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Objective: We aimed at establishing a predictive model for poor long-term 
prognosis (3 months post-treatment) following endovascular treatment (EVT) 
for severe acute ischemic stroke (AIS) and evaluating its predictive performance.

Methods: The patients with severe AIS (NIHSS score ≥ 16) who received EVT 
were divided into a modeling group (178 patients), an internal validation group 
(76 patients), and an external validation group (193 patients). Internal and external 
validation were performed using cross-validation. Poor long-term prognosis 
was defined as a modified Rankin Scale (mRS) score > 2 at 3 months after the 
stroke. Univariate analysis and LASSO regression were used to select risk factors, 
and a logistic regression model was established to create a nomogram. The 
model’s performance and clinical applicability were evaluated using the area 
under the receiver operating characteristic (ROC) curve (AUC), calibration 
curves, and decision curves.

Results: Five predictive factors were identified: baseline NIHSS score (OR = 1.096, 
95% CI: 1.013–1.196, p = 0.0279), symptomatic intracranial hemorrhage 
(OR = 6.912, 95% CI: 1.758–46.902, p = 0.0156), time from puncture to 
reperfusion (OR = 1.015, 95% CI: 1.003–1.028, p = 0.0158), age (OR = 1.037, 
95% CI: 1.002–1.076, p = 0.0412), which were found to be  risk factors for 
poor long-term prognosis after EVT for severe AIS. Collateral circulation was 
identified as a protective factor (OR = 0.629, 95% CI: 0.508–0.869, p = 0.0055). 
Based on these five factors, a nomogram was constructed to predict poor long-
term prognosis after EVT. The ROC curve showed that the AUC for predicting 
poor long-term prognosis was 0.7886 (95% CI: 0.7225–0.8546) in the modeling 
group, 0.8337 (95% CI: 0.7425–0.9249) in the internal validation group, and 
0.8357 (95% CI: 0.7793–0.8921) in the external validation group. The calibration 
curve and clinical decision curve demonstrated good consistency and clinical 
utility of the model.

Conclusion: The predictive model for poor long-term prognosis following EVT 
for severe AIS has accurate predictive value and clinical application potential.
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1 Introduction

Severe acute ischemic stroke (AIS) is characterized by a sudden 
onset, rapid progression, and high severity, often leading to significant 
disability and mortality, imposing a substantial burden on patients’ 
families. Currently, endovascular treatment (EVT) is the frontline 
therapeutic strategy for patients with severe AIS (1). This approach is 
essential for timely vascular recanalization, restoration of blood flow 
to the infarcted area, and mitigation of brain tissue damage. However, 
despite successful recanalization of the occluded vessels, nearly half of 
these patients experience poor functional outcomes within 90 days 
post-stroke onset (2, 3). Patients were assigned to the favorable 
outcome group (90-day mRS ≤2) and the poor outcome group 
(90-day mRS >2). Identifying the factors that influence these 
functional outcomes is therefore crucial for improving prognosis. Due 
to the acute onset, severe condition, and high mortality of these 
patients, conducting clinical research in this population is extremely 
challenging. As a result, studies on this group remain limited (4, 5). 
The existing studies are predictive models generally limited to anterior 
or posterior circulation cases (6, 7). Endovascular treatment is 
currently the most effective approach for these patients; however, no 
systematic studies or comprehensive data are available to assess its 
benefit rate.

Several previous studies have analyzed clinical factors 
influencing prognosis, including age, NIHSS score, and symptomatic 
hemorrhage. However, these findings have often been limited to 
logistic regression with moderate predictive power (8–11). 
Although factors affecting the prognosis of endovascular treatment 
for acute severe ischemic stroke have been explored, no predictive 
models specifically targeting long-term outcomes in these patients 
have been developed. In recent years, various machine learning 
algorithms have been applied in clinical research, such as decision 
tree algorithms, support vector machines (SVM), linear 
discriminant analysis (LDA), and k-nearest neighbors (KNN) (12, 
13). Advancements in machine learning and deep learning 
technologies have significantly improved the performance of 
various predictive models, highlighting the need for a dedicated 
model to predict long-term outcomes in this critical 
patient population.

Previous studies have explored various factors influencing 
EVT outcomes in severe AIS but have yet to establish a predictive 
model applicable to clinical practice. In this study we analyzed 
clinical data using the Least Absolute Shrinkage and Selection 
Operator (LASSO) (14) regression to identify valuable predictors 
and established a predictive model for long-term poor prognosis 
following EVT in severe AIS. LASSO regression effectively 
handles multicollinearity and prevents overfitting. By employing 
this technique, we identified the most predictive variables from a 
broad range of potential risk factors, significantly enhancing the 
model’s precision and predictive power, which have been well-
documented across various medical research fields. The model 
underwent both internal and external validation, providing new 
insights for early diagnosis of poor long-term outcomes in this 
patient population. Such a model would improve prognostic 
assessments and targeted clinical decisions. Additionally, it would 
encourage practitioners to enhance thrombectomy techniques and 
streamline treatment processes.

2 Subjects and methods

2.1 Study subjects

We collected data from 254 patients with severe AIS who 
received EVT at the First Affiliated Hospital of Dalian Medical 
University from January 1, 2019, to January 1, 2024. Using the R caret 
package, patients were randomly divided into a modeling group 
(n = 178) and an internal validation group (n = 76) at a 7:3 ratio to 
develop and validate the model internally. Additionally, data from 
193 patients who received EVT for severe AIS at Panjin Central 
Hospital during the same period were collected as an external 
validation cohort.

2.2 Inclusion and exclusion criteria

Inclusion criteria: (1) age ≥ 18 years; (2) National Institutes of 
Health Stroke Scale (NIHSS) score ≥ 16; (3) pre-stroke modified 
Rankin Scale (mRS) score < 2; and (4) onset-to-bridging 
thrombectomy time < 4.5 h or direct EVT within 24 h of onset. 
Exclusion criteria: based on exclusion criteria for intravenous 
thrombolysis (2).

2.3 Methods

2.3.1 Data collection
Data were collected on demographics (including gender and age), 

medical history (including history of stroke, diabetes, hypertension, 
hyperlipidemia, atrial fibrillation, coronary artery disease, smoking, 
and alcohol use). The data from different cohorts are presented in 
Tables 1, 2.

2.3.2 Treatment
For patients eligible for intravenous thrombolysis, 0.9 mg/kg 

alteplase was administered intravenously after excluding 
contraindications, followed by bridging to EVT. Femoral artery access 
was used for all procedures, and the choice of anesthesia (local or 
general) depended on the patient’s condition. The primary treatment 
strategies included stent retrieval, thrombus aspiration, or a 
combination of both. If the residual stenosis rate at the previously 
occluded site was ≥70% or if distal thrombus migration occurred, 
rescue therapies such as balloon angioplasty, stent placement, or intra-
arterial thrombolysis were performed.

2.3.3 Assessment
The following assessments were recorded: baseline NIHSS score, 

collateral circulation (classified as poor with preoperative DSA scores 
of 0–2 and good with scores of 3–4), modified Thrombolysis in 
Cerebral Infarction (mTICI) grade (with scores of 0–2a indicating 
unsuccessful recanalization and 2b–3 indicating successful 
recanalization), Patients were assigned to the long-term favorable 
outcome group (mRS ≤2 at 90 days) and the long-term unfavorable 
outcome group (mRS >2 at 90 days). Two associate chief neurologists 
independently and blindly reviewed imaging data; any discrepancies 
were resolved through consultation.
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2.4 Statistical analysis

For model development, prior to performing LASSO regression, 
we first conducted univariate analysis to select potential variables. 
This step was based on prior studies that have successfully used 
univariate analysis for variable selection, which demonstrated good 
model accuracy and clinical applicability (15). A univariate analysis 

was conducted on 178 subjects based on poor prognosis outcomes. 
Variables with a p-value <0.05 were considered statistically 
significant. These significant variables from the univariate analysis 
were further processed using LASSO regression “glmnet” package 
in R. The optimal λ was determined using 10-fold cross-validation. 
The coefficient profile plot illustrates the relationship between 
log(λ) and the regression coefficients, where increasing log(λ) 

TABLE 1 Baseline characteristics of subjects in the modeling and internal validation groups.

Variable Modeling group 
(n = 178)

Internal validation group 
(n = 76)

t/χ2/Z value p value

Sample size 178 76

Age (years, median [IQR]) 68 (61–76) 68.5 (61–73.75) −0.893 0.372

Male (%) 130 (73.0%) 57 (75.0%) 0.106 0.745

Preoperative NIHSS Score (median 

[IQR])

22 (20–25) 21.5 (18.25–24) −1.321 0.187

Systolic BP (mmHg, χ ± s) 151.58 ± 23.622 156.37 ± 24.906 0.972 0.080

Diastolic BP (mmHg, χ ± s) 88.33 ± 13.358 90.86 ± 15.216 −1.325 0.187

  Hypertension 104 (58.4%) 50 (65.8%) 1.209 0.271

  Diabetes 44 (24.7%) 19 (25.0%) 0.002 0.962

  Atrial Fibrillation 70 (39.3%) 25 (32.9%) 0.941 0.332

  Coronary Artery Disease 25 (14.0%) 14 (18.4%) 0.785 0.376

  History of Cerebrovascular Disease 20 (11.2%) 13 (17.1%) 1.623 0.203

  Smoking History 38 (21.3%) 23 (30.3%) 2.320 0.128

  Alcohol Use 29 (16.3%) 15 (19.7%) 0.441 0.507

Occlusion Site (%)

  Anterior Circulation 157 (88.2%) 68 (89.5%) 0.085 0.770

  Posterior Circulation 21 (11.8%) 8 (10.5%) 0.085 0.770

Surgical Information (%)

  Intra-arterial Thrombolysis 5 (2.8%) 1 (1.3%) 0.515 0.473

  Stent Retrieval 169 (94.9%) 76 (100%) 3.984 0.046*

  Balloon Angioplasty 50 (28.1%) 18 (23.7%) 0.527 0.468

  Permanent Intracranial Stenting 57 (32.0%) 17 (22.4%) 2.404 0.121

  Onset-to-Hospital Time (min, median 

[IQR])

180 (120–270) 180 (120–240) −0.359 0.719

  Puncture-to-Recanalization Time 

(min, median [IQR])

75 (50–98.5) 80 (58.5–105) −1.097 0.273

  Onset-to-Recanalization Time (min, 

median [IQR])

336 (268.75–422.5) 332.5 (260–392.5) −0.490 0.624

  Thrombectomy Attempts (≥3) 38 (21.3%) 19 (25.0%) 0.408 0.523

  Preoperative Thrombolysis 36 (20.2%) 13 (17.1%) 0.333 0.564

  Collateral Circulation (median [IQR]) 1 (0–2) 1 (0–2) −1.164 0.244

Etiology (%)

  Large-artery Atherosclerosis 95 (53.4%) 43 (56.6%) 0.221 0.638

  Embolic 75 (42.1%) 28 (36.8%) 0.619 0.431

  Other Causes 8 (4.5%) 5 (6.6%) 0.477 0.490

Complications (%)

  Symptomatic Hemorrhage 27 (15.2%) 8 (10.5%) 0.966 0.320

*Statistical significance at p < 0.05.
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TABLE 2 Univariate analysis of variables for unfavorable prognosis in the modeling Group.

Variable Favorable prognosis 
group

Unfavorable prognosis 
group

t/χ2/Z value p value

Sample Size (n) 71 107

Age (years, χ̅±s) 65.72 ± 10.374 69.78 ± 9.696 −2.648 0.009

Male (n, %) 54 (78.3%) 76 (69.7%) 1.563 0.211

Baseline NIHSS Score 

(median [IQR])

20 (18–24) 22 (20–26) −2.985 0.003

Systolic BP (mmHg, χ̅±s) 145.58 ± 21.483 154.73 ± 24.087 −2.574 0.011

Diastolic BP (mmHg, χ̅±s) 84.49 ± 11.698 89.97 ± 13.179 −2.821 0.005

History (n, %)

  Hypertension 35 (50.7%) 69 (63.3%) 2.753 0.097

  Diabetes 11 (15.9%) 33 (30.3%) 4.665 0.031

  Atrial Fibrillation 25 (36.2%) 45 (41.3%) 0.452 0.501

  Coronary Artery Disease 7 (10.1%) 18 (16.5%) 1.420 0.233

  Cerebrovascular Disease 

History

7 (10.1%) 13 (11.9%) 0.134 0.714

  Smoking 15 (21.7%) 23 (21.1%) 0.010 0.919

  Alcohol Use 7 (10.1%) 22 (20.2%) 3.122 0.077

Occlusion Site (n, %)

  Anterior Circulation 66 (93%) 92 (86%) 2.083 0.149

  Posterior Circulation 5 (7%) 15 (14%) 2.083 0.149

Endovascular Therapy (n, %)

  Arterial Thrombolysis 

(Fisher)

3 (4.3%) 2 (1.8%) 0.129 0.294

  Stent Retrieval 65 (94.2%) 104 (95.4%) 0.045 0.720

  Balloon Angioplasty 20 (29%) 30 (27.5%) 0.394 0.832

  Permanent Intracranial 

Stent

24 (34.8%) 33 (30.3%) −1.564 0.530

Onset to Hospital Time (min, 

median [IQR])

210 (135–300) 180 (120–240) −2.302 0.118

Puncture to Recanalization 

Time (min, median [IQR])

70 (50–85) 85 (55–107.5) −0.632 0.021

Onset to Recanalization Time 

(min, median [IQR])

330 (255–420.5) 340 (270–425) −0.490 0.528

Thrombectomy Attempts ≥3 

(n, %)

15 (21.7%) 23 (21.1%) 0.010 0.919

Pre-procedure Thrombolysis 

(n, %)

17 (24.6%) 19 (17.4%) 1.360 0.244

Collateral Circulation 

(median [IQR])

2 (0–2) 0 (0–1) −4,526 0.000

Etiology (n, %)

  Large Artery 

Atherosclerosis

38 (55.1%) 57 (52.3%) 0.131 0.717

  Embolism 28 (40.6%) 47 (43.1%) 0.112 0.738

  Other Causes 3 (4.3%) 5 (4.6%) 0.006 0.940

Complications (n, %)

  Symptomatic Hemorrhage 2 (2.9%) 25 (22.9%) 13.183 0.000
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results in the gradual shrinkage of coefficients, with some 
approaching zero. The cross-validation curve presents the mean 
squared error (MSE) across different λ values. The left dashed line 
represents the λ corresponding to the minimum MSE (NULL), 
while the right dashed line indicates the λ value one standard error 
above the minimum MSE (0.04739061). The final model was 
selected based on this λ value, ensuring a balance between model 
complexity and predictive accuracy, which identified non-zero 
features deemed relevant. These variables were then included in a 
multivariate logistic regression model to identify the final 
prognostic factors, which were subsequently used to construct 
the nomogram.

Based on the significant predictors identified, a nomogram 
prediction model was constructed using the “rms” package in R 4.4.1. 
In this model, each predictor was assigned a score according to its 
contribution to the overall prediction, with higher scores 
corresponding to a greater probability of poor prognosis. The total 
score, obtained by summing the individual predictor scores, was then 
converted into a probability of poor prognosis, allowing for a 
straightforward and visualized risk assessment. For example, the 
nomogram assigns a score to each predictive factor within a range of 
0 to 100 points. The cumulative score across all factors is then 
translated into the predicted probability of poor prognosis. For 
instance, for a 65-year-old patient with acute severe ischemic stroke, 
an NIHSS score of 24, a puncture-to-reperfusion time of 70 min, a 
collateral circulation score of 2 points, and symptomatic hemorrhage, 
the total score amounts to 176 points, which corresponds to an 81.5% 
probability of poor prognosis.

To evaluate model performance, the receiver operating 
characteristic (ROC) curve was generated using the “pROC” 
package, and the area under the curve (AUC) was calculated to 
assess predictive accuracy, where a value closer to 1 indicates a 
higher consistency between predicted and actual outcomes. 
Calibration was assessed using the Hosmer-Lemeshow test, 
performed with the “Resource Selection” package, where a p-value 
>0.05 indicates a well-calibrated model. To ensure stability, 
bootstrap internal validation was conducted using the “caret” 
package with 1,000 resampling iterations. The clinical utility of the 
nomogram was further assessed using decision curve analysis 
(DCA) via the “ggDCA” package in R 4.2.1. External validation was 
conducted using a cohort from a different hospital. This external 
validation cohort exhibited distinct clinical characteristics 
compared to the modeling group, reflecting variations in treatment 
protocols and management strategies across institutions. To validate 
the model, cross-validation (specifically k-fold cross-validation) 
was employed. This method was utilized for both internal and 
external validation to ensure the robustness and generalizability of 
the model.

Statistical analyses were conducted using SPSS 26.0 and R 4.4.1 
software. For continuous data with a normal distribution, results were 
expressed as mean ± standard deviation (x̅ ± s), and comparisons 
between groups were performed using an independent sample t-test. 
For non-normally distributed continuous data, results were presented 
as median (Q1, Q3), and group comparisons were made using the 
Mann–Whitney U test. Categorical data were expressed as frequencies 
and percentages (%), with group comparisons conducted using the χ2 
test or Fisher’s exact test, as appropriate. All tests were two-sided, with 
a significance level set at α = 0.05.

3 Results

3.1 Baseline characteristics

Baseline characteristics of the 178 patients in the modeling group 
and 76 patients in the internal validation group were compared. There 
was a significant difference in systolic blood pressure and stent 
retrieval between the two groups (p < 0.05). No statistically significant 
differences were observed between the two groups in terms of age, 
gender, medical history (hypertension, diabetes, atrial fibrillation, 
history of cerebrovascular disease, coronary artery disease, smoking, 
alcohol use), diastolic blood pressure at admission, baseline NIHSS 
score, occlusion location (anterior circulation, posterior circulation), 
surgical interventions (balloon angioplasty, permanent intracranial 
stenting), time from symptom onset to hospital arrival, puncture-to-
recanalization time, onset-to-recanalization time, collateral circulation 
status, number of thrombectomy attempts (≥3), preoperative 
thrombolysis, etiological classification (large-artery atherosclerosis, 
embolic, other), and incidence of symptomatic hemorrhage (p > 0.05). 
Details are provided in Table 1.

3.2 Variable selection in the modeling 
group

A univariate analysis was conducted on the 178 subjects in the 
modeling group, dividing them into favorable prognosis and 
unfavorable prognosis groups. The results showed that age, baseline 
NIHSS score, systolic blood pressure, diastolic blood pressure, history 
of diabetes, puncture-to-recanalization time, collateral circulation, 
and symptomatic hemorrhage were significantly different between the 
two groups (p < 0.05). These results are presented in Table 2.

To further identify the most significant predictors for prognosis, 
the variables with statistical significance from the univariate analysis 
were included in the LASSO regression analysis. The results showed 
that when λ = 0.047, five variables with non-zero coefficients were 
selected: age, baseline NIHSS score, puncture-to-recanalization time, 
collateral circulation, and symptomatic hemorrhage (Figure 1).

3.3 Development of the nomogram model

The five selected factors were included in a multivariate logistic 
regression analysis. The results showed that age, baseline NIHSS score, 
puncture-to-recanalization time, and symptomatic hemorrhage were 
identified as risk factors for unfavorable long-term prognosis, while 
collateral circulation was found to be a protective factor (Table 3). 
Based on the five identified predictors, a nomogram model was 
developed to predict the long-term unfavorable prognosis of acute 
severe cerebral infarction following EVT. The model is illustrated in 
Figure 2.

3.4 Internal validation of the model

The ROC curve analysis revealed that the modeling group had an 
AUC of 0.7886 (95% CI: 0.7225–0.8546), while the internal validation 
group had an AUC of 0.8337 (95% CI: 0.7425–0.9249). The Youden 
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TABLE 3 Multivariate logistic regression analysis for unfavorable long-term prognosis in acute severe cerebral infarction.

Variable B OR (95% CI) p value

Age 0.036 1.037 (1.002–1.076) 0.041

Baseline NIHSS score 0.092 1.096 (1.013–1.196) 0.028

Puncture-to-recanalization time 0.014 1.015 (1.003–1.028) 0.016

Collateral circulation −0.462 0.629 (0.458–0.869) 0.006

Symptomatic hemorrhage 1.933 6.912 (1.758–46.902) 0.016

index for the model was 0.602, with specificity and sensitivity of 76.8 
and 70.6%, respectively (Figures 3A,B).

The Hosmer-Lemeshow goodness-of-fit test indicated that the 
modeling group had a p-value of 0.8769, and the internal validation 
group had a p-value of 0.9025 (p > 0.05). The calibration curve 
(Bootstrap method, n = 1,000) showed a close alignment between the 
actual and bias-corrected curves, suggesting a high degree of 
agreement with the observed values and indicating good calibration 
of the model (Figures 4A,B).

The clinical utility of the nomogram model was assessed using the 
decision curve analysis (DCA). The results showed that the nomogram 
model provided greater net benefit and demonstrated high clinical 
applicability (Figures 5A,B).

3.5 External validation of the model

To further evaluate the clinical applicability of our model, 
we  performed an external validation involving 193 patients who 
received EVT for severe AIS at another hospital. The comparison 
results showed that there were no statistically significant differences 
between the modeling group and the external validation group in 
terms of gender, medical history (hypertension, diabetes, coronary 
heart disease, smoking, alcohol consumption), admission systolic and 
diastolic blood pressure, baseline NIHSS, arterial thrombolysis, time 
from symptom onset to reperfusion, number of thrombectomy 

attempts ≥3, preoperative thrombolysis, and symptomatic hemorrhage 
(all p > 0.05). However, significant differences were found between the 
two groups in terms of age, history of cerebrovascular disease, atrial 
fibrillation, occlusion location (anterior circulation, posterior 
circulation), surgical procedure (stent thrombectomy, balloon 
dilation, permanent intracranial stenting), time from symptom onset 
to hospital arrival, time from puncture to reperfusion, collateral 
circulation, and etiology classification (large artery atherosclerosis, 
embolism) (all p < 0.05), as shown in Table 4.

The ROC curve analysis showed that the AUC for the external 
validation group was 0.8357 (95% CI: 0.7793–0.8921). The goodness-
of-fit test showed a p-value of 0.08556 (p > 0.05), indicating no 
significant deviation. The calibration curve also demonstrated that the 
model’s performance closely aligned with the observed data. The 
decision curve analysis (DCA) revealed a threshold range of 0.1 to 1 
(Figures 6A–C).

4 Discussion

This study developed a predictive model with significant clinical 
utility for aiding decisions on treatment selection, prognosis 
management, and rehabilitation planning. The model functions as a 
visualization and scoring system that combines key variables to 
generate a continuous score, providing an accurate risk probability for 

FIGURE 1

Variable selection using LASSO regression: (A) LASSO coefficient profiles of the candidate predictors. (B) Selection of the optimal penalization 
coefficient in LASSO regression.
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clinical events in individual patients. This score offers a simple and 
intuitive way for physicians to assess patient risk, enabling them to 
identify high-risk patients and tailor personalized treatment plans and 
targeted medical decisions (16). The higher the probability of poor 
prognosis, the greater the risk of paralysis or sudden death. In clinical 
practice, this would prompt physicians to focus on preventing 
complications and enhancing rehabilitation during the recovery 
period. Additionally, the model serves as a valuable communication 

tool, facilitating discussions between physicians, patients, and their 
families regarding disease risks and prognosis. Several existing 
predictive models evaluate outcomes following endovascular 
treatment (17–19), but most are limited to anterior circulation strokes 
and lack stratification of patient groups. In our study, we focused on 
acute severe ischemic stroke patients involving both anterior and 
posterior circulation. By incorporating factors closely associated with 
poor outcomes at 3 months post-endovascular treatment, 

TABLE 4 Comparison of clinical data between the modeling group and the external validation group.

Variable Modeling group (n = 178) External validation group 
(n = 193)

t/χ2/Z value p value

Age (years, median [IQR]) 68 (61–76) 66 (58–72) −2.904 0.004

Male (n, %) 130 (73.0) 136 (70.5) 0.003 0.959

Preoperative NIHSS Score (median 

[IQR])

22 (20–25) 20 (16–30) −1.491 0.136

Systolic BP (mmHg, χ̄±s) 151.58 ± 23.622 152.73 ± 22.333 0.813 0.417

Diastolic BP (mmHg, χ̄±s) 88.33 ± 13.358 89.67 ± 14.641 −0.920 0.358

Hypertension 104 (58.4) 127 (65.8) 2.144 0.143

Diabetes 44 (24.7) 47 (24.4) 0.007 0.935

Atrial Fibrillation 70 (39.3) 55 (28.5) 4.860 0.027

Coronary Heart Disease 25 (14.0) 31 (16.1) 0.294 0.588

Cerebrovascular Disease History 20 (11.2) 47 (24.4) 10.765 0.001

Smoking History 38 (21.3) 45 (23.3) 0.206 0.650

Alcohol History 29 (16.3) 31 (16.1) 0.004 0.952

Occlusion Site (n, %)

Anterior Circulation 157 (88.2) 149 (77.2) 7.754 0.005

Posterior Circulation 21 (11.8) 44 (22.8) 7.754 0.005

Surgical Procedure (n, %)

Arterial Thrombolysis (Fisher) 5 (2.8) 2 (1.0) 1.572 0.058

Stent Thrombectomy 169 (94.9) 152 (78.8) 20.808 0.000

Balloon Dilation 50 (28.1) 89 (46.1) 12.840 0.000

Permanent Intracranial Stent 57 (32.0) 91 (47.2) 8.838 0.003

Time from Onset to Hospital (min, 

median [IQR])

180 (120–270) 120 (60–180) −7.358 0.000

Time from Puncture to Reperfusion 

(min, median [IQR])

75 (50–98.5) 60 (37–96) −3.089 0.002

Time from Onset to Reperfusion (min, 

median [IQR])

336 (268.75–422.5) 310 (231.5–403) −1.951 0.051

Number of Thrombectomy Attempts 

≥3

38 (21.3) 30 (15.5) 2.082 0.149

Preoperative Thrombolysis 36 (20.2) 41 (21.2) 0.809 0.000

Collateral Circulation (n, %) 1 (0–2) 1 (1–2) −4.603 0.000

Etiology Classification (n, %)

Large Artery Atherosclerosis 95 (53.4) 126 (65.3) 5.458 0.019

Embolism 75 (42.1) 55 (28.5) 7.566 0.006

Other Causes 8 (4.5) 12 (6.2) 0.539 0.463

Complications (n, %)

Symptomatic Hemorrhage 27 (15.2) 26 (13.5) 0.218 0.641
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FIGURE 2

Nomogram predicting long-term poor outcomes following EVT for acute severe cerebral infarction.

FIGURE 3

Receiver operating characteristic (ROC) curve: (A) Modeling group; (B) Internal validation group.

FIGURE 4

Calibration curve for the subjects: (A) Modeling group; (B) Internal validation group.
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we  identified five key predictors—age, baseline NIHSS score, 
puncture-to-reperfusion time, collateral circulation, and symptomatic 
hemorrhage—through LASSO regression to construct a 
comprehensive predictive model.

Our model demonstrated good discriminatory ability (AUC: 
0.7886, 95% CI: 0.7225–0.8546) and calibration (Hosmer-Lemeshow 
test, p = 0.8769). Internal validation indicated strong model 
consistency (AUC: 0.8337, 95% CI: 0.7425–0.9249), highlighting its 
robust predictive capacity, while other models typically show 
moderate predictive power (8–11). Unlike most previous studies (20, 
21), this research further validated the model externally at another 
hospital. The external validation cohort, drawn from a different 
hospital, featured distinct clinical characteristics compared to the 
modeling group, representing variability in treatment protocols and 
management strategies across institutions. Despite this heterogeneity, 
the model achieved a predictive accuracy of 82.6% in the external 
validation group, while calibration curves and decision curve analysis 
(DCA) further confirmed its applicability and generalizability.

Traditional logistic regression for variable selection often 
encounters issues such as multicollinearity and overfitting, leading to 
reduced accuracy and limited clinical applicability. In contrast, LASSO 
regression offers superior predictive power, rigorous variable selection, 

and strong model fitting, making it particularly advantageous in 
handling multicollinearity and preventing overfitting (22). The 
adaptability and effectiveness of LASSO regression are well-
documented across various medical research fields (23–26), 
underscoring its utility in enhancing predictive modeling. By utilizing 
LASSO regression, we  significantly reduced clinical costs while 
efficiently identifying the most predictive variables from a large pool 
of potential risk factors. This approach enhances the precision and 
predictive capacity of our model, thereby improving its practical value 
in clinical decision-making.

Consistent with most predictive models, baseline NIHSS score 
and age are the most predictive factors for long-term unfavorable 
outcomes following endovascular treatment (EVT) (27). The NIHSS 
score, widely used for assessing neurological function in acute 
ischemic stroke patients, reflects the severity of neurological damage. 
A higher NIHSS score indicates a greater likelihood of poor prognosis 
after EVT. In this study, we included severe cases with NIHSS scores 
≥16, and the rate of long-term poor prognosis at 3 months was found 
to be  50–60%, aligning with our results. Previous research has 
demonstrated that high NIHSS scores and severe ischemic stroke are 
independent risk factors for poor functional outcomes at 90 days post-
EVT, which is consistent with our findings.

FIGURE 5

Decision curve for the subjects: (A) Modeling group; (B) Internal validation group.

FIGURE 6

Evaluation and validation of the nomogram model in the external validation group. (A) Receiver operating characteristic (ROC) curve. (B) Calibration 
curve. (C) Decision curve.
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As age increases, the incidence of stroke doubles every decade. Stroke 
patients often present with comorbidities such as atrial fibrillation, 
coronary heart disease, hypertension, and diabetes. Advanced age is 
associated with poorer cerebrovascular and systemic conditions (28), 
resulting in more significant neurological damage at onset and severe 
clinical symptoms. Older patients are also more prone to symptomatic 
hemorrhage after EVT, face greater challenges in neurological recovery 
during rehabilitation, and have reduced physical resilience, all 
contributing to worse long-term outcomes. Previous studies have 
consistently identified age as an independent risk factor for predicting 
long-term unfavorable outcomes after EVT (29).

Symptomatic hemorrhage, one of the most important 
complications after endovascular treatment, has been widely 
studied, with many studies indicating that symptomatic 
intracranial hemorrhage increases poor prognosis and mortality 
(30–32). The underlying mechanism is likely related to the 
disruption of the blood–brain barrier (BBB) within the first hour 
after ischemia. Ischemia-induced endothelial damage and 
increased vascular permeability can lead to hemorrhagic 
transformation following reperfusion therapy (33, 34). This study 
found that poor long-term outcomes in both the modeling and 
validation groups were associated with symptomatic hemorrhage, 
which is consistent with previous research. This highlights the 
importance of analyzing related factors of symptomatic 
intracranial hemorrhage and actively controlling relevant risk 
factors to reduce or prevent poor prognoses.

This study demonstrates that good collateral circulation serves as 
a protective factor against poor outcomes at 3 months. It is widely 
accepted that collateral circulation plays an irreplaceable role in 
maintaining blood flow reperfusion in ischemic areas. Good collateral 
circulation helps sustain blood supply to the ischemic penumbra, 
slows infarct volume growth, delays neurological damage, and 
produces retrograde perfusion, maximizing the rescue of the ischemic 
penumbra. It is a protective factor for long-term postoperative 
prognosis (35–37).

In our model, the time from puncture to reperfusion was shown to 
be an independent risk factor for poor long-term prognosis, and it is the 
only controllable factor. Previous studies have shown that the time from 
puncture to vascular recanalization is an independent risk factor for poor 
long-term outcomes after mechanical thrombectomy (9). During model 
development, we  found that reperfusion time and symptomatic 
hemorrhage influenced by pre-procedural assessments, operator skill, 
device selection, and surgical strategy, collectively determine the success 
of the procedure, its duration, and the likelihood of hemorrhage, all of 
which significantly impact prognosis. The establishment of this model 
serves as a reminder to physicians to refine their techniques, optimize 
equipment choices, and enhance thrombectomy skills and procedural 
flow, ultimately improving long-term patient outcomes.

As age increases, the number of comorbidities such as atrial 
fibrillation, coronary heart disease, hypertension, and diabetes also 
increases in stroke patients. Elderly patients often have poor brain 
tissue and vascular conditions, as well as reduced physical function, 
leading to significant neurological damage at the time of onset, severe 
clinical symptoms, an increased risk of symptomatic hemorrhage after 
endovascular treatment, and difficulties in neurological recovery 
during rehabilitation, which ultimately results in poor long-term 
prognosis. Previous studies have shown that age is an independent risk 
factor for poor long-term outcomes after surgery (17), with elderly 

patients having poorer outcomes and higher mortality at 3 months 
post-operation (9).

In conclusion, this study identified five factors—baseline NIHSS 
score, symptomatic hemorrhage, time from puncture to reperfusion, 
collateral circulation, and age—through Lasso regression, and 
established a nomogram model. This model has good predictive value 
and clinical utility, providing a decision-making reference for future 
clinical work. However, this study has certain limitations. One 
limitation of our study is the preselection of variables using univariate 
analysis before applying LASSO regression. While this approach has 
been used in previous studies, it may introduce selection bias and 
contradicts LASSO’s ability to handle high-dimensional data without 
prior filtering. Future research should evaluate whether applying 
LASSO directly to the entire dataset yields comparable or improved 
model performance. It is a retrospective study with a small sample size, 
which may lead to selection bias. The functional prognosis of patients 
with severe acute ischemic stroke is influenced not only by clinical and 
procedural factors but also by patient adherence to rehabilitation, 
socioeconomic conditions, and access to post-stroke care. This study 
did not explore these potential contributors, highlighting an area for 
future investigation. Given the long study period, advancements in 
EVT techniques and improvements in physician expertise may alter 
the predictive factors associated with poor long-term prognosis. 
Future studies should consider evaluating how evolving treatment 
strategies impact prognostic modeling. Further research is needed to 
validate our predictive model in larger, multicenter cohorts to assess 
its applicability across diverse populations and healthcare settings. 
Incorporating additional biomarkers, imaging-based features, and 
artificial intelligence-driven approaches may further enhance the 
accuracy and clinical utility of prognostic models in the future.
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