
more than 40,000 patients admitted to the intensive care units at Beth 
Israel Deaconess Medical Center between 2008 and 2019 (17). This 
database contains detailed patient information, including 
demographic characteristics, vital signs, laboratory test results, 
prescribed medications, and other relevant data. Author Zhou Zhou 
secured permission to access the dataset (Record ID 11493928) and 
was responsible for data extraction. Institutional review boards at the 
Massachusetts Institute of Technology (MIT) and Beth Israel 
Deaconess Medical Center (BIDMC) approved the project and issued 
a waiver for informed consent.

A total of 3,475 person-time records of hospitalized patients with 
ischemic stroke were included from the MIMIC-IV database. Ischemic 
stroke was diagnosed at ICU admission based on the International 
Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision 
(ICD-10) codes. ICD-9: 43,301, 43,311, 43,321, 43,331, 43,381, 43,391, 
43,401, 43,411, and 43,491; ICD-10: I63. Patients with a diagnostic 
sequence greater than 3 or those who were not making their first 
hospital or ICU admission were excluded. Additionally, we analyzed 
only patients whose minimum GCS score on the first day of admission 
was ≤12, excluding those with GCS scores of 4-1-6 or 4-2-6 because 
these patients typically exhibit verbal dysfunction without impaired 
consciousness, which could introduce heterogeneity into the cohort. 
A total of 648 patients met the inclusion criteria and were randomly 
divided into a training set (70%) and a testing set (30%). The patient 
screening flow diagram is displayed in Figure 1.

Variables extraction

The first-time data on baseline characteristics within the first 24 h 
of ICU admission were extracted from the MIMIC-IV database, 
including demographics, vital signs, laboratory tests, comorbidities, 
and scoring systems.

Outcome

Short-term mortality was defined as death within 3 and 7 days 
after admission, whereas relatively long-term mortality was defined 
as death occurring within 30 and 90 days after admission. Patient 
mortality information for discharged patients was obtained from 
the US Social Security Death Index and recorded in the 
MIMIC-IV database.

Statistical analysis

Data were presented as the mean with standard deviation (SD) or 
median with interquartile range (IQR) for continuous variables and 
as quantity and frequency (%) for categorical variables. Continuous 
variables were compared using Student’s t-test (normal distribution) 
or Mann–Whitney U-Test (normal distribution with heteroscedasticity 
or non-normal distribution) and categorical variables were compared 
using the Pearson chi-square test (expected counts T ≥ 5 and total 
sample size n ≥ 40) or Fisher’s exact test (expected counts T < 5 and 
total sample size n ≥ 40). Multiple interpolation was used to fill in 
missing values (less than 20%). The confidence level was set at 
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α = 0.05. All statistical analyses were conducted using R 4.3.1. p < 0.05 
was considered statistically significant.

The AutoScore framework is a systematic and automated clinical 
score generator, it can generate parsimonious sparse-score risk models 
from electronic health records (EHRs) or other types of medical data 
based on machine learning and regression modeling (18). In this 
study, the AutoScore framework was implemented to construct 
validated risk-scoring models capable of predicting mortality at 
intervals of 3, 7, 30, and 90 days. Firstly, the AutoScore binary program 
was used to identify the top-ranking predictors based on machine 
learning algorithms, and a parsimonious list of variables for the final 
scoring model was selected using a parsimony plot. Secondly, six key 
variables were selected as the most influential variables, and initial 
scores were generated based on these variables (Figures 2, 3). Thirdly, 
the data-driven cutoff values for each continuous variable were refined 
to generate the final scoring system, which was then evaluated using 
the testing dataset. The final prognostic model scoring chart is 
presented in Table  1. The predictive performance of the scoring 
models was quantified using the AUC within the ROC analysis 
(Figure  4). Sensitivity, specificity, positive predictive value, and 
negative predictive value were calculated at the optimal threshold and 
reported with a 95% confidence interval (Tables 2, 3).

Results

Baseline characteristics

Patient characteristics for the entire population, as well as the 
training and testing cohorts, are detailed in Table 4. In the total cohort, 
the median length of stay in the ICU was 3.055 days [IQR 1.807, 
6.602], and the median hospital stay was 8.990 days [IQR 5.108, 
15.532]. Of the patients, 493 (76.08%) were discharged alive, while 155 
(23.92%) did not survive.

The observed mortality rates were 8.02% (52 cases) at 3 days, 
18.67% (121 cases) at 7 days, 33.49% (217 cases) at 30 days, and 
38.89% (252 cases) at 90 days. Of the patients, 386 (59.57%) were 
female, and 262 (40.43%) were male. The median age of the patients 

was 76.808 years (IQR 64.969, 86.338). Table  4 indicates that the 
baseline characteristics in the training and testing cohorts were similar 
in terms of demographics, vital signs, laboratory tests, comorbidities, 
scoring systems, and other relevant characteristics.

Selected variables and scoring models

To achieve a good balance between predictive performance and 
simplicity, we  selected the top six predictors from a total of 47 
candidate variables for each of the four models (Figures 2, 3). In the 
3-day death scoring model, APS-III, white blood cell (WBC), heart 
rate, platelet count, age and partial thromboplastin time (PTT) were 
selected. In the 7-day death scoring model, APS-III, age, red cell 
distribution width (RDW), glucose, PTT, and blood urea nitrogen 
(BUN) were selected. In the 30-day death scoring model, APS-III, age, 
Charlson Comorbidity Index (CCI), BUN, RDW, and WBC were 
selected. In the 90-day death scoring model, ApsIII, age, RDW, BUN, 
CCI, and glucose were selected. The scoring models calculated from 
mortality rates are presented in Table 1.

Performance evaluation

The discriminative performance of the four prognostic models is 
shown in Figure 4. The AUCs for the 3-day death, 7-day death, 30-day 
death, and 90-day death in the training cohort were 0.841, 0.800, 
0.828, and 0.810, respectively. In the test cohort, the AUCs for 3-day 
death, 7-day death, 30-day death, and 90-day death were 0.698, 0.678, 
0.724, and 0.730, respectively. The predicted risk, patient ratios, and 
performance indicators (best score threshold, sensitivity, specificity, 
PPV, NPV) for each scoring model at different scoring intervals based 
on the testing cohort are shown in Table 2. As predicted risk thresholds 
increase, accuracy and specificity improve, while sensitivity decreases. 
Additionally, Table 3 presents the performance indicators based on the 
best score threshold. Figure 5 illustrates the conversion of scores into 
the probability of achieving the desired outcome and shows the 
percentage of the final study population that attained specific scores 

FIGURE 1

Flow diagram of patients included in the analysis.
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in the model. The predicted risk increases with higher scores, while 
the majority of patients’ scores are concentrated in the middle range 
(between 25 and 75), approaching a normal distribution.

The total score on the x-axis can be converted into the probability 
of achieving a specific outcome on the y-axis, and histograms illustrate 
the proportion of our study population that would receive each score.

Discussion

We analyzed 648 ischemic stroke patients exhibiting moderate to 
severe consciousness disorders, all of whom were admitted to the 
ICU, as recorded in the MIMIC-IV database. In recent years, the 
focus on mortality prediction among ICU patients has grown 
significantly (19, 20), carrying important implications for improving 

patient outcomes, optimizing ICU resource utilization, and 
enhancing the financial efficiency of ICU management systems (21). 
A study of the stroke population in China indicates that early 
consciousness disorders should be  a critical consideration in the 
acute management of stroke patients due to their association with 
increased complications and poorer outcomes (4). The prognostic 
factors affecting this population warrant further exploration. 
Therefore, we constructed four risk-scoring models using machine 
learning techniques specifically for ischemic stroke patients with 
moderate to severe consciousness disorders. These models 
demonstrated strong discriminative performance, accurately 
predicting mortality risk at 3, 7, 30, and 90-day intervals. While our 
models performed well across all time points, a slight discrepancy 
was observed between short-term and long-term predictions. The 
slightly lower AUC values for predicting 3- and 7-day mortality 

FIGURE 2

Ranking list of variable importance based on random forest. (A) variable ranking list for 3-day death. (B) Variable ranking list for 7-day death. (C) Variable 
ranking list for 30-day death. (D) Variable ranking list for 90-day death.
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compared to 30-day and 90-day mortality may result from the acute-
phase variability and the model’s reliance on baseline admission data. 
Short-term mortality is often influenced by sudden complications, 
whereas long-term outcomes are more dependent on stable 
predictors such as comorbidities and age. In contrast to traditional 
prognostic models, particularly logistic regression and its derivative 
nomograms, which are widely used for binary outcomes like 
mortality, the AutoScore framework provides a more streamlined 
and automated approach. Traditional logistic regression models 
require manual variable selection and extensive calibration, often 
leading to complex nomograms that can be difficult for clinicians to 
interpret. In comparison, AutoScore leverages methods such as 
random forest-based ranking and cross-validation to automatically 
identify a parsimonious set of predictive variables. This not only 
simplifies the model but also enhances interpretability. More 

importantly, its straightforward structure enables rapid bedside 
application, making it especially valuable in clinical settings where 
ease of use and interpretability are essential. These advantages make 
AutoScore a compelling choice for clinicians managing high-risk 
stroke patients in the ICU, as it balances predictive accuracy with 
practical usability, ultimately improving decision-making and 
patient care.

Handling numerous potential features derived from electronic 
health records poses challenges such as model overfitting, poor 
generalizability to new data, and increased complexity, which can 
make the model difficult to interpret (15). Therefore, variable selection 
is essential in model development, as it simplifies predictive models 
while maintaining accuracy (22). To mitigate the risk of overfitting, 
several robust strategies were employed within the AutoScore 
framework (23). First, our dataset was randomly split into training 

FIGURE 3

Parsimony plot of variables. (A) Parsimony plot for 3-day death. (B) Parsimony plot for 7-day death. (C) Parsimony plot for 30-day death. (D) Parsimony 
plot for 90-day death.
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TABLE 1 Scoring models according to outcomes.

Variable 3d-death score 7d-death score 30d-death score 90d-death score

Interval Point Interval Point Interval Point Interval Point

ApsIII

<40 6 <40 0 <50 0 <40 1

[40,50) 7 [40,50) 5 [50,64) 16 [40,50) 0

[50,64) 0 [50,64) 14 ≥ 64 24 [50,64) 15

≥ 64 17 ≥ 64 24 ≥ 64 22

Age, years

<65 0 <65 0 <65 0 <65 0

[65,86) 3 [65,76) 8 [65,76) 14 [65,86) 13

≥ 86 10 [76,86) 5 [76,86) 13 ≥ 86 28

≥ 86 24 ≥ 86 26

RDW, %

<13.2 0 <13.2 0 <13.2 3

[13.2,15.1) 8 [13.2,13.9) 10 [13.2,13.9) 13

≥ 15.1 16 [13.9,15.1 0 [13.9,15.1 0

≥ 15.1 13 ≥ 15.1 16

BUN, mg/dL

<14 0 <14 0 <14 0

[14,18) 5 [14,18) 5 [14,18) 6

[18,24) 3 [18,24) 0 [18,24) 3

≥ 24 5 ≥ 24 10 ≥ 24 12

WBC, K/μL

<7.9 0 <10.2 0

[7.9,10.2) 7 [10.2,13.5) 13

[10.2,13.5) 20 ≥ 13.5 15

≥ 13.5 24

PTT, sec

<25.6 0 <25.6 3

[25.6,32.6) 7 [25.6,28.2) 11

≥ 32.6 10 [28.2,32.6) 0

≥ 32.6 5

Glucose, mg/dL

<107 0 <107 3

[107,160) 8 [107,126) 0

≥ 160 19 [126,160) 4

≥ 160 13

Charlson_comorbidity_index

<5 12 <5 7

[5,7) 0 [5,7) 0

[7,8) 9 [7,8) 3

≥ 8 10 ≥ 8 9

Heart_rate, bmp

<71 0

[71,82) 1

(Continued)
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TABLE 1 (Continued)

Variable 3d-death score 7d-death score 30d-death score 90d-death score

Interval Point Interval Point Interval Point Interval Point

[82,96) 4

≥ 96 16

Platelet, K/μL

<158 23

[158,210) 19

[210,276) 21

≥276 0

FIGURE 4

Receiver operating characteristic curves for each model. (A) ROC curve for 3-day death. (B) ROC curve for 7-day death. (C) ROC curve for 30-day 
death. (D) ROC curve for 90-day death.
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and test sets, and 10-fold cross-validation was implemented during 
the parsimony plot generation to ensure a stable and reliable variable 
ranking. This process allowed us to select a minimal yet highly 
predictive set of variables, reducing model complexity while 
maintaining predictive power. Additionally, during the weighting step, 
the framework effectively penalized less predictive variables, further 
enhancing model simplicity and reliability.

According to our data-driven variable selection process, the 
APS-III score and age were identified as key variables. The APS-III 
score assesses disease severity in ICU patients based on physiological 
variables collected during the first 24 h after admission (24). Recent 
studies have indicated that the APS-III score plays an important role 
in predicting the prognosis of ischemic stroke patients (25, 26). 
Consistent with these findings, our study demonstrated that higher 
APS-III scores were associated with an increased risk of mortality at 
3, 7, 30, and 90 days. Similarly, age is a well-established risk factor for 
ischemic stroke, with older patients experiencing higher mortality and 
poorer quality of life compared to younger patients (27). A prospective 
single-center study on acute ischemic stroke (AIS) patients also found 
that advancing age is associated with a decline in favorable outcomes 
and survival after endovascular therapy (28). Additionally, an aging 
population increases the prevalence of atrial fibrillation, obesity, type 
2 diabetes, hypertension, hypercholesterolemia, and coronary artery 
disease, and acts as an early predictor of fatal infectious complications 
after a stroke (29). Our models also incorporated several indicators 

from complete blood counts, blood biochemistry, and coagulation 
function tests, which are readily accessible in clinical practice. Studies 
have shown that RDW, WBC, platelet count, and PTT are associated 
with patient prognosis. A retrospective study demonstrated that 
higher RDW levels were associated with an increased risk of death, 
with all-cause mortality rising by 23% for each 1% increment in RDW 
(30). RDW has also been linked to an elevated risk of mortality from 
ischemic stroke, cardiovascular disease, cancer, chronic lower 
respiratory tract disease, and cardiac disorders (30–33). In AIS 
patients, a higher WBC count on admission is an independent 
predictor of stroke severity at admission, a greater degree of disability 
at discharge, and 30-day mortality (34). Likewise, a 10-year follow-up 
study found that patients with elevated WBC levels at stroke onset had 
a significantly higher risk of subsequent vascular events and mortality, 
even after adjusting for other risk factors (35). Another study showed 
that increasing WBC count predicted poor outcomes and mortality in 
stroke patients treated with intravenous thrombolysis (IVT) (36). 
Regarding platelet count, a systematic review found that 
thrombocytopenia, present in 8.3–67.6% of ICU admissions, is 
associated with high illness severity, sepsis, organ dysfunction, and an 
increased risk of death (37). Furlan et  al. found that both 
thrombocytopenia and thrombocytosis upon initial admission are 
associated with higher mortality after AIS (38). Studies have shown 
that higher INR and PTT in AIS patients are associated with worse 
NIHSS scores, indicating that changes in coagulation parameters may 

TABLE 2 Conversion tables with predictive performance measures for specific score thresholds based on the scoring models of 3d-death, 7d-death, 
30d-death, and 90d-death.

Score 
cut-off 
[≥]

Predicted 
Risk [≥]

Percentage 
of patients 

(%)

Accuracy  
(95% CI)

Sensitivity  
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI)

3d-death scoring model

20 2% 96 9.8% (7.2–12.4%) 92.9% (78.6–100%) 3.3% (1.1–6.1%) 7% (5.9–7.6%) 85.7% (50–100%)

40 4.1% 76 29.4% (23.7–35.6%) 85.7% (64.3–100%) 25% (18.9–31.7%) 8.3% (6.2–9.8%) 95.9% (89.6–100%)

60 8.1% 35 67% (60.3–73.7%) 64.3% (35.7–85.7%) 67.2% (60.6–73.9%) 13.3% (8.2–18.3%) 96.1% (93.3–98.4%)

80 15.4% 6 91.2% (88.1–94.3%) 28.6% (7.1–57.1%) 96.1% (93.3–98.9%) 36.4% (11.1–66.7%) 94.5% (93–96.6%)

7d-death scoring model

20 8.1% 88 28.4% (24.2–33%) 100% (100–100%) 14.2% (9.3–19.8%) 18.7% (17.9–19.8%) 100% (100–100%)

40 13.5% 56 53.6% (47.4–60.3%) 78.1% (62.5–90.6%) 48.8% (42–56.2%) 23.2% (19.1–27.4%) 92% (86.9–96.7%)

60 22.3% 23 71.1% (65.5–77.3%) 31.2% (15.6–46.9%) 79% (72.8–85.2%) 22.9% (13–34.1%) 85.4% (82.5–88.5%)

80 35.8% 5 82% (78.9–84.5%) 9.4% (0–18.8%) 96.3% (93.2–98.8%) 33.3% (0–66.7%) 84.2% (83–85.9%)

30d-death scoring model

20 11.3% 91 38.7% (34.5–42.8%) 96.7% (91.8–100%) 12% (6.8–18%) 33.5% (31.8–35.3%) 89.5% (72.2–100%)

40 22.8% 61 58.8% (52.1–65.5%) 82% (72.1–90.2%) 48.1% (39.1–56.4%) 42.1% (37.1–47.3%) 85.4% (78.2–92.2%)

60 40.7% 30 72.2% (66–77.8%) 54.1% (41–67.2%) 80.5% (73.7–87.2%) 56.1% (45.8–66.7%) 79.4% (74.6–84.3%)

80 64.4% 6 71.6% (68.6–74.7%) 14.8% (6.6–24.6%) 97.7% (94.7–100%) 75% (50–100%) 71.4% (69.4–73.9%)

90d-death scoring model

20 15.7% 89 42.8% (38.7–47.4%) 93% (87.3–98.6%) 13.8% (8.1–20.3%) 38.4% (36.2–40.7%) 77.8% (60–94.1%)

40 29.3% 58 66% (59.8–72.2%) 83.1% (73.2–91.5%) 56.1% (48–65%) 52.2% (46.8–58%) 85.2% (78–91.5%)

60 48% 29 68.6% (62.9–74.7%) 46.5% (35.2–57.7%) 81.3% (74.8–87.8%) 59.3% (49–70.2%) 72.5% (68.1–77.4%)

80 68.1% 7 67.5% (63.9–71.1%) 15.5% (7–23.9%) 97.6% (94.3–100%) 80% (55.6–100%) 66.7% (64.5–69.1%)

PPV positive predictive value, NPV negative predictive value. Varying cutoffs of predicted risk based on the scoring models of 3d-death, 7d-death, 30d-death, and 90d-death, the proportion of 
patients stratified for the outcomes, and the corresponding sensitivity, specificity, positive and negative predictive values on the testing cohort.
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negatively impact stroke prognosis (39, 40). Additionally, a study 
involving 3,355 AIS patients found that higher BUN levels at 
admission were significantly linked to increased all-cause in-hospital 
mortality (41). Moreover, elevated blood glucose levels at admission 
have been shown to predict higher short-term mortality in acute 
cerebral ischemia, emphasizing the importance of early glucose 
control (42). It has also been confirmed that elevated admission 
glucose levels are associated with higher mortality and morbidity in 
stroke patients, reinforcing the need for effective glucose management 
in this population (43). Furthermore, a higher heart rate at admission 
has been linked to an increased risk of stroke recurrence and mortality, 
highlighting the critical role of heart rate management in patients with 
AIS and atrial fibrillation (44). A study by Goldstein et al. reported 
that the CCI at admission is significantly associated with the prognosis 
of ischemic stroke patients (45). The study emphasizes the necessity 
of comorbidity adjustment in stroke outcome research, revealing that 
higher CCI scores at admission are correlated with increased one-year 
mortality rates.

The selection of variables and model construction are consistent 
with established clinical principles, and these findings merit further 
investigation by healthcare professionals. In the short-term 
mortality prediction models, the inclusion of variables such as 
WBC, heart rate, PTT, and platelet count reflects the critical 
condition of these patients at admission. Future research should 
incorporate more critically ill stroke patients to continuously 
optimize the algorithm and establish appropriate thresholds for 
stratifying the population into various risk categories. In the 
relatively long-term mortality prediction models, the inclusion of 
variables such as the CCI, BUN, and blood glucose levels highlights 
the complexity of these patients’ conditions at admission. Whether 
scientific, standardized, and precise chronic disease management 
before and after ischemic stroke onset benefits the relatively long-
term prognosis of these patients requires further validation through 
prospective studies. It is noteworthy that, compared to in-hospital 
and short-term mortality, relatively long-term mortality is 
significantly elevated. This indicates that a considerable number of 
patient deaths occur post-discharge, highlighting a cohort whose 
health issues warrant significant attention from healthcare providers 
in the future (46). In the high-pressure and fast-paced clinical 
environment, emergency and neurology healthcare professionals 
often rely on subjective personal experience and clinical judgment 
when assessing critically ill patients. However, our data-driven 
predictive model provides an objective, convenient, and practical 
visual scoring tool. It aids in the rapid identification of patients with 
moderate to severe consciousness disorders due to ischemic stroke 
who are at high risk of early mortality. This allows healthcare 
providers to receive early warnings and develop targeted medical 
plans and care strategies, while also preparing families 
psychologically. Moreover, it facilitates personalized assessments of 
relatively long-term mortality risks for these patients, providing 
references for both medical professionals and patients in prognostic 
evaluations, thereby promoting more efficient utilization of 
medical resources.

However, several limitations should be  acknowledged. First, 
given the limited follow-up information available in the MIMIC 
database, this study focused exclusively on mortality rates and did not 
examine the sequelae or long-term outcomes of ischemic stroke in 
these patients. After discharge, many of these patients experience 
varying degrees of functional impairment and may also develop 
psychological issues, leading to a reduced quality of life. Second, 
we did not include NIHSS scores (47) in our study due to the high 
proportion of missing values in the MIMIC database. Including only 
patients with available NIHSS scores would have led to significant 
data loss and potential selection bias (48). In the future, natural 
language processing (NLP) techniques could be utilized to indirectly 
obtain missing NIHSS scores from clinical text records. Preliminary 
analyses using NLP techniques have shown promise, though 
challenges remain in ensuring accuracy and consistency (49). Future 
work will focus on validating the accuracy of NLP-derived NIHSS 
scores by comparing them with manually annotated records. 
Additionally, ischemic stroke patients with consciousness disorders 
typically have higher NIHSS scores. Training a model on such data 
may limit its generalizability, particularly when applied to patients 
with lower NIHSS scores, potentially introducing sample bias. Third, 
this study included only hospitalized patients, potentially excluding 
a significant proportion of individuals who either died before 

TABLE 3 Predictive model performance.

Training set Testing set

3d-death scoring model

AUC 0.8406 (0.7806–0.9006) 0.698 (0.5219–0.8741)

Best score threshold ≥55 ≥66

Sensitivity 0.9211 0.6429 (0.4286–0.8571)

Specificity 0.6346 0.7833 (0.7222–0.8444)

PPV 0.1872 0.1905 (0.12–0.2708)

NPV 0.9888 0.9662 (0.9429–0.9866)

7d-death scoring model

AUC 0.8004 (0.7449–0.856) 0.678 (0.5919–0.764)

Best score threshold ≥57 ≥35

Sensitivity 0.6854 0.9375 (0.8438–1)

Specificity 0.8247 0.4383 (0.3642–0.5123)

PPV 0.488 0.2479 (0.2177–0.2793)

NPV 0.9149 0.9733 (0.9318–1)

30d-death scoring model

AUC 0.8281 (0.7879–0.8684) 0.7245 (0.6462–0.8027)

Best score threshold ≥53 ≥56

Sensitivity 0.7308 0.6721 (0.541–0.7869)

Specificity 0.7852 0.7744 (0.7068–0.8496)

PPV 0.6404 0.5789 (0.4998–0.6769)

NPV 0.8478 0.8385 (0.7879–0.888)

90d-death scoring model

AUC 0.8095 (0.7696–0.8493) 0.7297 (0.6555–0.8039)

Best score threshold ≥61 ≥46

Sensitivity 0.5193 0.7606 (0.662–0.8592)

Specificity 0.9341 0.6748 (0.5935–0.7561)

PPV 0.8393 0.573 (0.5056–0.6471)

NPV 0.7456 0.8302 (0.77–0.8901)

Performance indicators (Best score threshold, Sensitivity, Specificity, PPV, NPV) based on 
best score threshold, values in parentheses are 95% confidence intervals.
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TABLE 4 The baseline level of 648 patients.

Categories Level Overall Training set Testing set p Test

Number 648 454 194

LOS_ICU, days (median [IQR]) 3.055 [1.807, 6.602] 3.170 [1.778, 6.835] 2.880 [1.815, 5.822] 0.4137 Non-norm

LOS_Hospital, days (median [IQR]) 8.990 [5.108, 15.532] 9.001 [5.071, 15.586] 8.960 [5.353, 14.936] 0.9793 Non-norm

Hospital_expire_flag (%) Live 493 (76.08) 342 (75.33) 151 (77.84) 0.5592

Dead 155 (23.92) 112 (24.67) 43 (22.16)

Status_3d (%) Live 596 (91.98) 416 (91.63) 180 (92.78) 0.736

Dead 52 (8.02) 38 (8.37) 14 (7.22)

Status_7d (%) Live 527 (81.33) 365 (80.40) 162 (83.51) 0.4122

Dead 121 (18.67) 89 (19.60) 32 (16.49)

Status_30d (%) Live 431 (66.51) 298 (65.64) 133 (68.56) 0.5287

Dead 217 (33.49) 156 (34.36) 61 (31.44)

Status_90d (%) Live 396 (61.11) 273 (60.13) 123 (63.40) 0.4877

Dead 252 (38.89) 181 (39.87) 71 (36.60)

Gender (%) Female 386 (59.57) 263 (57.93) 123 (63.40) 0.2253

Male 262 (40.43) 191 (42.07) 71 (36.60)

Age, years (median [IQR])
76.808 [64.969, 

86.338]
75.897 [65.250, 86.058]

77.785 [64.619, 

86.605]
0.8302 Non-norm

Race (%) Asian 24 (3.70) 13 (2.86) 11 (5.67) 0.2964

Black 65 (10.03) 44 (9.69) 21 (10.82)

White 372 (57.41) 269 (59.25) 103 (53.09)

Hispanic/latino 23 (3.55) 14 (3.08) 9 (4.64)

Other 164 (25.31) 114 (25.11) 50 (25.77)

Aniongap, mEq/L (median [IQR])
15.000 [13.000, 

17.000]
15.000 [13.000, 17.000]

15.000 [13.000, 

16.000]
0.1202 Non-norm

Bicarbonate, mEq/L (median [IQR])
23.000 [21.000, 

26.000]
23.000 [21.000, 26.000]

23.000 [21.000, 

25.000]
0.7844 Nonn-orm

BUN, mg/dL (median [IQR])
18.000 [14.000, 

25.000]
18.000 [14.000, 24.000]

18.000 [13.000, 

26.750]
0.7547 Non-norm

Creatinine, mg/dL (median [IQR]) 0.900 [0.700, 1.100] 0.900 [0.700, 1.100] 0.900 [0.700, 1.200] 0.8633 Non-norm

Glucose, mg/dL (median [IQR])
127.000 [108.000, 

160.000]

126.000 [107.000, 

159.750]

131.500 [109.000, 

162.250]
0.4904 Non-norm

Sodium, mEq/L (median [IQR])
140.000 [137.000, 

142.000]

140.000 [137.000, 

142.000]

140.000 [137.000, 

142.000]
0.847 Non-norm

Potassium, mEq/L (median [IQR]) 4.000 [3.700, 4.400] 4.000 [3.700, 4.400] 4.100 [3.725, 4.500] 0.0354 Non-norm

Hematocrit, % (median [IQR])
35.700 [32.200, 

39.800]
35.550 [32.125, 39.800]

36.050 [32.600, 

40.025]
0.5376 Non-norm

Hemoglobin, g/dL (mean (SD)) 11.838 (2.082) 11.806 (2.027) 11.912 (2.207) 0.5524

Platelet, K/μL (median [IQR])
210.000 [161.000, 

277.000]

210.000 [158.000, 

276.000]

209.000 [167.000, 

278.500]
0.4408 Non-norm

WBC, K/μL (median [IQR]) 10.300 [8.000, 13.500] 10.200 [7.900, 13.500] 10.350 [8.500, 13.300] 0.3311 Non-norm

RBC, m/μL (median [IQR]) 4.010 [3.507, 4.440] 3.995 [3.500, 4.408] 4.100 [3.572, 4.488] 0.2766 Non-norm

RDW, % (median [IQR])
14.000 [13.200, 

15.100]
13.900 [13.200, 15.100]

14.050 [13.300, 

14.900]
0.8691 Non-norm

INR (median [IQR]) 1.200 [1.100, 1.300] 1.200 [1.100, 1.300] 1.200 [1.100, 1.300] 0.4089 Non-norm

PT, sec (median [IQR])
12.900 [11.800, 

14.400]
12.800 [11.700, 14.300]

13.000 [12.000, 

14.700]
0.1765 Non-norm

(Continued)
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TABLE 4 (Continued)

Categories Level Overall Training set Testing set p Test

PTT, sec (median [IQR])
28.300 [25.600, 

33.025]
28.200 [25.600, 32.575]

29.000 [25.525, 

34.675]
0.1547 Non-norm

Heart rate, bmp (median [IQR])
82.000 [72.000, 

96.000]
82.000 [71.000, 96.000]

83.000 [72.250, 

93.750]
0.7242 Non-norm

SBP, mmHg (median [IQR])
141.000 [123.000, 

157.000]

140.000 [121.000, 

156.750]

145.500 [127.000, 

158.750]

0.0519 Non-norm

DBP, mmHg (median [IQR]) 74.000 [63.000, 

88.000]

73.000 [63.000, 86.750] 76.500 [65.000, 

91.000]

0.0357 Non-norm

MBP, mmHg (median [IQR]) 92.000 [81.000, 

106.000]

91.000 [81.000, 

104.000]

96.500 [83.000, 

108.750]

0.0133 Non-norm

Respiratory rate, insp/min (median [IQR]) 18.000 [16.000, 

22.000]

18.000 [16.000, 22.000] 19.000 [16.000, 

22.750]

0.489 Non-norm

Temperature, °C (median [IQR]) 36.720 [36.440, 

37.073]

36.720 [36.440, 37.110] 36.720 [36.440, 

37.060]

0.6708 Non-norm

SPO2, % (median [IQR]) 98.000 [96.000, 

100.000]

98.000 [96.000, 

100.000]

98.000 [96.000, 

100.000]

0.2986 Non-norm

Atrial fibrillation (%) No 365 (56.33) 260 (57.27) 105 (54.12) 0.5139

Yes 283 (43.67) 194 (42.73) 89 (45.88)

Hyperlipidemia (%) No 342 (52.78) 237 (52.20) 105 (54.12) 0.7168

Yes 306 (47.22) 217 (47.80) 89 (45.88)

Myocardial infarct (%) No 561 (86.57) 393 (86.56) 168 (86.60) 1

Yes 87 (13.43) 61 (13.44) 26 (13.40)

Congestive heart failure 

(%)

No 499 (77.01) 352 (77.53) 147 (75.77) 0.6997

Yes 149 (22.99) 102 (22.47) 47 (24.23)

Peripheral vascular disease 

(%)

No 574 (88.58) 402 (88.55) 172 (88.66) 1

Yes 74 (11.42) 52 (11.45) 22 (11.34)

Dementia (%) No 601 (92.75) 421 (92.73) 180 (92.78) 1

Yes 47 (7.25) 33 (7.27) 14 (7.22)

Chronic pulmonary disease 

(%)

No 538 (83.02) 371 (81.72) 167 (86.08) 0.2146

Yes 110 (16.98) 83 (18.28) 27 (13.92)

Rheumatic disease (%) No 628 (96.91) 438 (96.48) 190 (97.94) 0.4606

Yes 20 (3.09) 16 (3.52) 4 (2.06)

Peptic ulcer disease (%) No 639 (98.61) 446 (98.24) 193 (99.48) 0.2917 Exact

Yes 9 (1.39) 8 (1.76) 1 (0.52)

Mild liver disease (%) No 625 (96.45) 434 (95.59) 191 (98.45) 0.1165

Yes 23 (3.55) 20 (4.41) 3 (1.55)

Paraplegia (%) No 270 (41.67) 189 (41.63) 81 (41.75) 1

Yes 378 (58.33) 265 (58.37) 113 (58.25)

Renal disease (%) No 549 (84.72) 384 (84.58) 165 (85.05) 0.9736

Yes 99 (15.28) 70 (15.42) 29 (14.95)

Severe liver disease (%) No 640 (98.77) 447 (98.46) 193 (99.48) 0.4465 Exact

Yes 8 (1.23) 7 (1.54) 1 (0.52)

Diabetes (%) No 450 (69.44) 320 (70.48) 130 (67.01) 0.4317

(Continued)
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reaching the hospital or did not seek hospitalization. This limitation 
may affect the generalizability of the model. To address this limitation, 
future research could incorporate data from emergency services or 
autopsy records to provide a more comprehensive view of stroke 
outcomes. Finally, although we  performed internal validation 
through random splits of the dataset, the lack of external validation 
remains a limitation of this study. In future work, we plan to address 
this by using future releases of the MIMIC database for temporal 

validation and incorporating prospective multicenter study data for 
external validation.

Conclusion

In this study, we identified prognostic factors for ischemic stroke 
patients with moderate to severe consciousness disorders and 

TABLE 4 (Continued)

Categories Level Overall Training set Testing set p Test

Yes 198 (30.56) 134 (29.52) 64 (32.99)

Cancer (%) No 589 (90.90) 413 (90.97) 176 (90.72) 1

Yes 59 (9.10) 41 (9.03) 18 (9.28)

Charlson comorbidity index (median [IQR]) 7.000 [5.000, 8.000] 7.000 [5.000, 8.000] 7.000 [5.000, 8.000] 0.7325 Non-norm

SOFA (median [IQR]) 4.000 [3.000, 6.000] 4.000 [3.000, 6.000] 4.000 [3.000, 6.000] 0.0125 Non-norm

ApsIII (median [IQR]) 49.500 [39.000, 

63.000]

50.000 [40.000, 63.750] 48.500 [38.000, 

61.750]

0.103 Non-norm

Tracheostomy (%) No 621 (95.83) 436 (96.04) 185 (95.36) 0.8581

Yes 27 (4.17) 18 (3.96) 9 (4.64)

Invasivevent (%) No 386 (59.57) 266 (58.59) 120 (61.86) 0.4912

Yes 262 (40.43) 188 (41.41) 74 (38.14)

Positive culture (%) No 560 (86.42) 393 (86.56) 167 (86.08) 0.9692

Yes 88 (13.58) 61 (13.44) 27 (13.92)

Categorical variables were expressed as numbers with percentages. The continuous variables were expressed as median with quartile (Q1, Q3) or mean ± SD depending on their normality of 
distribution. IQR, Interquartile range; LOS, length of stay; ICU, intensive care unit; Hospital_expire_flag, the status of the patient upon leaving the hospital; 3d, 3 days; 7d, 7 days; 30d, 30 days; 
90d, 90 days; BUN, blood urea nitrogen; WBC, white blood cell; RBC, red blood cell; RDW, red blood cell distribution width; INR, international normalized ratio; PT, prothrombin time; PTT, 
partial thromboplastin time; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; SPO2, oxyhemoglobin saturation; SOFA, sequential organ failure 
assessment; ApsIII, acute physiology score III.

FIGURE 5

Conversion table and visualization of predicted risk. The sum total score (x-axis) for each outcome can be converted to a probability (y-axis) of 
achieving the said outcome and histograms display the proportion of our study population that would receive each score. (A) 3-day death. (B) 7-day 
death. (C) 30-day death. (D) 90-day death.
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developed a data-driven clinical scoring tool using machine learning 
algorithms. This tool can assist healthcare professionals in objectively 
assessing both short-term and relatively long-term mortality risks in 
these patients.
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